高分辨阵列信号处理方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阵列信号处理在雷达、声纳、通信等领域有着广泛的应用。随着阵列信号处理从理论到实际工程应用的发展,人们对算法稳健性和估计精度的要求越来越高。论文以提高阵列信号处理算法的稳健性和估计精度为目标,基于标量传感器阵列和矢量传感器阵列,对高分辨阵列信号处理方面展开研究,取得了一些有意义的成果。论文的主要内容由以下几个部分组成:
     第一部分:SaS冲击噪声下高分辨阵列信号处理方法研究。
     近年来,大量实验数据表明许多实际应用中的噪声都是非高斯分布的,适用于SaS分布来表示。由于SaS分布的随机变量不存在二阶及以上矩,因此传统基于二阶及以上统计量的阵列信号处理算法不能直接适用。针对这一问题,本文给出了几种冲击噪声背景下的阵列信号处理算法:首先论文研究了基于分数低阶矩的加权子空间拟合算法(FLOM-WSF)和基于Screened Ratio原理的加权子空间拟合算法(SR-WSF),该两种算法分别基于SaS型随机变量有界的分数低阶矩阵和共变系数矩阵,并用子空间拟合算法得到DOA估计值。仿真结果表明,该两种算法均可有效的提高冲击噪声背景下DOA的估计精度,其中SR-WSF算法无需对参数p进行选择,具有更强的稳健性。基于无穷范数归一化的ESPRIT算法(IN-ESPRIT)先对阵列接收的快拍数据进行预处理,构造一个伪协方差矩阵;然后,对伪协方差矩阵进行特征分析,并利用ESPRIT算法实现DOA的估计。与基于分数低阶矩的算法相比,IN-ESPRIT算法不仅具有更好的估计性能,可适用于多种冲击噪声,且无需已知冲击噪声特征指数的先验信息或估计。最小均方归一化误差(MMSNE)波束形成算法通过将期望信号和波束形成输出之间的归一化均方误差最小化求的最优权向量,根据瞬时自适应的无穷范数快拍归一化数据构造均方归一化误差,以此来代替均方误差,并采用采样协方差矩阵求逆(SMI)自适应算法的得到波束形成的权向量的估计。仿真结果表明,在多种冲击噪声背景下该算法都能有效提高估计精度,降低对干扰信号的零陷。
     第二部分:扩展孔径高分辨阵列信号参数估计算法研究。
     增加相邻传感器之间的间距可以实现阵列孔径扩展,从而提高参数估计的精度。但当相邻两阵元间的间距大于半波长时,会造成参数估计的模糊问题。针对该问题,论文给出两种基于双平行阵的扩展口径波达方向估计算法:扩展孔径ESPRIT算法和扩展孔径DOA矩阵算法。两种算法分别采用由4L+1个阵列单元和4L个阵列单元组成的双平行阵列几何结构,利用阵列传感器沿x轴和沿y轴的不同间距,分别计算出高精度模糊的方向余弦估计和低精度不模糊的方向余弦估计,利用低精度无模糊的方向余弦估计值对高精度模糊的方向余弦估计值进行解模糊处理,得到高精度无模糊的方向余弦的估计值。此外,论文还对由于阵列扩展孔径造成的特征值相等问题进行了研究,分别给出了两种有效的克服特征值相等问题的方法。
     第三部分:基于声学和电磁矢量传感器阵列的二维DOA估计算法研究。
     首先介绍了声学和电磁矢量传感器阵列的接收信号模型,然后研究了几种基于矢量传感器阵列的DOA估计算法:针对宽带Chirp信号,分别基于声学矢量传感器和电磁矢量传感器,研究了分数阶Fourier域滤波的算法。信号强度相同时,算法对信号进行分数阶Fourier变化后,分别用滤波器估计矢量传感器的导向矢量,信号强度不同时,算法用基于分数阶Fourier域滤波逐次消去强信号,然后分别估计导向矢量,根据导向矢量的性质得到方向估计值。该算法无需进行迭代搜索和二维DOA配对,可以估计具有相同或不同调频斜率的多个Chirp信号的二维DOA(极化)。针对相关噪声下的相干信号的DOA估计,基于面阵加远离的孤立传感器阵列几何结构,对声学矢量传感器和电磁矢量传感器,研究了基于传播算子的二维DOA(极化)估计算法。该算法首先定义了一个与信号相干性、噪声相关性无关的满秩矩阵,然后采用传播算子算法估计矢量传感器的导向矢量,最后得到自动配对的方位、仰角(极化参数)的估计值。针对基于声学矢量传感器阵列的高精度DOA估计,给出了一种基于传播算子的扩展孔径DOA估计算法,该算法无需特征分解或奇异值分解进行子空间的估计,因而在得到高精度的同时降低了运算量。最后研究了双子阵结构的电磁矢量传感器在空间相关噪声中的DOA-极化联合估计算法。算法基于任意空间位置的普通压力传感器和电磁矢量传感器组成的双子阵几何阵列结构,用两个子阵的互相关矩阵消除空间噪声,该算法对子阵几何结构无任何约束,也无需已知传感器的空间坐标,且具有较低的运算量,适用于实时处理。
Array signal processing technique has played a fundamental role in many appli-cations involving radar, sonar and communications. However, with the development of array signal processing approaches in practical applications, the investigations on robust and high accurate array signal processing methods have received great interest.
     Following the recent advances of array signal processing, this dissertation inves-tigates robust and high accurate array signal processing methods using scalar sensors and vector sensors. This dissertation mainly consists of the following parts.
     Part I:High accurate array signal processing methods in SaS impulsive noise
     Recently, various experiment measurements have shown that atmospheric noise, underwater acoustic noise and electromagnetic disturbance noise have "impulsive" characteristics, which are inappropriatlly modeled as Gaussian noise in applications. As the SaS processes do not possess second-order and high order moments, conven-tional second-order-based array signal processing method can not apply to SaS noise environments directly. In order to deal with this problem, several array signal process-ing methods in impulsive noise environments are proposed in this chapter.
     Firstly the fractional lower order moment based weighted subspace fitting (FLOM-WSF) algorithm and the Screened Ratio based weighted subspace fitting (SR-WSF) algorithm are proposed for direction finding under SaS noise. The FLOM-WSF and SR-WSF respectively form the array FLOM matrix and array covariation matrix, and then obtain DOA estimation using subspace fitting techniques. Comparing with the traditional DOA techniques, these two algorithms can improve estimation performance in impulsive noise. Incidentally, the SR-WSF algorithm requires no estimation of the noise parameter, hence showing high robustness. The infinity-norm normalization al-gorithm adaptively normalizes each sensor-array snapshot's spatial data vector by its infinity-norm, constructs a pseudo-correlation function, and then, ESPRIT algorithm is adapted to achieve DOA estimation. Simulations show that the IN-ESPRIT algo-rithm has superior estimation-accuracy over the FLOM-ESPRIT algorithm. Then a new minimum mean squared "normalized-error" (MMSNE) beamforming technique is investigated. This new beamformer aims to minimize the "normalized error " between the desired signal and the the beamformer's output. This normalized error is defined in terms of the instantaneously adaptive infinity-norm snapshot-normalized data, as an alter-native to the customary "fractional-order-error" for impulsive noise environ-ments. Sample matrix inversion (SMI) algorithm is used for updating the beamformer weights. Simulation results show the algorithm produces higher estimation-accuracy and offers better interference-rejection for several impulsive noise environments com-paring with the earlier FLOM-based beamformer.
     Part II:Extended aperture high resolution parameter estimation
     Extending the inter-sensor spacing beyond a half-wavelength can offer enhanced array resolution and direction-finding precision, but will lead to a set of cyclically am-biguous angle estimates. This chapter proposes two extended aperture two-directional DOA estimation algorithms using two parallel-shape-array:extended aperture ES-PRIT (EA-ESPRIT) algorithm and extended aperture DOA matrix (EA-DOAM) algo-rithm. The two algorithms use 4L+1 and 4L array elements to form two-parallel-shape array geometry, high-variance unambiguous direction cosine estimates and low-variance cyclically ambiguous direction cosine estimates are obtained from the different sensors space. The key idea underlying these two algorithms is to use the high-variance un-ambiguous direction cosine estimates to resolve the low-variance cyclically ambiguous direction cosine estimates to extract azimuth-elevation angle estimates. Two remedial methods to solve the identical eigenvalues problem have also been presented.
     Part III:2D-DOA estimation using an array of acoustic and electro-magnetic vector sensors.
     Firstly the data models of acoustic and electromagnetic vector sensor array are introduced. Then several DOA estimation methods using vector sensor array are developed.
     A new azimuth, elevation angle (Polarization) estimation algorithm for multiple broadband chirp signals using a single acoustic or electromagnetic vector sensor is proposed in this chapter. Two distinct signal scenarios are considered. For multiple signals with same power, the proposed algorithm applies the fractional Fourier trans-form (FrFT) to estimate the steering vectors of vector sensors; For multiple signals with different powers, the proposed algorithm uses fractional Fourier domain filter-ing to estimate and eliminate steering vectors of vector sensors one by one, and then to get elevation-azimuth angle (Polarization) estimates of different signals separately. The proposed algorithm requires no iterative searching and pair matching procedures, works well for multiple chirps having the same or distinct chirp rates.
     Then a propagator-based algorithm for two-dimensional direction finding of co-herent sources under spatially correlated noise is developed in this paper. The planar-plus-an-isolated array geometry based on acoustic or electromagnetic vector sensors is adopted, and a full rank cross-covariance matrix is defined. Then the propagator method is used to estimate the steering vectors of acoustic or electromagnetic vector sensor. The Characteristic of steering vector is developed to obtain the closed-form azimuth-elevation angle (Polarization) estimates.
     A propagator-based algorithm for underwater acoustic 2-D direction-of-arrival (DOA) estimation with an array of acoustic vector sensors is proposed. The prop-agator method is exploited to extract extended aperture parameter estimation.The proposed algorithm requires no eigen-decomposition or singular value decomposition into the signal and noise subspaces. Comparing with its ESPRIT counterpart, the pro-posed propagator algorithm has its computational complexity reduced and the similar accuracy.
     Finally a computationally simple azimuth-elevation direction finding algorithm in spatially correlated noise fields is developed. The algorithm uses two-far-separated subarray geometry based on electromagnetic vector sensors and scalar sensors, and all sensors are arbitrarily placed at unknown locations.A cross matrix to eliminate the effect of the spatially correlated noise is defined. The proposed algorithm has no restrict to the subarray geometry and sensors locations, does not need 2D iterative searching and shows low computational complexity.
引文
[1]Krim H, Viberg M. Two decades of array signal processing research. IEEE Signal Processing Magazine.1996,13(4):67-94.
    [2]Burg J P. Maximun entropy spectral analysis.37th meeting of the Annual Inter-national SEG Meeting, Oklahoma City,1967:383-393.
    [3]Capon J. High-resolution freqency-wavenumber spectrum analysis. Proceedings of the IEEE.1969,57(8):1408-1418.
    [4]Schmidt R O. Multiple emitter location and signal parameter estimation. IEEE Transaction on Antennas Propagation.1986,34:276-280.
    [5]Roy R, Kailath T. ESPRIT-a subspace ratation approach to estimation of cissoid in noise. IEEE Transaction on Acoustics Speech Signal Processing.1986,34(10):1340-1342.
    [6]Ottersten B, Viberg M, Stoica P, Nehorai A. Exact and large sample maximum likelihood techniques for parameter estimation and detection in array processing. Radar Array Processing. Berlin, Germany, Springer-Verlag,1993:99-151.
    [7]Barabell A J. Improving the resolution performance of eigenstructure-based direction-finding algorithms. IEEE International Conference on Acoustics, Speech Signal Processing.1983,8:336-339.
    [8]Yeh C C. Projection approach to bearing estimations. IEEE Transaction on Acous-tics, Speech Signal Processing.1986,10(5):1347-1349.
    [9]Kung S Y, Lo C K, Foka R. A Toepliz approximation approach to coherent source direction finding. IEEE International Conference on Acoustics, Speech Signal Pro-cessing.1986:193-196.
    [10]肖维民,彭应宁.两种快速ESPRIT算法.电子学报.1995,23(7):102-104.
    [11]Haardt M, Nossek J A. Unitary ESPRIT:how to obtain increased estimation accuracy with a reduced computational burden. IEEE Transaction on Signal Pro-cessing.1995,43(5):1232-1242.
    [12]Clergeot H, Tressense S, Ouamri A. Performance of high resolution frequencies estimation methods compared to the Cramer-Rao bounds. IEEE Transaction on Acoustics, Speech Signal Processing.1989,37(11):1703-1720.
    [13]Stocia P, Nehorai A. Performance study of conditional and unconditional direction-ofarrival estimation. IEEE Transaction on Acoustics, Speech Signal Pro-cessing.1990,38(10):1783-1795.
    [14]Viberg M, Ottersten B, Kailath T. Detection and estimation in sensor arrays using weighted subspace fitting. IEEE Transaction on Signal Processing.1991, 39(11):2436-2449.
    [15]Bohme J F. Estimation of source parameters of correlated signals in wavefields. IEEE International Conference on Acoustics, Speech Signal Processing.1984:731-734.
    [16]Bohme J F. Estimation of spectral parameters by maxium likelihood and nonlinear regression. IEEE Transaction on Signal Processing.1986, 11(4):329-337.
    [17]Ziskind I, Wax M. Maximum likelihood localization of multiple sources by alter-nating projection. IEEE Transaction on Acoustics, Speech Signal Processing.1988, 36(10):1553-1560.
    [18]Cadzow J A, Kim Y S, Shiue D C. General direction-of-arrival estimation:A Signal Subspace Approach. IEEE Transaction on Aerosp. Electron. Syst.1989, 25(1):31-47.
    [19]Bresler Y, Macovski A. Exact maximum likelihood parameter estimation of su-perimposed exponential signals in noise. IEEE Transaction on Acoustics, Speech Signal Processing.1986,34(10):1081-1088.
    [20]Sharman K C, McClurkin G D. Genetic algorithms for maximum likelihood pa-rameter estimation. IEEE International Conference on Acoustics, Speech Signal Processing.1989,4:2716-2719.
    [21]Pillai S U. Array Signal Processing. Springer-Verlag,1989.
    [22]殷勤业,邹理和,Robert W. Newcomb.一种高分辨率二维信号参量估计方法-波达方向矩阵法.通信学报.1991,12(4):1-7,44.
    [23]Tayem N, Kwon H M. L-shape 2-dimensional arrival angle estimation with prop-agator method. IEEE Transaction on Antennas and Propagation.2005,53(5):1622-1630.
    [24]Lian X, Zhou J.2-D DOA Estimation for Uniform Circular Arrays with PM. Antennas, Propagation EM Theory,7th International Symposium. Guilin,2006:1-4.
    [25]Li P, Sun J, Yu B. Two-dimensional spatial-spectrum estimation of coherent sig-nals without spatial smoothing and eigendecomposition. Radar, Sonar and Navi-gation, IEE Proceedings.1996,143(10):295-299.
    [26]Tayem N, Kwon H M.2D DOA estimation with propagator method for cor-related sources under unknown symmetric Toeplitz noise. Vehicular Technology Conference.2005,1:1-5.
    [27]You Y, Zhao Y, Wang F. Fast algorithm for direction-of-arrival estimation based on cyclic propagator method. Wireless, Mobile and Sensor Networks.2007:687-690.
    [28]叶中付,沈风麟.一种快速的二维高分辨波达方向估计方法—混合波达方向矩阵法.电子科学学刊.1996,18(6):56-573.
    [29]金梁,殷勤业.时空DOA矩阵方法.电子学报.2000,28(6):8-13.
    [30]金梁,殷勤业.时空DOA矩阵方法的分析与推广.电子学报.2001,29(3):30-303.
    [31]Huang J, Shi Y, Tao J. Closed-form estimation of DOA ang polarization for multisource with a uniform cercular array. Proceeding of the 4th International Conference on Machine Learning and Cybernetics. Guangzhou,2005:4469-4474.
    [32]Ye Z, Zhang Y, Liu C. Direction-of-arrival estimation for uncorrelated and coher-ent signals with fewer sensors. IET Microwaves, Antennas and Propagation.2009, 3(3):473-482.
    [33]Yin Q, Newcomb R W, Munjal S, Zou L. Relation between the DOA matrix method and the ESPRIT method. Circuits and Systems, IEEE International Sym-posium on.1990,2:1561-1564.
    [34]何希盈,程锦房,林春生,朱读明.基于波达方向矩阵的矢量水听器方位频率联合估计.海军工程大学学报.2008,20(5):37-41.
    [35]Wax M, Shan T, Kailath T. Spatio-temporal spectral analysis by eigenstruc-ture methods. IEEE Transaction on Acoustics Speech Signal Processing.1984, 32(8):817-827.
    [36]Wang H, Kaveh M. Coherent signal subspace processing for the detection and estimation of angles of arrival of multiple wideband sources. IEEE Transaction on Acoustics, Speech Signal Processing.1985,33(8):823-831.
    [37]Hung H, Kaveh M. Focusing matrices for wide-band array processing. IEEE Trans-action on Acoustics Speech Signal Processing.1988,36(8):1272-1281.
    [38]Doron M A, Weiss A J. On focusing matrices for wide-band array processing. IEEE Transaction on Signal Processing.1992,40(6):1295-1302.
    [39]Valaee S, Champagne B. Localization of wide-band signals using least-squares and total least-squares approaches. IEEE Transaction on Signal Processing.1999, 47(5):1213-1222.
    [40]Lee T S. Efficient wideband source lacalization using beamforming invariance technique. IEEE Transaction on Signal Processing.1994,42(6):1376-1386.
    [41]Rao B D, Hari K V S. On spatial smoothing and weighted subspace methods. In Proc.24th Asilomar Conference on Signals System Computer.1990:936-940.
    [42]Rao B D, Hari K V S. Weighted state space methods/ESPRIT and spatial smoothing. IEEE International Conference on Acoustics, Speech Signal Process-ing.1991:3317-3320.
    [43]Di A. Multiple sources location-a matrix decomposition approach. IEEE Trans-action on Acoustics, Speech Signal Processing.1985,33(4):1086-1091.
    [44]高世伟,保铮.利用数据矩阵分解实现对空间相干源的超分辨处理.通信学报.1988,9(1):4-13.
    [45]Chen Y, Lee J, Yeh C. Bearing estimation without calibration for randomly per-turbed arrays. IEEE Transaction on Signal Processing.1991,39(1):194-197.
    [46]Stoica P, Nehorai A. MUSIC, maximum likelihood and Cramer-Rao bound:Fur-ther results and comparisons. IEEE Transaction on Acoustics, Speech Signal Pro-cessing.1990,38(12):2140-2150.
    [47]Park H P, Kim Y S. A solution to the narrow-band coherency problem in multiple source location. IEEE Transaction on Signal Processing.1993,41(1):473-476.
    [48]Wong K M, Reilly J P, Wu Q, Qiao S. Estimation of the directions of arrival of signals in unknown correlated noise. Part Ⅰ:The MAP approach and its implemen-tation. IEEE Transsaction on Signal Processing.1992,40(8):2007-2017.
    [49]Lecadre J. Parametric methods for spatial signal processing in the presence of unknown colored noise field. IEEE Transaction on Acoustics, Speech, and Signal Processing.1989,37(7):965-983.
    [50]Ye H, DeGroat R D. Maximum likelihood DOA estimation and asymptotic Cramer-Rao bounds for additive unknown colored noise. IEEE Transaction on Sig-nal Processing.1995,43(4):938-949.
    [51]Friedlander B, Weiss A J. Direction finding using noise covariance modeling. IEEE Transaction on Signal Processing.1995,43(7):1557-1567.
    [52]Goansson B, Ottersten B. Direction estimation in partially unknown noise fields. IEEE Transaction on Signal Processing.1999,47(9):2375-2385.
    [53]Viberg M, Stoica P, Ottersten B. Array processing in correlated noise fields based on instrumental variables and subspace fitting. IEEE Transaction on Signal Pro-cessing.1995,43(5):1187-1199.
    [54]Viberg M, Stoica P, Ottersten B. Maximum likelihood array processing in spatially correlated noise fields using parameterized signals. IEEE Transaction on Signal Processing.1997,45(4):996-1004.
    [55]Stoica P, Viberg M, Wong K M, Wu Q. Maximum-likelihood bear-ing estimation with partly calibrated arrays in spatially correlated noise field. IEEE Transaction on Signal Processing.1996,44(4):888-899.
    [56]Agrawal M, Prasad S. A modified likelihood function approach to DOA estimation in the presence of unknown spatially correlated Gaussian noise using a uniform linear array. IEEE Transaction on Signal Processing.2000,48(10):2743-2749.
    [57]Belouchrani A, Amin M Gand, Meraim K A. Direction finding in correlated noise fields based on joint block-diagonalization of spatio-temporal correlation matrices. IEEE Signal Processing Letters.1997,4(9):266-268.
    [58]Vorobyov S A, Gershman A B, Wong K M. Maximum likelihood direction-of-arrival estimation in unknown noise fields using sparse sensor arrays. IEEE Trans-action on Signal Processing.2005,53(1):34-43.
    [59]Tsakalides P, Nikias C L. The robust covariation-based MUSIC (ROC-MUSIC) al-gorithm for bearing estimation in impulsive noise environments. IEEE Transaction on Signal Processing.1996,44(7):1623-1633.
    [60]Liu T H, Mendel J M. A subspace-based direction finding algorithm using fractional lower order statistics. IEEE Transaction on Signal Processing.2001, 49(8):1605-1613.
    [61]Kannan B, Fitzgerald W J. A numerical Bayesian approach for DOA and fre-quency estimation of exponential signals in Gaussian and non-Gaussian noise. IEEE SP Workshop on Statistical Signal and Array Processing.1998:264-267.
    [62]Lee D D, Kashyap R L, Madan R N. Robust decentralized direction-of-arrival estimation in contaminated noise. IEEE Transaction on Signal Processing.1990, 38(3):496-505.
    [63]Lee D D, Kashyap R L. Robust maximum likelihood bearing estimation in contam-inated Gaussian noise. IEEE Transaction on Signal Processing.1992,40(8):1983-1986.
    [64]Barroso VAN, Moura J M F. An ML algorithm for outliers detection and source localization. IEEE International Conference on Acoustics, Speech Signal Process-ing.2002,2:425-428.
    [65]Yardimci Y, Cetin A E, Cadzow J A. Robust direction-of-arrival estimation in non-Gaussian noise. IEEE Transaction on Signal Processing.1998,46(5):1443-1451.
    [66]Kannan B, Fitzgerald W J. Joint angle and delay estimation for fading multi-path signals in α-stable noise. IEEE Workshop on Signal Processing Advances in Wireless Communication.1999:333-336.
    [67]Kozick R J, Sadler B N. Maximum-likelihood array processing in non-Gaussian noise with Gaussian mixtures. IEEE Transaction on Signal Processing.2000, 48(12):3520-3535.
    [68]Visuri S, Oja H, Koivunen V. Subspace-based direction-of-arrival estimation using nonparametric statistics. IEEE Transaction on Signal Processing.2001,49(9):2060-2073.
    [69]Georgiou P G, Kyriakakis C. Robust maximum likelihood source localization: The case for sub-Gaussian versus Gaussian. IEEE Transaction on Audio, Speech, Language Processing.2006,14(4):1470-1480.
    [70]Williams D B, Johnson D H. Robust estimation of structured covariance matrices. IEEE Transaction on Signal Processing.2001,41(9):2891-2906.
    [71]Moffet A T. Minimum Redundancy Linear Arrays. IEEE Transactions on Anten-nas and Propagation.1968,216(2):172-175.
    [72]Gelli G, Izzo L. Minimum redundancy linear arrays for cyclostationarity based source location. IEEE Transactions on Signal Processing.1997,45(10):2605-26081.
    [73]Dogan M C, Mendel J M. Applications of cumulant s to array processing Part Ⅰ: Aperture extension and array calibration. IEEE Transactions on Signal Processing. 1995,43(5):1200-1216.
    [74]Shan Z, Ji F, Wei G. Extension music-like algorithm for DO A estimation with more sources than sensors. IEEE International Conference on NeuralNetworks and Signal Processing. Nanjin China,2003:1281-1284.
    [75]Wong K T, Zoltowski M D. Closed-form underwater acoustic directionfinding with arbitrarily spaced vector hydrophones at unknown locations. IEEE J. Oceanic Eng. 1997,22(3):566-575.
    [76]Nehorai A, Paldi E. Acoustic vector sensor array processing. IEEE Transactions on Signal Processing.1994,42(9):2481-2491.
    [77]Hochwald B, Nehorai A. Identifiability in array processing models with vector-sensor applications. IEEE Transactions on Signal Processing.1996,44(1):83-95.
    [78]Wong K T, Zoltowski M D. Extended-aperture underwater acoustic multi-source azimuth/elevation direction-finding using uniformly but sparsely spaced vector hy-drophones. IEEE J. Oceanic Eng.1997,22(4):659-672.
    [79]Wong K T, Zoltowski M D. Root-MUSIC-based azimuth-elevation angleof-arrival estimation with uniformly spaced but arbitrarily oriented velocity hydrophones. IEEE Transactions on Signal Processing.1999,47(12):3250-3260.
    [80]Wong K T, Zoltowski M D. Self-initiating velocity-field beamspace music for un-derwater acoustic direction-finding with irregularly spaced vector hydrophones. IEEE J. Oceanic Eng.2000,25(2):262-273.
    [81]Hawkes M, Nehorai A. Wideband source localization using a distributed acoustic vector-sensor array. IEEE Transactions on Signal Processing.2003,51(6):1479-1491.
    [82]Tao J, Chang W, Shi Y. Direction-finding of coherent sources via'particle-velocity-field smoothing'. IEE Proceedings-Radar, Sonar, Navigation.2008,2:127-134.
    [83]He J, Liu Z. Two-dimensional direction finding of acoustic sources by a vector sensor array using the propagator method. IEEE Transactions on Signal Processing. 2008,88(10):2492-2499.
    [84]He J, Liu Z. Underwater acoustic azimuth and elevation angle estimation using spatial invariance of two identically oriented vector hydrophones at unknown loca-tions in impulsive noise. Digital Signal Process.2009,19(3):452-462.
    [85]Ho K C, Tan K C, Ser W. Investigation on number of signals whose directions-of-arrival are uniquely determinable with an electromagnetic vector sensor. IEEE Trans. Signal Processing.1995,47(1):41-54.
    [86]Hochwald B, Nehorai A. Polarimetric modeling and parameter estimation with applications to remote sensing. IEEE Transactions on Signal Processing.1995, 43(8):1923-1935.
    [87]Li J. Direction and polarization estimation using arrays with small loops and short dipoles. IEEE Transactions on Antennas and Propagation.1993,41(3):379-387.
    [88]Ho K C, Tan K C, Tan B T G. Eiffcient method for estimating directions-of-arrival of partially polarized signals with electromagnetic vector sensors. IEEE Transactions on Signal Processing.1997,45(10):2485-2498.
    [89]Ho K C, Tan K C, Nehorai A. Estimating directions of arrival of completely and incompletely polarized signals with electromagnetic vector sensors. IEEE Transac-tions on Signal Processing.1999,47(10):2845-2852.
    [90]Haykin S, Litva J, Shepherd T J, eds. Radar Array Processing. Springer-Verlag, 1993.
    [91]Wong K T, Zoltowski M D. Uni-vector-sensor ESPRIT for multisource azimuth, elevation, and polarization estimation. IEEE ransactions on Antennas Propagation. 1997,45(10):1467-1474.
    [92]Rahamim D, Tabrikian J, Shavit R. Source localization using vector sensor ar-ray in a multipath environment. IEEE Transactions on Signal Processing.2004, 52(11):3096-3103.
    [93]He J, Liu Z. Computationally efficient 2D direction finding and polarization esti-mation with arbitrarily spaced electromagnetic vector sensors at unknown locations using the propagator method. Digital Signal Processing.2009,19(3):491-503.
    [94]Weiss A J, Gavish M. Direction finding using ESPRIT with interpolated arrays. IEEE Transactions on Signal Processing.1991,39(6):1473-1478.
    [95]Munier J, Delisle G Y. Spatial analysis using new properties of the cross-spectral matrix. IEEE Transactions on Signal Processing.1991,39(3):746-749.
    [96]Marcos S, Marsal A, Benidir M. The propagator method for source bearing es-timation. IEEE International Conference on Acoustics, Speech Signal Processing. 1994,4:237-240.
    [97]Roy R, Kailath S. ESPRIT-Estimation of signal parameters via rotational invari-ance techniques. IEEE Transactions on Acoustics, Speech Signal Processing.1989, 37:984-995.
    [98]Field E C, Lewinstein M. Amplitude-probability distribution model for VLF/ELF atmospheric noise. IEEE Transactions on Wireless Communications.1978, 26(1):83-87.
    [99]Shinde M P, Gupta S N. Signal detection in the presence of atmospheric noise in tropics. IEEE Transactions on Communication.1974,22(8):1055-1063.
    [100]Bouvet M, Schwartz S C. Comparison of adaptive and robust receivers for signal detection in ambient underwater noise. IEEE Transactions on Acoustics, Speech Signal Processing.1989,37(5):621-626.
    [101]Shao M, Nikias C L. Signal processing with fractional lower order moments: stable processes and their applications. Proceedings of the IEEE.1993,81(7):986-1010.
    [102]Miller G. Properties of certain symmetric stable distribution. Journal of Multi-variate anal.1978,8:346-360.
    [103]Kanter M, Steiger W L. Regression and autoregression with infinite variance. Adv Appl. Prob.1974,6:768-783.
    [104]He J, Liu Z, Wong K T. Snapshot-instantaneous‖·‖∞ normalization against heavy-tail noise. IEEE Transaction on Aerosp. Electron. Syst.2008,44(3):1221-1227.
    [105]He J, Liu Z. Linearly constrained minimum-'normalised variance'beamforming against heavy-tailed impulsive noise of unknown statistics. IET Radar Sonar & Navigation.2008,2(6):449-457.
    [106]吕泽均,肖先赐.基于分数阶矩的测向方法研究.电波科学学报.2002,17(12):561-564.
    [107]Widrow B, Mantey P E, Griffiths L J. Adaptive antenna systems. Proceedings of IEEE.1967,55(12):2143-2159.
    [108]Gilhousen K S, Jacobs I M, Padovani R, Viterbi A J, Weaver L A, Jr Wheatley C E, On the capacity of a cellular CDMA system. IEEE Transactions on Vehicular Technology.1991,40(2):303-312.
    [109]Tanaka S, Harada A, Sawahashi M, Adachi F. Experiments on coherent adaptive antenna array diversity for wideband DS-CDMA mobile radio. IEEE Journal on Selected Areas in Communications.2000,18(8):1495-1504.
    [110]Olfat M, Farrokhi F R Liu K J R. Power allocation for OFDM using adaptive beamforming over wireless networks. IEEE Transaction on Communications.2005, 53(3):505-514.
    [111]顾陈,张劲东,朱晓华.基于OFDM的多载波调制雷达系统信号处理及检测.电子与信息学报.2009,31(6):1298-1300.
    [112]Gu C, Zhang J and Zhu X. Resolution Performance Analysis for Multicarrier Phase-coded Signal.The 2008 International Congress on Image and Signal Process-ing.2008,9:193-196.
    [113]Frank C R, Scott C, Dennis W, Jeffrey C M, Kevin C. MIMO Radar Theory and Experimental Results. Signals, Systems and Computers Conference Record of the Thirty-Eighth Asilomar Conference on.2004,1:300-304.
    [114]Filiz O, Yener A. Rank constrained temporal-spatial matrix flters for CDMA systems. IEEE Transaction on Wireless Communications.2004,3(6):1974-1979.
    [115]Guo Z H, Letaief K B. Adaptive MMSE receiver with beamforming for DS/CDMA systems. IEEE Transaction on Wireless Communications.2003, 2(4):605-610.
    [116]Bartolome D, Perez-Neira A I. MMSE techniques for space diversity receivers in OFDM-based wireless LANs. IEEE Journal on Selected Areas in Communications. 2003,21(2):151-160.
    [117]Budsabathon M, Hara M, Hara Y. Optimum beamforming for pre-FFT OFDM adaptive antenna array. IEEE Transaction on Vehicular Technology.2004, 53(4):945-955.
    [118]Hwang K C, Lee K B. Joint transmit and receive filters design for multiple-input multiple-output (MIMO) systems. IEEE Transaction on Wireless Communications. 2005,4(4):1635-1649.
    [119]Kotecha J H, Sayeed A M. Transmit signal design for optimal estimation of corre-lated MIMO channels. IEEE Transaction on Signal Processing.2004,52(2):546-557.
    [120]Yetik I S, Nehorai A. Beamforming using the fractional fourier transform. IEEE Transaction on Signal Processing.2003,51 (6):1663-1668.
    [121]Ma W K, Ching P C, Vo B N. Crosstalk resilient interference cancellation in microphone arrays using Capon beamforming. IEEE Transaction on Speech and Audio Processing.2004,12(5):468-477.
    [122]Taskalides P, Nikias C L. Robust space-time adaptive processing (STAP) in non-Gaussian clutter environments. IEE Proceedings-Radar, Sonar, Navigation.1999, 146(2):84-93.
    [123]Kannan B, Fitzgerald W J. Beamforming in additive a-stable noise using frac-tional lower statistics (FLOS). IEEE International Conference on Electronics, Cir-cuits and Systems.1999,3:1755-1758.
    [124]何劲,刘中.脉冲噪声环境中稳健的自适应波束形成算法.电子学报.2006,34(3):464-468.
    [125]He J, Liu Z, Wong K T. Linearly constrained minimum-"Geometric Power" adaptive beamforming using logarithmic moments of data containing heavy-tailed noise of unknown statistics. IEEE Antennas and Wireless Propagation Letters. 2007,6:600-
    [126]Reed I S, Mallat J D, Brennan L E. Rapid convergence rate in adaptive arrays. IEEE Transaction on Aerospace Electronic Systems.1974, AES-10:853-863.
    [127]Tichavsky P, Wong K T, Zoltowski M D. Near-field/far-field azimuth and el-evation angle estimation using a single vector hydrophone. IEEE Transaction on Signal Processing.2001,49(11):2498-2510.
    [128]Chambers C, Tozer T C, Sharman K C, Durrani T S.Temporal and Spatial Sampling Influence on the Estimates of Superimposed Narrowband Signals:When Less Can Mean More. IEEE transaction on Signal Processing.1996,44(12):3085-3098.
    [129]Tsao J, Steinberg B D. Reduction of sidelobe and speckle artifacts in microwave imaging:The CLEAN technique. IEEE Transaction on Antennas Propagation. 1988,36(4):543-556.
    [130]Nehorai A, Paldi E. Vector-sensor array processing for electromagnetic source localization. IEEE Transaction on Signal Processing.42(2):376-398.
    [131]Wong K T, Zoltowski M D. Closed-form direction finding and polarization es-timation with arbitrarily spaced electromagnetic vector-sensors at unknown loca-tions. IEEE Transaction on Antennas Propag.2000,48(5):671-681.
    [132]Wong K T, Li L, Zoltowski M D. Root-MUSIC-based direction-finding and polarization-estimation using diversely-polarized possibly-collocated antennas. IEEE Letter, Antennas Wirel. Propag.2004,3(8):129-132.
    [133]Zoltowski M D, Wong K T. ESPRIT-based 2-D direction finding with a sparse uniform array of electromagnetic vector sensors. IEEE Transaction on Signal Pro-cessing.2000,48(8):2195-2204.
    [134]Li P, Yu B, Sun J. A new method for two-dimenstional array signal processing in unknown noise environments. IEEE Transaction on Signal Processing.1995, 47:319-327.
    [135]Ozaktas H M, Arikan O, Kutay M A, Bozdagi G. Digital computation of the fractional fourier transform. IEEE Transaction on Signal Processing.1996, 44(9):2141-2150.
    [136]邱天爽,张旭秀,李小兵,孙永梅.统计信号处理-非高斯信号处理及其应用.北京:电子工业出版社,2004:139-171.
    [137]张贤达,保铮.非平稳信号分析与处理.北京:国防工业出版社,1998:168-222.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700