基于奇异值分解法的核磁测井数据反演方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核磁共振测井不仅可以评估岩层渗透率,还能获得岩石的总孔隙度,油、气、水的饱和度、扩散系数,以及油的粘度。对于复杂岩性,它常常是少数几种有效的方法之一。因此核磁测井是近十多年来发展最快的测井方法,现在已经成为石油和天然气勘探综合地球物理测井方法的一个重要组成部分。
     核磁测井数据反演方法是核磁测井理论的核心内容。核磁测井数据反演是通过对核磁测井观测到的自旋回波串进行反演计算,得到储集层孔隙中流体的横向弛豫时间等核磁参数。利用核磁参数可以计算岩石的孔隙度、渗透率、油、气、水的饱和度等。自旋回波串是多个单指数衰减信号叠加在一起的多指数衰减弛豫信号。用自旋回波串反演孔隙流体核磁参数的数学模型是第一类弗雷德霍姆积分方程。积分方程的数值解法是将它离散化为线性方程组,再采用奇异值分解法、正则化方法等算法求解。已有的算法在实际应用中存在对信噪比要求高、计算速度慢、谱线不连续等问题。另一方面,由于测井仪器性能及井下环境的限制,核磁测井信号的信噪比很低。因此有必要对已有算法做改进,得到能够适应低信噪比的快速反演算法。
     本文通过分析最佳奇异值保留个数与信噪比的关系,提出一种改进的奇异值分解算法——线性截断算法。该算法可以快速有效地实现T2谱反演,而且该算法比传统的奇异值分解算法更加稳定,即在信噪比变化很大情况下解的变化相对不大。线性截断算法可以适用于低信噪比(SNR>10)的T2谱反演,在信噪比很低时仍能较好地保持弛豫谱分布的真实性。进一步分析奇异值分解法与正则化方法的关系,提出了一个正则化因子的经验公式。本文提出的经验因子在低信噪比时更接近各种形态T2谱最佳正则因子的平均取值。另外,考察了初值对联合迭代重建反演算法的影响。建立了以线性截断算法结果为初值的联合迭代重建反演算法。通过与国外软件结果对比,验证了该算法的有效性。研究了布点方式、布点数对反演结果的影响。构造了对数布30点、50点的改进奇异值分解算法。实例表明,在低信噪比情况下采用对数布30点、50点的改进奇异值分解算法对大孔隙具有更好的分辨率,更能反映地层真实孔隙结构。
     讨论了利用核磁共振数据进行流体识别的几种方法。介绍了T1、T2搜索、利用流体T1差异进行识别、利用流体T2差异进行识别以及时间域分析的具体算法。
     研制了一套核磁共振反演解释系统软件。该系统可以完成基于本文所述几种反演算法的T2谱反演及反演结果的解释处理,可以为油田的勘探、开发提供可靠的地质数据。
NMR logging not only can evaluate permeability of stratum, but also can gettotal porosity of rock, saturation of oil, gas or water, coefficient of diffusion, viscosityof oil. It is usually the one of the several effective methods for complex lithology. Sothe NMR logging is the fastest growing logging method in recent ten years. It has nowbecome an important part of the comprehensive geophysical logging methods forpetroleum and natural gas exploration.
     NMR inversion method is the core content of NMR logging theory. NMR datainversion gets transverse relaxation time and other magnetic parameters of pore fluidin stratum by inversion of the spin echo trains from NMR logging. Porosity,permeability and saturation of oil, gas or water can be computed by these magneticparameters. A train of echoes is a multiple exponential relaxation signal which iscomposed of many single exponential relaxation signals. The mathematical model ofthe magnetic parameters inversion by spin echo trains is a Fredholm’s integralequation of the first kind. The numerical solution of the integral equation alwaysreduces it to a system of linear algebraic equations, and then we can use singularvalue decomposition or regularization method to solve those linear algebraicequations. In practical application the existing algorithms have many problems, suchas the requirement of signal to noise is too high, calculation speed is slow orspectrums are not continuous. On the other hand, as a result of logging instrumentperformance and underground environmental constraints, the signal to noise ratio of NMR logging is very low. So it is necessary to improve the existing algorithm for afast inversion algorithm which is able to adapt low signal to noise ratio.
     An improved SVD algorithm named linear cutoff algorithm is proposed byanalysis of the relationship between the best number of singular value retained andSNR. It can make the inversion of T2spectrum quickly and effectively, and it isstabler than the traditional SVD algorithm: the difference of the T2spectrumsinversed by linear cutoff algorithm with different signal to noise ratio is not veryapparent. The linear cutoff algorithm can adapt to low SNR (SNR>10) T2spectruminversion. That means the T2spectrum inversed by linear cutoff algorithm can be realeven in low SNR. A formula of regularization factor is proposed by analyzing therelationship between the improved SVD and regularization method. The empiricalregularization factor proposed in this paper is closer to the average value of the bestfactors in low SNR. In addition, the influence of initial value to simultaneous iterativereconstruction inversion algorithm is investigated. Construct a simultaneous iterativereconstruction inversion algorithm, which initial value is the result of linear cutoffalgorithm. We compare the improved algorithm with foreign software results to verifythe effectiveness of the algorithm. Analyze the effects of methods of pre-assignedrelaxation bins and the number of pre-assigned relaxation bins on inversions.Construct the improved SVD algorithm with30or50logarithmic spaced timeconstants. Practical examples show that the improved algorithm with logarithmic30or50logarithmic spaced time constants have better identification capacity to largepore under the condition of low SNR. It can give the true relaxation distributions forthe formation pore structure better.
     Several methods for fluids typing using nuclear magnetic resonance data arediscussed. The concrete implementation process of T1, T2search, fluid typing basedon difference of T1, fluid typing based on difference of T2and TDA are introduced.
     Software for NMR data inversion and iterpretation is developed. This softwarecan do the inversion of T2spectrum and the iterpretation of the result of inversion. Itcan provide reliable geological data for oilfield exploration and development.
引文
[1]李舟波.钻井地球物理勘探[M].北京:地质出版社,2006.
    [2] Prammer M G, Drack E D, Bouton J C, et al. Measurements of clay-bound water and total porosityby magnetic resonance logging. SPE Annual Technical Conference and Exhibition, FormationEvaluation and Reservoir Geology[C], Colorado,1996:311-320.
    [3] Menger S, Prammer M G. Can NMR porosity replace conventional porosity in formationevaluation[C]?39thAnnual Logging Symposium Transactions: The Society of Professional WellLog Analysts, Paper: RR,1998.
    [4] Coates G R, Xiao L Z, Prammer M G. NMR Logging Principles and Applications [M]. Texas: GulfPublishing Company,1999.
    [5] Dunn K J, Bergman D J, Latorraca G A. Nuclear Magnetic Resonance: Petrophysical and LoggingApplications [M]. Pergamon: Elsevier Science,2002.
    [6]肖立志,陆大卫,柴细元,等.核磁共振测井资料解释与应用导论.北京:石油工业出版社,2001.
    [7]肖立志.我国核磁共振测井应用中的若干重要问题[J].测井技术,2007,31(5):401-407.
    [8]运华云,赵文杰,周灿灿,等.利用T2分布进行岩石孔隙结构研究[J].测井技术,2002,26(2):18-21.
    [9]李召成,孙建孟,耿生臣,等.应用核磁共振测井T2谱划分裂缝型储层[J].石油物探,2001,40(4):113-116.
    [10]谭茂金,赵文杰.用核磁共振测井资料评价碳酸盐岩等复杂岩性储集层[J].地球物理学进展,2006,25(2):42-49.
    [11]赵文杰. NMR测井资料在复杂砂泥岩油气层解释中的应用[J].测井技术,2001,16(2):42-49.
    [12]彭智,赵文杰,张晋,等.胜利油田基山砂岩体产能预测研究[J].测井技术,2004,28(5):423-427.
    [13]申本科,王贺林,宋相辉,等.低电阻率油气层的测井系列研究[J].地球物理学进展,2009,24(4):1437-1445.
    [14] Prammer M G. Lithology-Independent Gas Detection by Gradient-NMR Logging[R]. SPE30562,1995.
    [15] Rosa D. Use of the NMR Diffusivity Log To Identify and Quantify Oil and Water in CarbonateFormations[R]. SPE101396,2008.
    [16] Akkurt R. Determination of Residual Oil Saturation Using Enhanced Diffusion[R]. SPE49014,1998.
    [17] Slijkerman W F J. Processing of Multi-Acquisition NMR Data[R]. SPE56768,1999.
    [18]李鹏举.核磁共振T2谱反演及流体识别评价方法研究[D].大庆:东北石油大学博士学位论文,2010.
    [19]毕林锐.核磁共振测井技术的最新若干进展[J].工程地球物理学报,2007,4(4):369-374.
    [20]肖立志.核磁共振成像测井与岩石核磁共振及其应用[M].北京:科学出版社,1998.
    [21] Sun Boqin, Dunn K J. Core Analysis with Two Dimensional NMR[C].Monterey, SCA2002.
    [22] Sun Boqin, Dunn K J. Methods of decoupling diffusion effects from relaxation times to determineproperties of porous media containing fluids: US,6833698[P].2004-12-21.
    [23] Sun Boqin, Dunn K J. Method for obtaining multi-dimensional proton density distributions from asystem of nuclear spins[P]. US,6937014,2005-08-30.
    [24] Sun Boqin, Dunn K J. A global inversion method for multi-dimensional NMR logging[J].Journalof Magnetic Resonance,2005,172:152-160.
    [25]谢然红,肖立志,等.二维核磁共振测井[J].测井技术,2005,29(5):430-434.
    [26]顾兆斌,刘卫.核磁共振二维谱反演[J].波谱学杂志,2007,24(3):311-319.
    [27]石玉江,刘天定.二维核磁共振测井技术在长庆油田的应用[J].测井技术,2009,33(6):584-588.
    [28] Butler J P, Reeds J A, Dawson S V. Estimating solutions of first kind integral equations withnonnegative constraints and optimal smoothing. SIAMJ Numer Anal,1981,18(3):381-397.
    [29] Hansen P C. The discrete picard condition for discrete ill-posed problems [J]. BIT,1990(30):658-672.
    [30] K.P. Whittall, M.J. Bronskill. Investigation of analysis technical for complicated NMR relaxationdata[J]. Journal of Magnetic Resonance,1991,95:134-152.
    [31] Dunn K J, Latorraca G A, Warner J L. On the calculation and interpretation of NMR relaxationtime distribution//SPE28367,69th Annual SPE Technical Conference and Exhibition[C]. NewOrleans: Society of Petroleum Engineering,1994:45-54.
    [32] G.C. Borgia, R.J.S. Brown, P. Fantazzini. Uniform-Penalty Inversion of Multi-exponential DecayData[J]. Journal of Magnetic Resonance,1998,132:65-77.
    [33] G.C. Borgia, R.J.S. Brown, P. Fantazzini. Uniform-Penalty Inversion of Multi-exponential DecayData II[J]. Journal of Magnetic Resonance,2000,147:273-285.
    [34]王为民,李培,叶朝辉.核磁共振弛豫信号的多指数反演[J].中国科学A辑,2001,31(8):730-736.
    [35]王才志,李宁. Cif2000平台下的核磁共振测井解谱方法研究[J].测井技术,2002,26(5):360-363.
    [36]王才志,尚卫忠.应用奇异值分解算法的核磁共振测井解谱方法[J],石油地球物理勘探,2003,38(1):91-94.
    [37]姚绪刚,王忠东.一种新的核磁共振弛豫谱反演算法[J].测井技术,2003,27(5):373-376.
    [38]王忠东,肖立志,刘堂宴.核磁共振弛豫信号多指数反演新方法及其应用[J].中国科学(G辑),2003,33(4):323-333.
    [39] Dines K and Lyttle J. Computerized Geophysical Tomography [J]. Proc. IEEE,1979,67:1065-1073.
    [40]姜瑞忠,姚彦平,苗盛,张春生.核磁共振T2谱奇异值分解反演改进算法[J].石油学报,2005,26(6):57-59.
    [41] Michael Prange, Yi-Qiao Song. Quantifying uncertainty in NMR T2spectra using Monte Carloinversion[J]. Journal of Magnetic Resonance,2009,196:54-60.
    [42]李鹏举,姜大鹏,李鹏飞,宋延杰.核磁共振T2谱M-P广义逆反演研究[J].吉林大学学报(地球科学版),2011,41(2):579-585.
    [43]谭茂金,石耀霖,谢关宝.基于遗传算法的核磁共振T2分布反演[J].测井技术,2007,31(5):413-416.
    [44]潘克家,陈华,谭永基.基于差分进化算法的核磁共振T2多指数反演[J].物理学报,2008,57(9):5956-5961.
    [45]李辉,肖忠祥,刘晓娟.基于奇异值分解的核磁共振T2谱反演研究[J].东华理工大学学报,2013,36(1):65-68.
    [46]肖立志,谢庆明,谢然红,潘卫国.核磁共振测井的正则化-启发式阈值降噪研究[J].物理学报,2013,56(11):3943-3952.
    [47] R.L. Kleinberg et al. Nuclear Magnetic Resonance of Rocks: T1vs T2[R]. SPE-26470,1993.
    [48] R.L. Kleinberg and H.J. Vinegar. NMR Properties of Reservoir Fluids [J]. The Log Analyst,1996,37:20-32.
    [49] M.B. Crowe et al. Measuring Residual Oil Saturation in West Texas Using NMR[C]. SPWLA38thAnnual Logging Symposium, June15-18,1997.
    [50] Akkurt R, Guillory A J, et al. NMR Logging of Natural Gas Reservoirs. SPWLA [C]. Paper N,1995.
    [51] Prammer M G, Mardon D, et al. Lithology-independent Gas Detection by Gradient NMR Logging.SPE30562[C],1995.
    [52] Moore M A, Akkurt R. Nuclear Magnetic Resonance Applied to Gas Detection in a HighlyLaminated Gulf of Mexico Turbidite Invaded with Synthetic Oil Filtrate[C].1996, SPE36521, p.305-310.
    [53] Mardon D, et al. Characterization of Light Hydrocarbon-Bearing Reservoirs by Gradient NMRWell Logging-a Gulf of Mexico Case Study. SPE36520,1996[C], p.296-304.
    [54]江玉龙,王祝文,伍东.关于提高核磁测井差分谱油气显示方法的研究.东华理工大学学报,2008,31(1):59-64.
    [55]邵维志.核磁共振测井移谱差谱法影响因素实验分析[J].测井技术,2003,27(6):502-507.
    [56]王忠东,汪浩,向天德.综合利用核磁谱差分与谱位移测井提高油层解释精度[J].测井技术,2001,25(5):365-368.
    [57] Akkurt R, Vinegar H J, Tutunjian P N, et al. NMR Logging of Natural Gas Reservoirs [J]. The LogAnalyst,1996,37(6):33-42.
    [58] Akkurt R, et al. Determination of Residual Oil Saturation Using Enhanced Diffusion.1998[C],SPE49014.
    [59] Akkurt R, Mardon D, Gardner J S, et al. Enhanced Diffusion: Expanding the Range of NMRDirect Hydrocarbon-Typing Applications.39thAnnual Logging Symposium Transactions: TheSociety of Professional Well Log Analysts [C]. Paper: GG, Houston,1998.
    [60] Freedman, R. et al. A New NMR Method of Fluid Characterization in Reservoir Rocks:Experimental Confirmation and Simulation Results [C]. SPE63214,2001SPE Annual TechinicalConference and Exhibition, Dallas, Texas.452-464.
    [61]谢然红,肖立志,刘天定.原油的核磁共振弛豫特征[J].西南石油大学学报,2007,29(5):21-24.
    [62]刘堂宴,肖立志,傅容珊,等.球管孔隙模型的核磁共振(NMR)弛豫特征及应用[J].地球物理学报,2004,47(4):663-671.
    [63]何雨丹,毛志强,肖立志,等.核磁共振T2分布评价岩石孔径分布的改进方法[J].地球物理学报,2005,48(2):373-378.
    [64] Martin D, Lalitha Venkataramanan, Christian Straley. Method and apparatus for NMR measure-ment of wettability [P]. US:6883702,2005-04-26.
    [65] Song Y Q. A2D NMR method to characterize granular structure of dairy products [J]. Progress inNuclear Magnetic Resonance Spectroscopy.2009,55:324-334.
    [66] Sun Boqin, Dunn K J. Fast NMR CPMG Data Inversion Using Fluid Component Decompositions[J]. Chinese Journal of Magnetic Resonance.2010,27(3):298-309.
    [67] Heaton N J, Freedman R, Karmonik C, et al. Applications of a New-Generation NMR WirelineLogging Tool. SPE Annual Conference, San Antonio [C]//U. S. A.,2002, SPE77400.
    [68]田鑫,毛志强.二维核磁测井识别稠油储层方法研究[J].核电子学与探测技术,2008,28(1):127-130.
    [69] Sun Boqin and Dunn K J. Core Analysis With Two Dimensional NMR.2002InternationalSymposium of the Society of Core Analysts[C], Monterey, SCA2002.
    [70] Hurlimann M D, Venkataramanan L, Flaum C, et al. Diffusion-editing: New NMR Measurementof Saturation and Pore Geometry. Paper FFF in43rdAnnual Symposium of SPWLA[C], Oiso,Japan, June3-6,2002.
    [71] M.D.Hurlimann, L. Venkataramanan. Quantitative Measurement of Two-Dimensional DistributionFunctions of Diffusion and Relaxation in Grossly Inhomogeneous Fields [J]. Journal of MagneticResonance,2002,157,31-42.
    [72] Song Y Q, Venkataramanan L, Hurlimann M D, et al. T1-T2Correlation Spectra Obtained Using aFast Two-Dimensional Laplace Inversion[J]. Journal of Magnetic Resonance,2002,154:261-268.
    [73] Sun Boqin, et al. NMR Inversion Methods For Fluid Typing. SPWLA44thAnnual LoggingSymposium[C], June22-25,2003.
    [74] Sun Boqin, Dunn K J. Methods and limitations of NMR data inversion for fluid typing [J]. Journalof Magnetic Resonance,2004,169:118-128.
    [75] Sun Boqin, Dunn K J. A global inversion method for multi-dimensional NMR logging [J]. Journalof Magnetic Resonance,2004,172:152-160.
    [76] Sun Boqin, Dunn K J, Bilodeau BJ, Stonard SW, et al. Two-dimensional NMR logging and fieldtest results. SPWLA45thAnnual Logging Symposium[C], Paper KK, June6-9;2004.
    [77] Sun Boqin, Dunn K J. Two-dimensional nuclear magnetic resonance petrophysics [J]. Journal ofMagnetic Resonance,2005,23:259-262.
    [78] Martin D. Hurlimann, Lauren Burcaw, Yi-Qiao Song. Quantitative characterization of foodproducts by two-dimensional D-T2and T1-T2distribution functions in a static gradient [J]. Journalof Colloid and Interface Science.2006,297:303-311.
    [79] MartinD, Charles F, Mark F, et al. Nuclear Magnetic Resonance Method and Logging Apparatusfor Fluid Analysis [P]. US:6891369,2005-5-10.
    [80] Sun Boqin. In situ fluid typing and quantification with1D and2D NMR logging [J]. MagneticResonance Imaging.2007,25:521-524.
    [81] Emmanuel Toumelin, Carlos Torres-Verdin, Boqin Sun, Keh-Jim Dunn. Random-walk techniquefor simulating NMR measurements and2D NMR maps of porous media with relaxing andpermeable boundaries [J]. Journal of Magnetic Resonance,2007,188:83-96.
    [82] Chanh C M, Nicholas J H. Interpretation Methods for NMR Diffusion-T2Maps [P]. US:7388374,2008-06-17.
    [83]顾兆斌,刘卫,孙佃庆,孙威.2D NMR技术在石油测井中的应用[J].波谱学杂志,2009,26(4):560-568.
    [84]谢然红,肖立志,陆大卫.识别储层流体的(T1,T2)二维核磁共振方法[J].测井技术,2009,33(1):26-31.
    [85]谢然红,肖立志.(T2,D)二维核磁共振测井识别储层流体的方法[J].地球物理学报,2009,52(9):2410-2418.
    [86]谭茂金,邹友龙,刘冰开,杨萱.气水模型(T2,D)二维核磁共振测井数值模拟及参数影响分析[J].测井技术,2011,35(2):130-136.
    [87]赵全胜. MRIL核磁共振成像测井技术综述[J].国外测井技术,2008,23(2):8-13.
    [88]江玉龙. P型核磁测井解释处理方法研究[D].长春:吉林大学博士学位论文,2009.
    [89] Dunn K J, D. J. Bergman. Nuclear Magnetic Resonance Petrophysical and Logging Applications
    [M]. Pergamon: An Imprint of Elsebier Science,2002.
    [90]翁爱华,李舟波,莫修文,等.低信噪比核磁共振测井资料的处理技术[J].吉林大学学报(地球科学版),2003,33(2):232-235.
    [91] Hansen P C. Analysis of discrete Ill-posed problems by means of the L-curve [J]. SIAM Review,1992,34(4):561~580.
    [92]翁爱华.核磁测井数据处理基础理论与实验研究[D].长春:吉林大学博士学位论文,2001.
    [93]廖广志,肖立志,谢然红等.孔隙介质核磁共振弛豫测量多指数反演影响因素研究[J].地球物理学报,2007,50(3):932-938.
    [94]李舟波.利用测井方法识别复杂油气储层的流体性质[J].石油与天然气地质,2004,25(4):356-362.
    [95]何宗斌,蔡军,郭书生.轻油、稠油、水样核磁共振试验结果及其纵向弛豫特性[J].石油天然气学报,2010,32(3):80-83.
    [96]何宗斌,倪静,伍东等.根据烃与水的T1差异确定含烃饱和度[J].石油天然气学报,2008,30(1):102-105.
    [97] Morriss C E, Freedman R, Straley C, Johnston M. Hydrocarbon Saturation and ViscosityEstimation From NMR Logging in the Belridge Diatomite.35thSPWLA[C], Paper C,1994.
    [98]何宗斌,蔡军,郭书生.轻油、稠油、水样核磁共振试验结果及其横向分布特性[J].石油天然气学报,2011,33(1):94-97.
    [99]何宗斌,倪静,伍东等.根据烃与水的T2差异确定含烃饱和度[J].石油天然气学报,2007,29(5):92-96.
    [100]翁爱华,李舟波,王雪秋.核磁测井数据弛豫谱反演软件研究[J].长春科技大学学报,2000,31(4):395-397.
    [101]江玉龙,王祝文,伍东. P型核磁解释处理方法研究[J].吉林大学学报(地球科学版),2008,38(3):508-513.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700