信息化条件下营运车辆安全监管关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
道路交通安全事故已成为威胁人类公共安全的最严重问题之一,引起世界各国的广泛关注。在道路交通事故中,营运车辆运行范围广,时间长,货物众多,客流量和物流量巨大,营运车辆的安全在道路交通安全中占据较大比例。
     随着营运车辆急剧增长,现有人工监管方式缺乏对营运车辆安全规律的把握,已难以适应现代交通安全精细化管理的需要。由于交通安全监管系统本质是实时性高、协调性强的复杂系统,严重制约了对影响交通安全的关键因素(如超速、追尾等)的机理和规律的有效认知。目前,信息化与智能化已成为交通安全监管系统现代化的主要发展方向,通过提高营运车辆安全监管系统在感知、通信和控制之间的互联互通互操作能力,为认知交通安全监管的机理及规律提供了新的途径,同时,现代交通理论的发展也为上述问题的解决提供了新的契机。
     因此,深入研究信息化条件下营运车辆安全监管的技术及其关键支撑理论,以科学的方法准确认知超速、追尾等交通安全现象,以先进的技术支撑营运车辆安全监管系统的发展,对于交通部门实施具有针对性的主动监管提供科学支持,具有重要的理论和实际意义。
     本文主要围绕基于信息化条件下的营运车辆安全监管技术及其关键支撑理论展开研究。首先构建了信息化环境下的营运车辆安全监管体系,为营运车辆主动管控和参与者联动提供支撑。同时,重点围绕信息化环境下车辆运营安全体系评价技术、车辆超速规律和追尾机理方面亟待解决的关键问题,进行了深入系统的研究,以期从理论和工程应用两个角度突破,从而为科学评价、针对性地实施主动的营运车辆安全监管提供支撑手段和理论依据。
     主要工作包括以下几个方面:
     ①在营运车辆安全监管体系方面,提出了一种具有信息反馈机制的安全监管体系框架,并在其指导下构建了基于GPS的“两客一危”监控系统。
     针对交通管理部门、运输企业、司乘人员和应急救援部门在营运车辆监管中缺乏有效信息交互和协同联动机制的问题,首先,从数据驱动的角度出发,应用反馈控制思想,构建包含对象层、监管层、控制层和反馈层的道路交通安全监管体系框架。其次,以交通安全监管体系框架作为宏观指引,构建了一个典型的“两客一危”监控系统,并在重庆市典型高速公路进行部署应用,结果证明了其适用性,体现了该营运车辆安全监管体系具有重要工程应用价值。
     ②在营运车辆的安全评价方面,提出了一种基于熵权理论的运营车辆安全评价方法。
     综合考虑了影响营运车辆的运营安全评价因素,基于熵的理论确定各因素的权值,然后运用模糊综合评判模型进行综合评价,得出其安全等级。通过把熵权法与模糊综合评价法结合,有效降低了人为因素对权重的影响。将该方法应用于重庆地区“两客一危”车辆运营安全分析,结果表明方法简单易行,评判结果具有科学性和合理性。
     ③在提取营运车辆运行特征方面,提出了一种基于DM技术的运营车辆超速规律分析方法。
     针对目前难以有效掌握运营车辆超速行驶的规律,基于车载GPS实时监控数据,提出了将数据挖掘技术应用于运营车辆超速规律的分析方法,同时给出了一种基于地图匹配的数据预处理方法,对具有空间属性的数据进行预处理,并建立了四维数据仓库模型。在此基础上利用基于FP-树的关联规则挖掘算法及趋势分析方法,进行了初步的模式挖掘,得到了与决策有关的多种超速规律,为运管部门实施运营车辆的超速监管提供了有效支持和决策依据。
     ④针对营运车辆追尾问题,基于前后车作用关系,揭示了营运车辆追尾机理,并提出了基于多前车信息和基于前后车信息综合利用的车辆追尾抑制方法。
     针对有效抑制和预防营运车辆追尾技术手段比较单一、车辆追尾机理成果还研究不够深入、以及预警系统采集信息种类、范围及依据的研究缺乏等问题,从前后车作用关系的全新角度,揭示了营运车辆追尾机理。在此基础上分别提出了利用多前车信息和前后车信息来抑制营运车辆追尾的措施,并采用数值仿真验证上述途径的有效性。
     具体为:提出了基于多前车信息作用下的车辆运动模型-MAVD模型,其结果表明,通过充分利用多前车信息,可以扩大本车稳定裕量,从而抑制本车与前车追尾;提出了考虑前后车辆综合效应的车辆运行刻画建模——BL&OVD模型,研究结果表明通过前后车信息的综合与协同,能最大限度扩大车队稳定区域,从而抑制前后车追尾发生,且只需要采集前方两辆车的信息和后方一辆跟随车的信息就可以保持车辆运行在最佳状态,以保证追尾发生概率最低。
     综上所述,本文充分融合信息技术和交通理论,构建了一套营运车辆安全监管体系,研究了基于熵权理论的运营车辆安全评价方法,提出了一种基于DM技术的运营车辆超速规律分析算法,探索了基于前后车大范围信息利用的营运车辆追尾机理分析和抑制方法,理论分析和实际应用验证了本文工作的有效性。
Road traffic accidents have become a threat to human public safety, and it iscaused by the widespread concern of the countries in the world. In the road trafficaccidents, due to commercial vehicle operating range is wide, running time is long, thegoods is numerous, passenger flow and through put are huge, commercial vehicle safetyaccounts for large portion of road traffic safety.
     With the rapid growth in quantity of the commercial vehicles, it is difficult to meetthe demands of the modern traffic safety fine supervision demands for the existingartificial supervision way that is in lack of grasping of the commercial vehicle safetyrules. Due to the traffic safety supervision system is essentially of complex system withhigh real-time, strong coordination, these have seriously restricted the effectivecognition of the mechanism and regulation that influence traffic safety key factors (suchas overspeed, tailgating, etc.). Currently, informatization and intelligentization hasbecome the main development direction of modern traffic safety supervision system. Byimproving interconnection, interflow and interoperability of commercial vehicle safetysupervision system in perception, communication and control, which provides the newway to cognitive mechanism and law of the traffic safety supervision system.Meanwhile, the development of the modern traffic theory provides a new opportunity tosolve the above problem.
     Therefore, we carry out a further study on the technology of commercial vehiclessafety supervision and its key supporting theories under information-based condition, sotraffic safety phenomenon (such as overspeed, tailgating) can be given an insight,accurately by scientific methods, the development of commercial vehicles safetysupervision system can be supported by advanced technology, scientific support foractive supervision implemention can be provided by traffic department, and these haveimportant theoretical and practical significance.
     This paper chiefly focuses on the constructing of the commercial vehicles safetysupervision system and its key support theories under information-based condition.Firstly, constructing the commercial vehicle safety supervision system ininformation-based environment, and providing support for commercial vehicle activecontrol and participants’ link. Meanwhile, focusing on the key problem urgently besolved such as evaluation technology of commercial vehicle safety system, vehicle over-speed pattern and tailgating collision mechanism under information-basedenvironment, systematical research has been carried out so as to breakthrough fromtheory and engineering application, consequently, providing support means andtheoretical base for scientific evaluate, targeted implements of active commercialvehicle safety supervision.
     The main work includes the following aspects:
     ①In commercial vehicle safe supervision system, the framework withinformation feedback mechanism of the safe supervision system is proposed, andbased on this, a "two passengers and a dangerous" vehicle real-time remotemonitoring system is constructed by GPS-based technology.
     According to the traffic administrative department, transportation enterprises, thedrivers and conductors, emergency rescue departments in commercial vehiclesupervision lack effective information interaction and collaborative linkage mechanism,first of all, from the point of view of data driven, the road traffic safety managementsystem framework (includes object layer, supervision layer, control layer and feedbacklayer) is constructed based on feedback control idea. Secondly, and a typical "twopassengers and a dangerous" supervision system is constructed under the macroguidance of the traffic safety supervision system framework. The constructedcommercial vehicle safe supervision system has been applied to typical highway inChongqing region, and the results prove its applicability, and show the commercialvehicle safety supervision system has important engineering application value.
     ②In the safety evaluation of commercial vehicles, one vehicle safetyevaluation method is proposed based on entropy weight theory.
     Considering the impact of "two passengers and a dangerous "vehicle operatingsafety assessment factors, based on the entropy theory to determine the weights ofvarious factors, then the use of fuzzy comprehensive evaluation model forcomprehensive evaluation, the obtained level of security. In this paper, the entropyweight and fuzzy comprehensive evaluation method is used in combination to reducethe impact of human factors on the weight. Chongqing region,“two passengers and adangerous” vehicle operational safety analysis, the results show that the method is easyto judge the results of scientific rationality, the accuracy of the model is verified.
     ③In the extraction commercial vehicle operating characteristics, theanalytical method on commercial vehicles over-speed law is proposed based DMtechnology.
     Difficult to master effective for the current operators of vehicles speeding law, theproposed car GPS real-time monitoring of data analysis, data mining techniques appliedto operators of vehicles speeding law, given the data pre-processing method based onmap matching, with the space property to preprocess the data, and established afour-dimensional data warehouse model. On this basis, the FP-tree-based associationrule mining algorithms and trend analysis, a preliminary pattern mining.
     ④Aiming at such problems of commercial vehicle tailgating accidents, basedon the speed relation among vehicles, the mechanism of operating vehicle tailgatingaccidents is revealed in this paper. Meanwhile, the vehicle tailgating collisioncontrol method is proposed based on the information of multi preceding cars andthe information of preceding and following cars.
     At present, however, there are some difficulties to solve the problems ofcommercial vehicle tailgating accidents: the technical means to prevent commercialvehicle tailgating accidents are rather rare, the research on tracing trail mechanism isstill not deep enough, and the study of the pre-warning system on capturing informationis rather lacking. Consequently, the tracing trail mechanism of commercial vehicle isrevealed from a new perspective based on the information of preceding and followingcars. The measures to avoid vehicle tailgating collision separately are proposed on thisbasis, which are using the information of multi preceding cars and the information ofpreceding and following cars. The effective measures are verified by numericalsimulation.
     The works are as follows: based on the information of multi preceding cars, thestudy of car-dynamical model—MAVD model is proposed. The results show that thestability margin of the researched vehicle can be enlarged to avoid vehicle tailgatingcollision by making full use of the information of multi preceding cars. Meanwhile,based on the information of preceding and following cars, another car-dynamical model—BL&OVD model is proposed. The results show that the stable region of vehicle fleet,to a certain extent, it can be enlarged to avoid collision between preceding car andfollowing car by making full use of the information of preceding and following cars.
     In conclusion, this paper adequately merges information technology andcommunication theory,and constructs a series of safety regulation system for operatingvehicles. Moreover, safe evaluation method based on entropy weight theory is studied,an analysis method based DM operations vehicles speeding law is proposed, and in theend, with a large range of information among vehicles, the mechanism analysis of commercial vehicle tailgating accidents and the suppression method of commercialvehicle tailgating accidents are explored. The effectiveness of this work is verified bytheoretical analysis and practical applications.
引文
[1]张学文,周炜,李文亮,刘应吉.建立营运车辆监控公共平台的构想[J],公路与汽运,2009,(3):54-56.
    [2]王春华.道路运输安全监管与GPS[J],交通与运输,2010,26(2):52-53.
    [3]徐新苗.营运车辆动态监测系统研究[D].长安大学,2005.
    [4]吴鑫,赵瑞华.我国道路交通安全监管对策[J],现代职业安全,2004,(9):37-39.
    [5]吕宁.基于GPS/DRS的消防车辆实时定位系统的研究与实现[D].山东大学,2006.
    [6]范平志,邓平,刘林.蜂窝网无线定位[M].北京:电子工业出版社,2002.
    [7]李天文. GPS原理及应用[M].北京:科学出版社,2003.
    [8]张守信. GPS卫星测量定位理论与应用[M].北京:国防科技大学出版社,1996.
    [9]袁建平,方群,郑愕. GPS在飞行器定位导航中的应用[M].西安:西北工业大学出版社,2000.
    [10]刘大杰,施一明,全球定位系统原理与数据处理[M].上海:同济大学出版社,1996.
    [11]王惠南. GPS导航原理与应用[M].北京:科学出版社,2003.
    [12]严斌峰,张智江,张范. CDMA系统中的无线定位技术[J],中兴通信技术,2006,12(1):46-50.
    [13]邓正隆.惯性导航原理[M].哈尔滨:哈尔滨工业大学出版社,1994.
    [14]袁信,俞济祥,陈哲.导航系统[M].北京:航空工业出版社,1993.
    [15]张威.基于GPS/MM组合的车辆定位技术研究[D].南京航空航天大学,2004.
    [16]张良云.惯性导航系统[M].北京:国防工业出版社,1992.
    [17]魏宏.城市轨道车辆组合定位导航系统的研究与开发[D].吉林大学,2003.
    [18] Lisper HO, Laurell H, Van Loon J. Relation between time to falling asleep behind the wheelon a closed track and changes in subsidiary RT during on a Motorway[J],Ergonomies,1986,29:445-453.
    [19] Haworth NL, Vulcan P. Testing of commercially available fatigue monitors [R]. AccidentResearch Center, Monash University,1991.
    [20] McCartt AT, Hammer MC, Fuller SZ. Research on the scope and nature of fatigued drivingamong truck driver[M]. New York State. VT Conference, No9A, Ports, Swedish NationalRoad and Transport Institute Linkoping Swedish,1988.(7):85-101.
    [21] Wylie C D, Shultz T, Miller J C, eta. Commercial motor vehicle driver fatigue and alertnessstudy project report on FHWA-MC97-002[R]. Washington, DC, USA: Federal HighwayAdministration,1996.
    [22] Jones IS, Stein HS. Effect of driver hours of service on tractor-trailer Crash Involvement [Z].Arlington, VA: Insurance Institute for Highway Safety,1987.
    [23]国外较为成熟的车联网系统一览[EB/OL]. http://www.tranbbs.com/news/cnnews/ITS/news_84042_2.shtml
    [24]美国对机动车驾驶人实行源头监管[EB/OL]. http://www.bjjtgl.gov.cn/publish/portal0/tab120/info7380.htm
    [25]郭冬梅.欧洲危险品运输管理经验借鉴[J],运输经理世界,2009,(7):48-49.
    [26]刘志强,赵艳萍.中国交通安全技术分析[J],中国安全科学学报,2003,13(8):18-21.
    [27]胡继华,杨贵根,刘志斌.实现道路交通安全的营运车辆监控系统框架研究[J],中国安全科学学报,2007,17(8):171-176.
    [28]徐新苗.营运车辆动态监测系统研究[D].长安大学,2005.
    [29]黄建.客运车辆行驶记录仪和GPS技术应用研究[D].西南交通大学,2009.
    [30]王卓. GPS车辆监控信息管理系统研究[D].湖南大学,2006.
    [31]张俊.基于GIS-T城区危险品运输管理系统[D].大连交通大学,2009.
    [32]王占全,赵斯思,徐慧.地理信息系统(GIS)开发工程案例精选[M].北京:人民邮电出版社,2005.
    [33]马健.基于MapX组件开发的车辆监控系统的设计和实现[D].西南交通大学,2009.
    [34]李萍.基于GeoTools的车辆监控系统的设计与实现[D].大连理工大学,2010.
    [35]陈明伟,袁晓华,潘敏.从道路交通事故统计分析对比谈预防措施[J],中国安全科学学报,2004,14(8):59-63.
    [36]李百川,殷国祥,苏如玉.汽车驾驶员注意特性与交通事故关系的分析研究[J],人类工效学,1996(6):61-64.
    [37]张灵聪,王正国.汽车驾驶疲劳综述[J],人类工效学,2003,9(1):39-42.
    [38]郑培,宋正河,周一鸣.机动车驾驶员驾驶疲劳测评方法的研究状况及发展趋势[J],中国农业大学学报,2001,6(6):101-105.
    [39]王猛.营运驾驶员驾驶疲劳研究[D].交通部公路科学研究院,2006.
    [40]王长君,黄雁,高岩.超速行驶违法行为的分析和对策[J],交通运输工程与信息学报,2005,3(3):10-15.
    [41]王长君,高岩,张爱红.重点违法行为导致交通事故的数据分析[J],交通运输工程与信息学报,2005,3(3):29-36.
    [42]肖金坚.客运企业安全运输因素分析与车辆管理信息系统研究[D].长安大学,2004.
    [43]方来华等.危险品运输车辆监控预警系统设计与开发[J],中国安全科学学报,2008,18(5):109-115.
    [44]许峰,刘清彬,应世杰,吴涛,王春燕.营运车辆新型安全预警器的设计[J],第二届中国智能交通年会论文集,2006,20:113-117.
    [45]毕朝辉.道路交通安全评价研究[D].南京林业大学,2008.
    [46]许洪国,刘兆惠,王超.道路安全等级定权聚类评价模型及因素辨析[J],交通运输工程学报,2007,7(2):94-98.
    [47]张殿业,明士军.道路交通安全体系探讨[J],交通运输工程与信息学报,2004,2(2):1-5.
    [48]姜晴.城市道路交通安全的交通条件分析研究[D].长安大学,2008.
    [49]李政.道路交通安全评价研究[D].长安大学,2001.
    [50]彭金栓.基于道路交通系统安全运行的管理研究[D].重庆交通大学,2009.
    [51]曾宪培.广东省道路交通安全管理对策研究[D].北京交通大学,2007.
    [52]王峰.数据挖掘技术在交通管理中的应用[D].河海大学,2006.
    [53]许洪国.中国道路交通安全现状、成因及对策[J].中国安全科学学报,2004,14(8):34-38.
    [54]杜清华.山东省道路营运车辆运行安全管理的研究[D].吉林大学,2008.
    [55]姜华平.高速公路交通安全管理[M].北京:人民交通出版社,2005.
    [56]胡江碧,高玲玲,刘小明.对我国高速公路安全管理系统的探讨[J].公路,2007,07:0152-0156.
    [57]瞿立成,朱云龙,袁凌云.基于WSNs技术的高速公路交通监控系统研究[J].微计算机信息,2005,21(10):1-3.
    [58]张光远.构筑城市道路交通安全保障体系[J].交通运输工程与信息学报,2004,2(3):42-47.
    [59]方守恩,杨轸,陈雨人.基于GIS的道路安全信息管理系统总体设计[J].同济大学学报(自然科学版),2006,34(5):629-633.
    [60]王云鹏,杨斯淇,李世武,李新春,隗海林.基于事故树法的危险货物运输安全监管体系[J].吉林大学学报(工学版),2010,40(4):976-980.
    [61]方来华,刘骥,魏利军,吴宗之,关磊.危险品运输车辆监控预警系统设计与开发[J].中国安全科学学报,2008,18(5):109-116.
    [62]任常兴,吴宗之.危险品道路安全运输路径优化方法探讨[J].中国安全科学学报,2006,16(6):129-134.
    [63]李鹏飞,吕保和,许大中.危险化学品公路运输车辆安全管理对策研究[J].中国安全科学学报,2006,16(8):67-71.
    [64]刘强,高晖.危险化学品运输安全统一监控平台的探讨和设想[J].中国安全科学学报,2006,16(2):59-64.
    [65] McCoy PT, Pesti G. Effectiveness of condition-responsive advisory speed messages in ruralfreeway work zones[J]. Transportation Research Record.Washington, DC: TransportationRes. Board (TRB), Nat. Res. Council,2002,9:11-18.
    [66] Fahad Al-Rukaib, Mohammed A. Ali, Aljassar AH. Traffic safety attitudes and drivingbehavior of university students: A Case Study in Kuwait[J]. TRB2006Annual MeetingCD-ROM,2006,8:45-49.
    [67] Cheol O, Jun S, Stephen, Ritchie SG. Real-Time Hazardous Traffic Condition WarningSystem: Framework and Evaluation[J]. IEEE Transactions on Intelligent TransportationSystems,2005,6(3):234-240.
    [68]毛力增,段里仁,毛恩荣.道路交通安全影响因素的国际对比与系统分析[J].交通运输系统工程与信息,2007,7(3):0111-0118.
    [69] Thomas F. Golob, Amelia C. Regan. Impacts of information technology on personal traveland commercial vehicle operations: research challenges and opportunities[J]. TransportationResearch Part C,2001,9:87-121.
    [70]裴玉龙,马骥.道路交通事故条件成因分析及预防对策研究[J].中国公路学报,2003,16(4):77-83.
    [71]王开乐,钟慧玲,张智勇.基于RFID/GPS/GPRS危险品运输管理系统的研究[J].物流技术,2009,28(4):39-42.
    [72]侯忠生,许建新.数据驱动控制理论及方法的回顾和展望[J].自动化学报,2009,35(6):650-667.
    [73] Golob TF, Recker WW. A method for relating type of crash to traffic flow characteristics onurban freeways [J]. Transp. Res. A,2004,38(1):53-80.
    [74] Guggenheim SF., Latner N. Impulse Drive Recorder[J]. IEEE transaction on GeosciencesElectronics,1970,4:306-309.
    [75] Amata H., Miyajima C., Ozaki A., Nishino T, Kitaoka N., Takeda K. Abrupt SteeringDetection Based on the Road Construction Ordinance and Vehicle Acceleration Capturedwith Drive Recorders[J]. The3rd International Conference on Innovative ComputingInformation and Control (ICICIC'08),2008,(10):63-70.
    [76] Tsunai H, Maeda K, Hayashi R, Raksincharoensak P, Nagai M. Development of SteeringBehavior recognition Method by Using Sensing Data of Drive Recorder[J]. InternationalConference on Control, Automation and Systems, Seoul, Korea,2008,9:14-17.
    [77]李俐,谢显中.基于CAN总线的行车记录仪设计[J].计算机工程与设计,2009,30(22):5120-5124.
    [78]左忠义,马社强,邵春福.我国交通事故现状及预防对策研究[J].大连交通大学学报,2005,26(2):39-44.
    [79]高建平(2003).成渝高速公路重庆段安全事故分析研究[J].重庆交通学院学报,22(3):74-79.
    [80]林雨,张方方,方守恩.上海市公路网安全宏观评价投影寻踪模型[J].同济大学学报(自然科学版),2008,36(9):1216-1219.
    [81]陈君,李聪颖,丁光明.基于BP神经网络的高速公路交通安全评价[J].同济大学学报(自然科学版),2008,36(7):927-931.
    [82]陈君毅,王宏雁,郁佳文.道路交通安全现代化水平综合评价模型[J].同济大学学报(自然科学版),2010,38(1):65-71.
    [83]马社强,邵春福,刘东,王军利,马壮林.基于差异驱动原理的道路交通安全评价[J].吉林大学学报(工学版),2010,40(4):981-985.
    [84]王婉秋,方守恩,孙道成.基于灰色关联度的道路交通安全管理设施多层模糊综合评价[J].武汉理工大学学报(交通科学与工程版),2010,34(4):652-656.
    [85]马社强,邵春福,左忠义,马壮林.基于主成分和聚类分析的区域道路交通安全综合评价[J].武汉理工大学学报(交通科学与工程版),2010,34(6):1090-1094.
    [86]廖军,安毅生,张绍阳,赵祥模,马天山.路段动态交通安全综合评价模型[J].交通运输工程学报,2009,9(4):79-84.
    [87]宇仁德,石鹏,刘芳.基于模糊理论的交通安全评价方法的研究[J].数学的实践与认识,2008,38(7):109-116.
    [88]王晓飞,郭忠印.基于路段二级模糊评判的路网运营安全性研究[J].同济大学学报(自然科学版),2007,35(12):1632-1636.
    [89]巩航军.基于灰色关联度的道路运输企业安全综合评价[J].西北大学学报(自然科学版),2008,38(3):395-398.
    [90]巩航军.道路运输企业安全综合评价研究[D].长安大学,2004.
    [91]屠书荣,吴敏刚,程永华.基于道路和环境条件的干线公路安全性评价方法[J].重庆交通大学学报(自然科学版),2010,29(3):425-429.
    [92]孙棣华,刘卫宁,宋伟.基于相对熵的决策属性均衡性评价模型[J].系统工程理论与实践,2001,6(6):83-85.
    [93]王军,雷鸣,周俊.模糊综合评判模型在道路交通安全研究中的应用[J].城市道桥与防洪,2010,11:97-99.
    [94]叶义成,柯丽华,黄德育.系统综合评价技术及其应用[M].冶金工业出版社,2006.
    [95] Ossiander EM, PETER Cummings P. Freeway speed limits and traffic fatalities inWashington State. Accident Analysis and Prevention[J],2002,34(1):13-18.
    [96]裴玉龙,程国柱.高速公路车速离散性与交通事故的关系及车速管理研究.中国公路学报,2004,17(1):74-78.
    [97]钟勇,范淼海,王永辉.高速公路事故的诱因及预防对策[J].公路交通科技,2000,17(6):67-68,72.
    [98]郑安文.我国高速公路交通事故的基本特点与预防对策.公路交通科技,2002,19(4):109-112.
    [99]范明,孟小峰.数据挖掘:概念与技术.北京:机械工业出版社,2005.
    [100]黄小红,王倩.数据挖掘技术在高速铁SCADA中的应用研究[J].工业控制计算机,2006,19(1):6-7.
    [101]周璞.基于GIS和浮动车的交通状态分析系统研究[D].重庆:重庆大学,2006.
    [102]刘晓阳.高速公路车辆追尾概率模型及其仿真研究[D].长沙理工大学,2009.
    [103]郑安文.高速公路行车间距分析与防追尾装置开发[J].武汉理工大学,2002,24(9):62-65.
    [104]连晋毅,华小洋.汽车防追尾碰撞数学模型研究.中国公路学报[J],2005,18(3):123-126.
    [105]李晓霞,李百川,侯德藻,陈光武.车辆追尾碰撞避免技术[J].西安公路交通大学学报,2001,21(2):90-94.
    [106]门涛.高速公路追尾碰撞预警系统实验研究[D].西安:长安大学,2005.
    [107] Qing yang Yang, Heng Wei. Vehicle infrastructure Integration (VII) A New Development ofITS Initiative [J].交通与物流,第六届交通运输领域国际学术会议论文集,大连.2006.
    [108] ITS America.VII White Paper Series Primer on Vehicle infrastructure Integration [M]. Oct.2005.
    [109]王殿海.交通流理论[M].人民交通出版社,2002.
    [110] Bando M, Hasebe K, Nakyaama A, Shibata A, Sugiyama Y. Dynamical model of trafficcongestion and numerical simulation[J]. Phys. Rev. E (S1063-651X),1995,51(2):1035-1042.
    [111] Helbing D, Tilch B. Generalized force model of traffic dynamics[J]. Phys. Rev.E(S1063-651X),1998,58(1):133-140.
    [112] Hayakawa H, Nakanishi K. Universal behavior in granular flows and traffic flows[J]. Prog.Theor. Phys. Suppl.(S0375-9687),1998,130(1):57-75.
    [113] Treiber M, Henneche A. Helbing D.Derivation, properties, and simulation of agas-kinetic-based, nonlocal traffic model[J]. Phys. Rev. E(S1063-651X),1999,59(1):239-253.
    [114] Jiang R, Wu Q S, Zhu Z J. Full velocity difference model for a car-following theory[J]. Phys.Rev. E(S1063-651X),64(1):017101.
    [115] Nagatani T. Stabilization and enhancement of traffic flow by the next-nearest-neighborinteraction[J]. Phys. Rev. E(S1063-651X),1999,60(6):6395-6401.
    [116] Ge H X, Dai S Q, Dong L Y, Xue Y. Stabilization effect of traffic flow in an extendedcar-following model based on an intelligent transportation system application[J]. Phys. Rev.E(S1063-651X),2004,70(6):066134.
    [117] Hasebe K, Nakayama A, Sugiyama Y. Dynamical model of a cooperative driving system forfreeway traffic[J]. Phys. Rev. E(S1063-651X),2003,68(2):026102.
    [118]薛郁.随机计及相对速度的交通流跟驰模型[J].物理学报,2003,52(11):2750-2757.
    [119]薛郁,董力耘,袁以武,戴世强.考虑车辆相对运动速度的交通流演化过程的数值模拟[J].物理学报,2002,51(3):492-495.
    [120] Tang T Q, Huang H J, Gao Z Y. Stability of the car-following model on two lanes[J]. Phys.Rev. E(S1063-651X),2005,72(6):066124.
    [121]王涛,高自友,赵小梅.多速度差模型及稳定性分析[J].物理学报.2006,55(2):634-640.
    [122] Zhao X M, Gao Z Y. A new car-following model: full velocity and acceleration differencemodel[J]. Eur. Phys. J. B.2005,47(3):145-150.
    [123] Li Z P, Liu Y C. A velocity-difference-separation model for car-following theory[J]. Chin.Phys.2006,15(7):1570-1577.
    [124]彭光含,孙棣华,何恒攀.交通流双车跟驰模型与数值仿真[J].物理学报.2008,57(12):7541-7546.
    [125] Xie D F, Gao Z Y, Zhao X M. Stabilization of traffic flow based on the multiple informationof preceding cars[J]. Communications in computational Physics.2008,3(4):899-912.
    [126] Peng G H, Sun D H. Multiple car-following model of traffic flow and numericalsimulation[J]. Chin. Phys. B,2009,18(12):5420-5430.
    [127] Peng G H, Sun D H. A dynamical model of car-following with the consideration of themultiple information of preceding cars[J]. Physics Letters A(S0375-0601),2010,374(15-16):1694-1698.
    [128] Peng G H. Stabilization analysis of multiple car-following model in traffic flow [J]. Chin.Phys. B,2010,19(5):056401-1-8.
    [129]唐亮,孙棣华,彭光含.基于多车信息的交通流跟驰模型与数值仿真[J].系统仿真学报,2012,2:0293-0297.
    [130] Bando M, Hasebe K, Nakanishi K and Nakayama A. Analysis of optimal velocity modelwith explicit delay[J]. Phys. Rev. E(S1063-651X),1998,58(5):5429-5435.
    [131] Del Castillo J M and Benitez F G. On the functional form of the speed-density relationship-Ⅰ: general theory; Ⅱ:empirical investigation[J]. Transp. Res. B(S0191-2615),1995,29(5):373-406.
    [132]孙棣华,张建厂,廖孝勇,田川,李永福,刘卫宁.非邻近车辆最优速度差模型[J].交通运输工程学报,2011,11(6):114-118.
    [133]孙棣华,张建厂,赵敏,田川.考虑后视效应和速度差信息的跟驰模型[J].四川大学学报:自然科学版,2012,49(1):115-120.
    [134] H.X.Ge, H.B.Zhu, S.Q.Dai. Effect of looking backward on traffic flow in a cooperativedriving car following model[J]. Eur. Phys. J. B,2006,54:503-507.
    [135] Ge, H.X., Cheng, R.J, Dai, S.Q. KdV and kink-antikink solitons in car-following models.Physic A.357,466-476(2005).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700