正电子发射断层图像重建算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
正电子发射断层扫描(Positron Emission Tomography,PET)是当今最高层次的核医学影像技术,它在肿瘤学,心血管疾病学,神经系统疾病研究,以及新药开发研究等领域中显示出卓越的性能。由投影数据进行图像重建在PET研制中占有重要的地位,随着先进的核医学断层影像设备的广泛应用和计算机技术的迅速发展,其研究越来越受到人们的重视。本文讨论了正电子发射成像的重建问题。正电子成像过程是对正负电子湮灭产生的光子对进行计数,而重建的目的是要恢复放射性核素的位置分布信息。一般来说,重建算法总是将连续的密度分布离散化为像素,且认为每个像素的密度分布均匀,它的正电子发射是空间Poisson过程。根据成像系统的线性,投影值也服从Poisson分布。
     本文首先论述了各种PET图像重建算法,主要有解析法和迭代法。解析法主要是滤波反投影重建,它的特点是算法简单,速度快但重建图像的质量不好。迭代法分为代数迭代重建算法和统计迭代重建算法。代数迭代重建算法是一类以代数方程理论为基础的算法。而统计迭代重建算法是以各种统计规则为基础的算法,主要有基于最小均方误差准则的图像重建方法,基于最大似然估计的图像重建方法(Maximum Likelihood Expectation Maximization,MLEM)以及基于最大后验概率(Maximum a posterior,MAP)的贝叶斯图像重建方法。迭代法由于能够在重建的过程中考虑各种物理和统计模型,就重建图像质量而言,它们要好于解析法。
     有序子集可分离抛物线替代函数(Ordered Subsets Separable Paraboloidal Surrogate,OSSPS)算法认为是一种有效的PET图像重建算法,它能够重建出比传统的最大似然期望值最大化算法质量更好的图像,然而它在重建的过程中需要人为指定松弛参数来保证重建结果不发散,这必然降低图像重建的重复性。文中将增量优化传递算法应用于PET图像重建中,并采用替代函数来代替原有的目标函数得到一种新的PET图像重建算法,EMIOT(Emission Image Reconstruction based on Incremental Optimization Transfer),它不需要人为指定松弛参数,提高了重建实验的重复性,同时它的重建性能和OSSPS的相当。
     基于中值先验分布函数的PET图像重建算法(Median Root Prior Image Reconstruction,MRP)重建的图像仍然含有大量噪声,这是因为中值滤波器不能够有效去除PET图像中的高斯和Poisson噪声。文中提出将基于偏微分方程的各向异性扩散滤波器和中值滤波器结合起来用于PET图像重建中,新算法重建的图像无论是从视觉效果还是从客观标准都要好于传统的MAP和MRP。
     基于偏微分方程的各向异性扩散滤波器能够有效去除核医学图像中的噪声,为此我们将它应用于MLEM每次迭代中间得到一种简单的正则化的重建算法,MLEM-PDE。大量的实验表明,它重建的图像质量较好,能够用于PET图像重建中,尤其适用于低剂量放射性药物的情况。
     在图像复原中广泛使用的ROF模型基础上,结合PET投影数据的统计特性以及具有边界保持的先验函数,我们采用变分的方法得到一种新的PET图像重建算法,它重建的效果要好于MLEM。最后,我们将随迭代次数增加而逐渐减少的松弛参数应用于MLEM中,加快了MLEM重建速度。
PET (Positron Emission Tomography) is one of the most advanced techniques in the world. It could be used to study the metabolism and the function activity of human body in molecular level with the predominant performances in the research fields of oncology, cardiology, neurology and new medicine exploitation. Image reconstruction from projections is very important in designing PET instrumentation. It has become more and more important in PET research with wide application of PET and fast development of computer technology. The thesis is dealt with PET image reconstruction. The imaging of PET is to count the photon events emitted by the annihilation. The purpose of reconstruction is to recover the density distribution of isotopy. In reconstruction practice, we have to discrete density distribution into pixels. The isotopy distribution is uniformly through the whole pixel, and it emits positron follow a space Poisson point process. Due to the linearity of imaging system, the measured values are i. i. d. Poisson distribution.
     PET image reconstruction algorithms available are introduced in the first part of the thesis. Currently, it can be classified into analytical and iterative method. Filtered back projection is one of the famous analytical methods which are characteristic of simplicity and fastness. However, its reconstructed images are very noisy. Iterative methods can be divided into algebraic iteration and statistical iteration method. The former is based on algebraic equation theory, while the latter is based on kinds of statistical rules, such as minimum least square, maximum likelihood and maximum a posterior. Because of introducing all kinds of physical and statistical models into the image reconstruction, iterative method can produce better images than filtered back projection.
     Ordered subsets separable paraboloidal surrogate algorithm (OSSPS) is considered as a better PET image reconstruction than classical maximum likelihood expectation maximization (MLEM). However, it lacks repetition because of its requirement for designated relaxation parameters. In this thesis, we developed a new image reconstruction algorithm named as EMIOT by introducing incremental optimization transfer theory into PET combined with replacing original function by a surrogate function. It does not need designated relaxation parameters but also is comparable to OSSPS in image reconstruction.
     The images reconstructed by median root prior image reconstruction (MRP) are still noisy due to median filter’s poor performance in removing Gaussian and Poisson noise. We proposed a new algorithm which combines anisotropic diffusion filter with median filter in PET. The new algorithm is better than traditional MAP and MRP both from subjective and objective perspective.
     We developed a new PET image reconstruction algorithm named as MLEM-PDE, which is an improved MLEM regularized by interiteration filter. Because anisotropic diffusion filter based on partial differential equation can remove noise in nuclear medicine images, we used it in this thesis. The results showed that it can be used in PET imaging, especially in clinical situation.
     ROF is an extensive used model in image restoration community, however, it can not be used in PET imaging directly. In this thesis, we considered the statistics in PET projection data and employed edge-preserving prior function, which can modify ROF. From the variational method not expectation maximization method, we get a new good image reconstruction framework. At last, we deduce an accelerated algorithm by introducing a relaxation parameter into MLEM which decrease with iteration.
引文
[1] Cormack A M. Representation of a function by its line integrals, with some radiological applications. J. Apply. Phys. 1963, 34(5): 2722-2727.
    [2] De Leyn P, Stroobants S, De Wever W, et al. Prospective comparative study of integrated positron emission tomography-computed tomography scan compared with remediastinoscopy in the assessment of residual mediastinal lymph node disease after induction chemotherapy for mediastinoscopy-proven stage IIIA-N2 Non-small-cell lung cancer: a Leuven Lung Cancer Group Study. J Clin Oncol. 2006, 24(21): 3333-3339.
    [3] Jacobs A H, Li H, Winkeler A, et al. PET-based molecular imaging in neuroscience. Eur J Nucl Med Mol Imaging. 2003, 30(7): 1051-1065.
    [4] Partridge S, Timothy A, Doherty M J, et al. 2-Fluorine-18-fluoro-2-deoxy-glucose Positron Emission Tomography in the Pretreatment Staging of Hodgkin's Disease. Clin Positron Imaging. 1999, 2(6): 323.
    [5] Ruangma A, Bai B, Lewis J S, et al. Three-dimensional maximum a posteriori (MAP) imaging with radiopharmaceuticals labeled with three Cu radionuclides. Nucl Med Biol. 2006, 33(2): 217-226.
    [6] Kirchner P T, Ryan J, Zalutsky M, et al. Positron emission tomography for the evaluation of pancreatic disease. Semin Nucl Med. 1980, 10(4): 374-391.
    [7] Smith I C, Gilbert F J. Role of positron emission tomography in the management of breast cancer. Breast. 1999, 8(6): 303-310.
    [8] Smith G T, Hubner K F, McDonald T, et al. Cost Analysis of FDG PET for Managing Patients with Ovarian Cancer. Clin Positron Imaging. 1999, 2(2): 63-70.
    [9] Tyler D S, Onaitis M, Kherani A, et al. Positron emission tomography scanning in malignant melanoma. Cancer. 2000, 89(5): 1019-1025.
    [10] Bar-Shalom R, Valdivia A Y, Blaufox M D. PET imaging in oncology. Semin Nucl Med. 2000, 30(3): 150-185.
    [11] Marcou Y, Lindquist C, Adams C, et al. What is the optimal therapy of brain metastases? Clin Oncol (R Coll Radiol). 2001, 13(2): 105-111.
    [12] Scott A M. Current status of positron emission tomography in oncology. Australas Radiol. 2002, 46(2): 154-162.
    [13] Cohade C, Osman M, Marshall L N, et al. PET-CT: accuracy of PET and CT spatial registration of lung lesions. Eur J Nucl Med Mol Imaging. 2003, 30(5): 721-726.
    [14] Varadhachary G R, Abbruzzese J L, Lenzi R. Diagnostic strategies for unknown primary cancer. Cancer. 2004, 100(9): 1776-1785.
    [15] Lonneux M. PET-scan in colorectal cancer. Acta Chir Belg. 2005, 105(4): 333-337.
    [16] Fox J L, Rengan R, O'Meara W, et al. Does registration of PET and planning CT images decrease interobserver and intraobserver variation in delineating tumor volumes for non-small-cell lung cancer? Int J Radiat Oncol Biol Phys. 2005, 62(1): 70-75.
    [17] Leccisotti L. Positron emission tomography in the staging of esophageal cancer. Rays. 2006, 31(1): 9-12.
    [18] Saksena M A, Kim J Y, Harisinghani M G. Nodal staging in genitourinary cancers. Abdom Imaging. 2006, 9(12): 12-18.
    [19] Dalal P U, Sohaib S A, Huddart R. Imaging of testicular germ cell tumours. Cancer Imaging. 2006, 6(1): 124-134.
    [20] Camici P, Araujo L, Spinks T, et al. Myocardial glucose utilization in ischaemic heart disease: preliminary results with F18-fluorodeoxyglucose and positron emission tomography. Eur Heart J. 1986, 7 Suppl C: 19-23.
    [21] Schwaiger M, Hutchins G D. Evaluation of coronary artery disease with positron emission tomography. Semin Nucl Med. 1992, 22(4): 210-223.
    [22] Grover-McKay M, Ratib O, Schwaiger M, et al. Detection of coronary artery disease with positron emission tomography and rubidium 82. Am Heart J. 1992, 123(3): 646-652.
    [23] Kaufmann P A, Gnecchi-Ruscone T, di Terlizzi M, et al. Coronary heart disease in smokers: vitamin C restores coronary microcirculatory function. Circulation. 2000, 102(11): 1233-1238.
    [24] Rosen S D, Camici P G. The brain-heart axis in the perception of cardiac pain: the elusive link between ischaemia and pain. Ann Med. 2000, 32(5): 350-364.
    [25] Pagano D, Fath-Ordoubadi F, Beatt K J, et al. Effects of coronary revascularisation on myocardial blood flow and coronary vasodilator reserve in hibernating myocardium. Heart. 2001, 85(2): 208-212.
    [26] Ishii K. Clinical application of positron emission tomography for diagnosis of dementia. Ann Nucl Med. 2002, 16(8): 515-525.
    [27] Bax J J, Fath-Ordoubadi F, Boersma E, et al. Accuracy of PET in predicting functional recovery after revascularisation in patients with chronic ischaemic dysfunction: head-to-head comparison between blood flow, glucose utilisation and water-perfusable tissue fraction. Eur J Nucl Med Mol Imaging. 2002, 29(6): 721-727.
    [28] Akinboboye O O, Idris O, Goldsmith R, et al. Positron emission tomography, echo-doppler, and exercise studies of functional capacity in hypertensive heart disease. Am J Hypertens. 2002, 15(10): 907-910.
    [29] Link J M, Stratton J R, Levy W, et al. PET measures of pre- and post-synaptic cardiac beta adrenergic function. Nucl Med Biol. 2003, 30(8): 795-803.
    [30] Bulow H P, Stahl F, Lauer B, et al. Alterations of myocardial presynaptic sympathetic innervation in patients with multi-vessel coronary artery disease but without history of myocardial infarction. Nucl Med Commun. 2003, 24(3): 233-239.
    [31] Jadvar H, Alavi A, Mavi A, et al. PET in pediatric diseases. Radiol Clin North Am. 2005, 43(1): 135-152.
    [32] Takalkar A, Mavi A, Alavi A, et al. PET in cardiology. Radiol Clin North Am. 2005, 43(1): 107-119, xi.
    [33] Raichle M E, Perlmutter J S, Fox P T. Parkinson's disease: metabolic and pharmacological approaches with positron emission tomography. Ann Neurol. 1984, 15 Suppl: S131-132.
    [34] Martin W R, Stoessl A J, Adam M J, et al. Positron emission tomography in Parkinson's disease: glucose and DOPA metabolism. Adv Neurol. 1987, 45: 95-98.
    [35] Rinne U K, Laihinen A, Rinne J O, et al. Positron emission tomography demonstrates dopamine D2 receptor supersensitivity in the striatum of patients with early Parkinson's disease. Mov Disord. 1990, 5(1): 55-59.
    [36] Lindvall O. Neural transplantation in Parkinson's disease. Novartis Found Symp. 2000, 231: 110-123; discussion 123-118, 145-117.
    [37] Hershey T, Black K J, Carl J L, et al. Dopa-induced blood flow responses in nonhuman primates. Exp Neurol. 2000, 166(2): 342-349.
    [38] Hilker R, Razai N, Ghaemi M, et al. [18F]fluorodopa uptake in the upper brainstem measured with positron emission tomography correlates with decreased REM sleep duration in early Parkinson's disease. Clin Neurol Neurosurg. 2003, 105(4): 262-269.
    [39] Albani G, Kunig G, Soelch C M, et al. The role of language areas in motor control dysfunction in Parkinson's disease. Neurol Sci. 2001, 22(1): 43-44.
    [40] Le W D, Jankovic J. Are dopamine receptor agonists neuroprotective in Parkinson's disease? Drugs Aging. 2001, 18(6): 389-396.
    [41] Lindvall O, Hagell P. Cell therapy and transplantation in Parkinson's disease. Clin Chem Lab Med. 2001, 39(4): 356-361.
    [42] Schroeder U, Kuehler A, Lange K W, et al. Subthalamic nucleus stimulation affects a frontotemporal network: a PET study. Ann Neurol. 2003, 54(4): 445-450.
    [43] Herholz K. PET studies in dementia. Ann Nucl Med. 2003, 17(2): 79-89.
    [44] Asanuma K, Dhawan V, Carbon M, et al. Assessment of disease progression in parkinsonism. J Neurol. 2004, 251 Suppl 7: vII4-8.
    [45] Fukuyama H. Functional brain imaging in Parkinson's disease-overview. J Neurol. 2004, 251 Suppl 7: vII1-3.
    [46] Jankovic J. Essential tremor course and disability: a clinicopathologic study of 20 cases. Neurology. 2004, 63(8): 1541-1542; author reply 1541-1542.
    [47] Ulla M, Thobois S, Lemaire J J, et al. Manic behaviour induced by deep-brain stimulation in Parkinson's disease: evidence of substantia nigra implication? J Neurol Neurosurg Psychiatry. 2006, 77(12): 1363-1366.
    [48] Au W L, Adams J R, Troiano A, et al. Neuroimaging in Parkinson's disease. J Neural Transm Suppl. 2006, (70): 241-248.
    [49] Strafella A P, Ko J H, Monchi O. Therapeutic application of transcranial magnetic stimulation in Parkinson's disease: the contribution of expectation. Neuroimage. 2006, 31(4): 1666-1672.
    [50]刘力,吴晓锋,胤印.正电子断层扫描仪与PET图像重建概述. CT理论与应用研究. 2003, 12(1): 47-50.
    [51]刘力,印胤,单保慈.有序子集最小二乘OS-LS图像重建迭代算法.中国图象图形学报. 2005, 10(5): 628-632.
    [52]吴朝霞,刘力,柴新禹等.基于不同子集的OS-EM快速迭代重建算法研究.仪器仪表学报. 2002, 23(4): 408-410.
    [53]吴朝霞,刘力,柴新禹.可变约束OS-EM图像重建算法仿真研究.中国生物医学工程学报. 2004, 23(1): 1-4.
    [54] Liu L, Wang Y M. An Accelerated Multiplicative Iterative Algorithm in Image Reconstruction. Int J Imag Sys & Tech. 2002, 12(3): 97-100.
    [55]王艳芳,刘力,魏龙等.小动物正电子断层扫描仪(Micro-PET)技术概述中国体视学与图像分析2005, 10(3): 174-175.
    [56] Wang Y. Multicriterion cross-entropy minimization approach to positron emission tomographic imaging. J Opt Soc Am A Opt Image Sci Vis. 2001, 18(5): 1027-1032.
    [57] Wang C X, Snyder W E, Bilbro G, et al. Performance evaluation of filtered backprojection reconstruction and iterative reconstruction methods for PET images. Comput Biol Med. 1998, 28(1): 13-24; discussion 24-15.
    [58] Wang W, Gindi G. Noise analysis of MAP-EM algorithms for emission tomography. Phys Med Biol. 1997, 42(11): 2215-2232.
    [59]龚杏,钟元生,陈德人. PET贝叶斯神经网络重建算法.浙江大学学报(工学版). 2003, 37(5): 543-546.
    [60]龚铁柱,汪元美.基于多尺度分析方法的正电子成像重建.应用基础与工程科学学报. 2000, 8(3): 285-290.
    [61]龚铁柱,汪元美.基于分段线性模板先验的正电子成像重建.生物物理学报. 2001, 17(3): 522-528.
    [62]刘华锋,叶华俊,鲍超.用于正电子发射断层成像的闪烁晶体原子能科学技术. 2001, 35(5): 476-480.
    [63] Zhu H Q, Shu H Z, Zhou J, et al. A weighted least squares PET imagereconstruction method using iterative coordinate descent algorithms. in. Rome, Italy: IEEE, vol. Vol. 6, 2004. 3380-3384.
    [64] Zhu H Q, Zhou J, Shu H Z, et al. A novel weighted least squares PET image reconstruction method using adaptive variable index sets. Digital Signal Processing. 2006, 16: 106-119.
    [65] Zhu H Q, Shu H, Zhou J, et al. Bayesian algorithms for PET image reconstruction with mean curvature and Gauss curvature diffusion regularizations. Comput Biol Med. 2006, (In Press).
    [66] Zhou J, Luo L M, Zhu H Q. Row-action SEGE algorithm for PET image reconstruction. Journal of Southeast Univetsity. 2004, 20(4): 467-471.
    [67] Zhu H Q, Shu H Z, Zhou J, et al. Image Reconstruction for Positron Emission Tomography Using Fuzzy Nonlinear Anisotropic Diffusion Penalty. Med. Bio. Eng. Comput. 2006, 44: 983-997.
    [68] Zhu H Q, Shu H Z, Zhou J, et al. Accelerating SAGE algorithmin PET image reconstruction by rescaled block-iterative method.东南大学学报(英文版). 2005, 21(2): 207-210.
    [69] Zhu H Q, Shu H Z, Xia T, et al. A Weighted Least Squares Reconstruction Method for PET Data Using Nonlinear Anisotropic Diffusion Regularization. in: Proc. 27th Annual Intnl Conf. IEEE-EMBS. Shanghai: IEEE, vol. 1, 2005. 120-123.
    [70] Herman G T. Image reconstruction from projections:implementation and application. Berlin: Springer-Verlag, 1979.
    [71] Daube M E, Muehllehner G. An iterative image space reconstruction algorithm suitable for volume PET. IEEE Trans Med Imaging. 1986, MI(5): 61-66.
    [72] Titterington D M. On the iterative image space reconstruction algorithm for PET. IEEE Trans Med Imaging. 1987, MI(6): 52-56.
    [73] Anderson J M M, Mair B A, Rao M, et al. Weighted least-squares reconstruction methods for positron emission tomography. IEEE Trans Med Imaging. 1997, 16(2): 159-165.
    [74] Anderson J M M, Srinivasan R, Mair B A, et al. Accelerated penalized weighted least-squares and maximum likelihood algorithms for reconstructing transmission images from PET transmission data. IEEE Trans Med Imaging. 2005, 24(3):337-351.
    [75] Shepp L A, Vardi Y. Maximum likelihood reconstruction in positron emission tomography. IEEE Trans Med Imaging. 1982, 10(1): 113-122.
    [76] Ahn S, Fessler J A, Blatt D, et al. Convergent incremental optimization transfer algorithms: application to tomography. IEEE Trans Med Imaging. 2006, 25(3): 283-296.
    [77] Chang J H, Anderson J M, Votaw J R. Regularized image reconstruction algorithms for positron emission tomography. IEEE Trans Med Imaging. 2004, 23(9): 1165-1175.
    [78] Stayman J W, Fessler J A. Efficient calculation of resolution and covariance for penalized-likelihood reconstruction in fully 3-D SPECT. IEEE Trans Med Imaging. 2004, 23(12): 1543-1556.
    [79] Matej S, Fessler J A, Kazantsev I G. Iterative tomographic image reconstruction using Fourier-based forward and back-projectors. IEEE Trans Med Imaging. 2004, 23(4): 401-412.
    [80] Nuyts J, Fessler J A. A penalized-likelihood image reconstruction method for emission tomography, compared to postsmoothed maximum-likelihood with matched spatial resolution. IEEE Trans Med Imaging. 2003, 22(9): 1042-1052.
    [81] Hsiao I T, Rangarajan A, Gindi G. A new convex edge-preserving median prior with applications to tomography. IEEE Trans Med Imaging. 2003, 22(5): 580-585.
    [82] Kalifa J, Laine A, Esser P D. Regularization in tomographic reconstruction using thresholding estimators. IEEE Trans Med Imaging. 2003, 22(3): 351-359.
    [83] Ahn S, Fessler J A. Globally convergent image reconstruction for emission tomography using relaxed ordered subsets algorithms. IEEE Trans Med Imaging. 2003, 22(5): 613-626.
    [84] Alenius S, Ruotsalainen U. Generalization of median root prior reconstruction. IEEE Trans Med Imaging. 2002, 21(11): 1413-1420.
    [85] Yu D F, Fessler J A. Edge-preserving tomographic reconstruction with nonlocal regularization. IEEE Trans Med Imaging. 2002, 21(2): 159-173.
    [86] De Pierro A R, Beleza Yamagishi M E. Fast EM-like methods for maximum "a posteriori" estimates in emission tomography. IEEE Trans Med Imaging. 2001,20(4): 280-288.
    [87] Qi J, Huesman R H. Theoretical study of lesion detectability of MAP reconstruction using computer observers. IEEE Trans Med Imaging. 2001, 20(8): 815-822.
    [88] Stayman J W, Fessler J A. Regularization for uniform spatial resolution properties in penalized-likelihood image reconstruction. IEEE Trans Med Imaging. 2000, 19(6): 601-615.
    [89] Leahy R, Byrne C. Recent developments in iterative image reconstruction for PET and SPECT. IEEE Trans Med Imaging. 2000, 19(4): 257-260.
    [90] Fessler J A, Ficaro E P, Clinthorne N H, et al. Grouped-coordinate ascent algorithms for penalized-likelihood transmission image reconstruction. IEEE Trans Med Imaging. 1997, 16(2): 166-175.
    [91] Miller M I, Roysam B. Bayesian image reconstruction for emission tomography incorporating Good's roughness prior on massively parallel processors. Proc Natl Acad Sci USA. 1991, 88(8): 3223-3227.
    [92] Gordon R, Bender R, Herman G T. Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography J Theo Biol. 1970, 29: 471-481.
    [93] Herman G T, Meyer L B. Algebraric reconstruction techniques can be made computationally efficient. IEEE Trans Med Imaging. 1993, 12(3): 600-609.
    [94] Herman G T. Image reconstruction from projections: the fundamentals of computerized tomography. New York: Academic Press, 1980.
    [95] Lakshminarayanan A V, Lent A. Methods of least squares and SIRT in reconstruction. J Theo Biol. 1979, 76: 267-295.
    [96]邹谋炎.反卷积和信号复原.北京:国防工业出版社, 2001.
    [97]孙即祥.数字图像处理.石家庄:河北教育出版社, 1993.
    [98] Zhou J, Luo L M. Sequential weighted least squares algorithm for PET image reconstruction. Digital Signal Processing, (In Press).
    [99] Dempster A D, Laird N M, Rubin D B. Maximum likelihood from incomplete data via the EM algorithm. J. Roy.Stat.Soc. 1977, B39(1): 1-37.
    [100] Lange K, Carson R. EM reconstruction algorithms for emission and transmissiontomography. J Comput Assist Tomogr. 1984, 8(2): 306-316.
    [101] Kaufman J. Implementing and accelerating the EM algorithm for positron emission tomography. IEEE Trans Med Imaging. 1987, MI6(1): 37-51.
    [102] Fessler J A, Hero A O. Space alternating generalized expectation maximization algorithm. IEEE Trans Signal Proc. 1994, 42(10): 2664-2677.
    [103] Hudson H M, Larkin R S. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging. 1994, 13(4): 601-609.
    [104] Byrne C L. Convergent block-iterative algorithms for image reconstruction from inconsistent data. IEEE Trans Image Process. 1997, 20(6): 1296-1304.
    [105] Browne J, Depierro A. Row action alternative to the EM algorithm for maximizing likelihood in emission tomography. IEEE Trans Med Imaging. 1996, 15(5): 687-699.
    [106] Hsiao I T, Rangarajan A, Khurd P, et al. An accelerated convergent ordered subsets algorithm for emission tomography. Phys Med Biol. 2004, 49(11): 2145-2156.
    [107] Qi J, Huesman R H. Penalized maximum-likelihood image reconstruction for lesion detection. Phys Med Biol. 2006, 51(16): 4017-4029.
    [108] Sheng J, Ying L. A fast image reconstruction algorithm based on penalized-likelihood estimate. Med Eng Phys. 2005, 27(8): 679-686.
    [109] La Riviere P J, Pan X. Nonparametric regression sinogram smoothing using a roughness-penalized Poisson likelihood objective function. IEEE Trans Med Imaging. 2000, 19(8): 773-786.
    [110] De Pierro A R. A modified expectation maximization algorithm for penalized likelihood estimation in emission tomography. IEEE Trans Med Imaging. 1995, 14(1):132-137.
    [111] Qi J, Huesman R H. Effect of errors in the system matrix on maximum a posteriori image reconstruction. Phys Med Biol. 2005, 50(14): 3297-3312.
    [112] Qi J. Theoretical evaluation of the detectability of random lesions in Bayesian emission reconstruction. Inf Process Med Imaging. 2003, 18: 354-365.
    [113] Khurd P, Gindi G. Fast LROC analysis of Bayesian reconstructed emission tomographic images using model observers. Phys Med Biol. 2005, 50(7): 1519-1532.
    [114] Mondal P P, Rajan K. Fuzzy-rule-based image reconstruction for positron emission tomography. J Opt Soc Am A Opt Image Sci Vis. 2005, 22(9): 1763-1771.
    [115] Yendiki A, Fessler J A. Analysis of observer performance in known-location tasks for tomographic image reconstruction. IEEE Trans Med Imaging. 2006, 25(1): 28-41.
    [116] Chlewicki W, Hermansen F, Hansen S B. Noise reduction and convergence of Bayesian algorithms with blobs based on the Huber function and median root prior. Phys Med Biol. 2004, 49(20): 4717-4730.
    [117] Wang C H, Chen J C, Liu R S. Development and evaluation of MRI based Bayesian image reconstruction methods for PET. Comput Med Imaging Graph. 2004, 28(4): 177-184.
    [118] Kontaxakis G, Strauss L G, Thireou T, et al. Iterative image reconstruction for clinical PET using ordered subsets, median root prior, and a web-based interface. Mol Imaging Biol. 2002, 4(3): 219-231.
    [119] Kao C M, Pan X, Chen C T, et al. Image restoration and reconstruction with a Bayesian approach. Med Phys. 1998, 25(5): 600-613.
    [120] Qi J, Leahy R M. Iterative reconstruction techniques in emission computed tomography. Phys Med Biol. 2006, 51(15): R541-578.
    [121]于磊,赵君明.统计学.上海:同济大学出版社, 2003.
    [122] Ising E. Zeitschrift. Physik. 1925, 31: 253.
    [123] Besag J E. Spatial interaction and the statistical analysis of lattice systems. J Roy Statist Soc B. 1974, 36(2): 192-236.
    [124] German S, German D. Stochastic relaxation, Gibbs distribution, and Bayesian restoration of images. IEEE Trans Pattern Anal Mach. 1984, 6: 721-741.
    [125] Hebert T, Leahy R, Singh M. Three-dimensional maximum-likelihood reconstruction for an electronically collimated single-photon-emission imaging system. J Opt Soc Am A. 1990, 7(7): 1305-1313.
    [126] Bouman C, Sauer K. A unified approach to statistical tomography using coordinate descent optimization. IEEE Trans Med Imaging. 1996, 21(5): 480-492.
    [127] Green P J. Bayesian reconstructions from emission tomography data using a modified EM algorithm. IEEE Trans Med Imaging. 1990, 9(1): 84-93.
    [128] Nedi′c A, Bertsekas D P. Incremental subgradient methods for nondifferentiable optimization. SIAM J. Optim. 2001, 21(4): 109-138.
    [129] Lange k, Hunter D R, Yang I. Optimization transfer using surrogate objective functions. J.Computational and Graphical Stat. 2000, 9(1): 1-20.
    [130] Siegel M I, Todhunter J S. Image recognition and the reconstruction of cleft palate histological preparations: a new approach. Cleft Palate J. 1979, 16(4): 381-384.
    [131] Kibardin V M. Decomposition into functions in the minimization problem. Automat Remote Control. 1980, 40(2): 1311-1323.
    [132] Nocedal J. Large scale unconstrained optimization. Oxford: Clarendon Press, 1997.
    [133] Huber P J. Robust statistics. New York: Wiley, 1981.
    [134] Nikolova M, Ng M. Fast image reconstruction algorithms combining half-quadratic regularization and preconditioning. in: Proc. IEEE Intl. Conf. on Image Processing. Washington, USA: IEEE, vol. 1, 2001. 277-280.
    [135] Veklerov E, Lacer L. Stopping rule for the MLE algorithm based on statistical hypothesis testing. IEEE Trans Med Imaging. 1987, 6(2): 313-319.
    [136] Alenius S, Ruotsalainen U. Bayesian image reconstruction for emission tomography based on median root prior. Eur J Nucl Med. 1997, 24(3): 258-265.
    [137] Perona P, Malik J. Scale space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach. 1990, 12(7): 629-639.
    [138] Tony C, Jackie S, Luminita V. Variational PDE models in image processing. Notices of the American mathematics society. 2003, 50(1): 14-26.
    [139] Paragios N. Variational methods and partial differential equations in cardiac image analysis. in: IEEE International Symposium on Biomedical imaging: From Nano to Macro. Arlinton: IEEE, vol. 1, 2004. 17-20.
    [140] Boccignone G, Napoletano P, Caggiano V, et al. A multiresolution diffused expectation-maximization algorithm for medical image segmentation. Comput Biol Med. 2007, 37(1): 83-96.
    [141] Yu H, Chua C S. GVF-based anisotropic diffusion models. IEEE Trans Image Process. 2006, 15(6): 1517-1524.
    [142] Michailovich O V, Tannenbaum A. Despeckling of medical ultrasound images.IEEE Trans Ultrason Ferroelectr Freq Control. 2006, 53(1): 64-78.
    [143] Koenderink J J. The structure of images. Biological Cybernetics. 1984.
    [144] Charbonnier P, Feraud L B, Aubert G, et al. Two deterministic half quadratic regularization algorithms for computed imaging. in: Proceedings of IEEE International Conference of Image Processing. Austin: vol. 2, 1994. 168-172.
    [145] Weickert J. A review of nonlinear diffusion filtering. Lecture Notes in Computer Science. 1997, 1252: 3-28.
    [146] Ling J, Bovik A C. Smoothing low SNR molecular images via anisotropic median-diffusion. IEEE Trans Med Imaging. 2002, 21(4): 377-384.
    [147] Press W, Teukolsky S, Vetterling W, et al. Numerical recipes, the art of scientific computing. (2). Cambridge: Cambridge Univ.Press, 1992.
    [148] Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D. 1992, 60: 259-268.
    [149] Green M, Statistics of images, the TV algorithm of Rudin-Osher-Fatemi for image denoising and an improved denoising algorithm, Technical Report CAM Report 02-55, UCLA: 2002.
    [150] Triet L, Chartrand R, Asaki T J, A variational approach to reconstructiing images corrupted by Poisson noise, Technical Report CAM Report 05-49, UCLA: 2005.
    [151] Hwang D S, Zeng G S. Convergence study of an accelerated ML-EM algorithm using bigger step size. Phys Med Biol. 2006, 51(2): 237-252.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700