柴油机缸套力学特性及变形研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着节能减排政策的日益严格,柴油机缸内爆发压力提高到16Mpa以上,缸套-活塞组摩擦副的热负荷和机械负荷大幅度增加。受缸盖螺栓预紧力、活塞高速周期性往复运动、气缸体刚度不均匀以及冷却不均匀产生的影响,缸套与活塞环容易产生变形。当缸套变形失圆无法由活塞环的弹力进行补偿时,将产生不正常的间隙,从而产生油气泄漏,柴油机微粒(PM)排放量的50%是机油窜入燃烧室燃烧后产生的可溶有机物,因此控制缸套与活塞摩擦副变形与失圆,提高缸内密封性能,对降低机油耗,改善摩擦性能,以及减小排放,都具有重要的意义。以增压中冷柴油机为研究对象,针对缸套安装变形与工作变形的产生机理及影响因素进行了研究,提出了控制缸套变形的控制策略及解决方案,具体开展了以下研究工作:
     (1)预紧工况下缸套安装变形的特点与影响因素研究
     建立了机体-缸盖-缸套的装配耦合模型,在预紧工况下进行了装配体的静力分析,研究了缸套变形特点,并应用正交设计法,研究了结构因素与非结构因素对缸套变形的影响,优化了缸套结构。研究表明:预紧工况下各缸缸套整体呈现上部截面收缩变形,中下部截面扩张变形,最大变形处出现在缸套的上部;四个缸的缸套变形不均匀,其中一、四缸缸套变形较大,二、三缸变形较小;非结构因素中的螺栓预紧力、结构因素中的螺栓沉孔深度与缸套壁厚对缸套变形影响较大。
     (2)热负荷下缸套热态变形的特点与影响因素的研究
     在测试基础上,应用流固耦合传热方法,研究了缸盖、机体、缸套的热负荷以及冷却水套的流动均匀性,并研究了冷却水套结构对冷却均匀性以及缸套热变形的影响。研究表明:缸套上部热变形及变形梯度较大,中下部热变形及变形梯度相对较小,热负荷工况下的缸套平均热变形是预紧工况平均变形的16倍;相邻两缸间的缸套热变形相对较小,在第一缸和第四缸自由端出现较大的缸套热变形。由于各缸缸盖、机体、缸套温度场分布不均匀,冷却水套流动均匀性与冷却均匀性对应的最优方案是有差异的。
     (3)工作负荷下缸套热机耦合变形的特点与影响因素的研究
     考虑机械负荷与热负荷耦合作用,对机体与缸套的装配耦合模型进行了热机耦合分析,研究了不同负荷加载情况下缸套变形的特点。相比预紧工况与热负荷工况,工作负荷下的缸套最大主应力大幅度增加,缸套整体变形与热负荷工况相似,缸套变形幅度增加较小。综合分析,相比冷却均匀性的优化方案,预紧工况优化方案对于减小缸套的失圆度更有效;此外,受机体刚度影响,二缸与三缸、一缸与四缸的缸套变形对称,且变形呈豌豆形规律,机体结构刚度分布均匀性对于缸套变形起重要作用。
     (4)缸套动态变形的测试与分析
     采用应变测试方法,在外特性工况下对增压前后的缸套的动态应变进行了测试与分析,对比分析了增压中冷前后柴油机周向应变与径向变形的变化规律。随着转速的升高,柴油机缸套主推力面应变、次推力面应变、侧面应变随之增加;当发动机处于高转速时,自然吸气柴油机缸套的变形呈现明显无规则的振动特性,增压中冷柴油机缸套呈现有规则的、与最大爆发压力对应的振动特性,且最大转矩工况下的缸套主推力面变形大于其它工况变形。
     (5)缸套工作变形对活塞动力学特性以及密封性能及摩擦损失的影响研究
     在考虑缸套变形的基础上,研究了活塞组件结构、缸套变形均匀性以及对活塞二阶运动、机油耗、窜气量以及摩擦损失的影响关系。随着活塞头部间隙、配缸间隙、活塞销偏置量的增加,活塞平均摆角增大,活塞峰值敲击能量(KEP)增加;对于机油耗影响最大的是一环的切向弹力,对于窜气量影响最大的是二环切向弹力,对于摩擦磨损影响最大的是油环的切向弹力;随着各环切向弹力增大,机油耗、窜气量减小,摩擦损失增加。随着转速的增加,缸套变形不均匀性增加,机油耗、窜气量、环摩擦平均压力增加。
     通过对不同优化方案的活塞环组动力学特性分析,各方案对环组FMEP影响较小,对窜气量与机油耗的改善比较显著,其中预紧力优化方案对于机油耗的减小影响较大。
With energy conservation and emission regulations being more strictly, the cylinder pressure of diesel increased to more than16Mpa. Thermal load and mechanical load in cylinder liner-piston group increased significantly. Cylinder liner and piston rings easily lead to deformation influenced by cylinder head bolt preload, piston high-speed periodic reciprocating, non-uniformity of cylinder block stiffness and thermal stress generated by non-uniform cooling. When the cylinder liner deformation and out-of-roundness can not be compensated by elastic force of piston rings, abnormal gap will emerge thus cause oil and gas leak. According to statistics,50%diesel particulate material (PM) emission is soluble organic matter produced by burning of lubrication oil fleeing into the combustion chamber. So it is significantly important for reducing oil consumption, emissions and improving friction properties that controlling cylinder and piston deformation and out-of-roundness, improving cylinder sealing performance. The engine used in this study was a turbocharged inter-cooled diesel, and the main purpose of the experiment was to get the principles and influencing factors about the cylinder liner installation distortion and deformation under working conditions. Some strategies and solutions in controlling the deformation of the cylinder liner were proposed. The following specific research works were carried out.
     (1) The study on characteristics of the cylinder liner installation deformation and influence factors under pre-tightening working condition
     The body cylinder head cylinder assembly coupling model was established. Static analysis was finished under preload condition. The experiment has researched the effects of structural and non-structural factors on the cylinder liner deformation with orthogonal design method, and cylinder structure was optimized. Studies have shown that for all cylinder liners, the shrinkage deformation was presented in cylinder upper section under preload conditions, and expansion deformation occurred in lower section. The maximum deformation was mainly occurred at the top of the cylinder liner. The deformation of four cylinder liners is non-uniform, cylinder liner1has larger deformation with cylinder liner4, and the deformation of cylinder liner2is smaller with cylinder liner3. The bolt preload in non-structural factors, the depth of countersunk and cylinder liner wall thickness have greater impact on cylinder liner deformation.
     2) The study on characteristics of the cylinder liner thermal deformation and influence factors under thermal load condition
     Based on the engine bench test, the thermal load of cylinder head, cylinder block and liners, flow and cooling uniformity of the cooling jacket are studied by fluid-solid coupling heat transfer method. And the effect of cooling jacket structure on cooling uniformity and cylinder liner thermal deformation is studied. Studies have shown that the upper liners have larger thermal deformation value and gradient, the lower and central liners have relatively smaller thermal deformation value and gradient, the average thermal deformation of the cylinder liners under thermal load is16times of that under pre-tightening working condition. The regions between two cylinders have relatively smaller thermal deformation. At free areas of cylinder liner1and cylinder liner4have the largest thermal deformation. Due to each cylinder head, cylinder block and cylinder liner has non-uniformity distribution in temperature field, cooling water flow uniformity optimization scheme is different from cooling uniformity optimization scheme.
     (3) The study on characteristics of the engine cylinder liner thermal-mechanical coupling deformation and influence factors under working condition
     With considering the effect of mechanical load and heat load, the thermal-mechanical coupling analysis of cylinder block and liners assembly coupling model is made to research the different loading cases of the deformation features of the liners. Compared to pre-tightening working condition and thermal load working condition, the cylinder liner maximum main stress under working-load condition increases significantly, the cylinder liner deformation increases little and is similar to that under thermal load condition. In summary, the cylinder liner out-of-roundness of optimized case under pre-tightening working condition reduces more effectively than that of cooling uniformity optimized case. In addition, the deformation of cylinder liner2is symmetrical with that of cylinder liner3caused by the cylinder block stiffness, and the deformation law is pea-shaped, so is the deformation of cylinder liner1and the cylinder liner4. The cylinder block structure stiffness uniformity plays an important role in the liner deformation distribution.
     (4) The test and analysis of cylinder liner dynamic deformation
     The cylinder liner dynamic deformation of TCI engine and naturally aspirated engine under full-load condition is tested by the strain test method, the liner circular and radial deformation of different engines is compared and analyzed. With the increase of engine speed, the deformation of cylinder liner thrust surface, anti-thrust surface and side surface increase. When the engine at a high speed, the cylinder liner deformation of the naturally aspirated diesel engine shows obviously random vibration characteristics, but the cylinder liner deformation of the TCI engine shows regular and maximum explosion pressure-related vibration characteristics, the deformation of cylinder liner thrust surface under maximum torque condition is larger than the deformation under any other condition.
     (5) The study on the effect of the cylinder liner deformation on piston dynamics characteristics, sealing performance and friction losses
     On the basis of the cylinder liner deformation, the effect of piston assembly structure and cylinder liner deformation uniformity on the piston secondary motion, oil consumption, blow-by and friction lose is studied. When the piston head gap, the gap between the piston and cylinder and piston pin offset increase, the piston average pendulum angle and peak striking power (KEP) increase. The top compression ring tangential elasticity has the greatest impact on the oil consumption, the second compression ring tangential elasticity has the greatest impact on the blow-by, and the oil ring tangential elasticity has the greatest impact on the friction lose. As each ring tangential elasticity increases, the oil consumption and blow-by decrease, the friction lose increases. As the engine speed increases, cylinder liner deformation non-uniformity, oil consumption, blow-by and friction ring average pressure increase.
     By studying the effect of pre-tightening working condition and cooling uniformity optimized case on the piston ring dynamics characteristics, each case has a little effect on the piston ring FMEP, and improves the oil consumption and blow-by greatly, the pre-tightening optimization scheme has great effect on reduction of the oil consumption.
引文
[1]Stefan Pischinger, Jurgen Schnitzler,Michael Rottmann, Hartwig Busch, Fabian Fricke,Future of Combustion Engines [C].SAE Paper 2006-21-0024.
    [2]国家环境保护总局,国家质量监督检验检疫总局,GB17691-2005《车用压燃式、气体燃料点燃式发动机与汽车排气污染物排放限值及测量方法(中国Ⅲ、Ⅳ、Ⅴ阶段)》
    [3]黄佐华.内燃机节能与洁净利用开发与研究的现状与前沿[J].汽车安全与节能学报,2010,1(2):89-97.
    [4]韦静思,申立中,毕玉华等.湿式气缸套周向应变的动态测试与分析[J].内燃机学报,2005,23(1):79-83.
    [5]Kurbet S N, Malagi R R. Review On Effects of Piston and Piston Ring Dynamics Emphasis with Oil Consumption and Frictional Losses in Internal Combustion Engines[C]. SAE Paper 2007-24-0059.
    [6]Nakamura M, Hayashi H, Ito A. A Study on the Mechanism of Lubricating Oil Consumption of Diesel Engines-2nd report:Mechanism of Oil Film Generation on Piston Skirt[C]. SAE Paper 2005-01-2167.
    [7]Ito A, Shirakawa H, Nakamura M, et al. A Study on the Mechanism of Lubricating Oil Consumption of Diesel Engines-1st report:The Effect of the Design of Piston Skirt on Lubricating Oil Consumption[C]. SAE Paper 2005-01-2169.
    [8]Ito A, Tsuchihashi K, Nakamura M. A Study on the Mechanism of Lubricating Oil Consumption of Diesel Engines-4th Report:The Measurement of Oil Pressure Under the Piston Oil Ring[C]. SAE Paper 2006-01-3440.
    [9]Nakamura M, Hayashi H, Ito A. A Study on the Mechanism of Lubricating Oil Consumption of Diesel Engines-3rd report:Effect of Piston Motion on Piston Skirt Oil Film Behavior[C]. SAE Paper 2006-01-3349.
    [10]Ing.Ernst Greuter, Prof. Dr.Stefan Zima. Motorschaeden—Schaeden an Verbrennungsmotoren und deren Ursachen [M]德国:voellig neu bearbeitete Auflage,2000.
    [12]Franz Koch, Paul Decker, Malte Loeprecht. Cylinder Liner Deformation Analysis Measurements and Calculations[C]. SAE paper 980567:1-10.
    [13]Tomanik.E.Piston Ring Conformability in a Distorted Bore[C]. SAE paper 960356.
    [14]Tomanik,E. Improved Criterion for Ring Conformability Under Realistic Bore Deformation[C]. SAE paper 2009-01-0190.
    [15]SCHNEIDER E, BLOSSFELD D, LECHMAND, et al. Effect of Cylinder Bore Out-of-Roundness on Piston Ring Rotation and Engine Oil Consumption [C]. SAE Paper, 930796.
    [16]Shohei Mikami, Koichi Ogino,Mitsumasa Sorazawa.Development of Evaluation Method for Low-Cycle Fatigue Breakdown on HSDI Diesel Cylinder Head.SAE International.2010-01-0695.
    [17]Lonenne K, Ziemba R.The GOETZE Cylinder Distortion Measurement System and the Possibilities of Reducing Cylinder Distortions[C].SAE Peper,880142.
    [18]Ma M-T, Sherrington I,Smith E H, et al. Analysis of lubrication and friction for a complete piston-ring pack with an improved oil availability model. Part 2:circumferentially variable film. Proc. Instn Mech.Engrs, Part J,1997,211:17-27.
    [19]杨连生.内燃机设计.北京:中国农业机械出版社[M].1981.
    [20]陆际清,沈祖京,孔宪清等.汽车发动机设计[M].北京:清华大学出版社,1993.
    [21]李超.内燃机气缸套变形及动力学特性研究[D].[博士研究生论文],北京:北京理工大学,2009年.
    [22]H. Fujimoto, Y. Yoshihara, T. Goto, S. Furuham. Measurment of Cylinder Bore Deformation During Actual Operating Engines[C]. SAE Paper 910042:16-24.
    [23]Shizuo Abe,Makoto Suzuld. Analysis of Cylinder Bore Distortion during Engine Operation[C]. sae-Paper 950541:986-991.
    [24]M-T Mal, E H Smith, I Sherrington1, et al. Analysis of lubrication and friction for a complete pistonring pack with animproved oil availability model, Part 1:circumferentially variable film [J]. Part Ji Journal of Engineering Tribology,1997,211:1-15.
    [25]Franz Maassen, Franz Koch and Markus Schwaderlapp. Analytical and empirical methods for optimization of cylinder liner bore distortion[C], SAE Paper,2001-01-0569.
    [27]Hideshi Hitosugi, Katsuyuki Nagoshi, Masaki Ebina, etc. Study on cylinder bore deformation of dry liner in engine operation[J]. JSAE,1996,17(2):113-119.
    [32]常英杰.张立梅.缸套支承肩安装应力的有限元计算及浅析[J].拖拉机与农用运输车,1987(3):13-16.
    [33]吴昌华.用半解析法研究柴油机气缸套的全面受力分析[J].大连铁道学院学报,1988(1):60-67.
    [33]曹茉莉,李德桃,姜树李等.6110型柴油机气缸套变形的有限元计算与分析[J].江苏理工大学学报,2000,21(2):5-9.
    [34]杨世文,张翼,苏铁熊等.重载柴油机气缸套变形分析及结构参数优化[J],内燃机工程,2003,24(2):25-29.
    [35]马庆镇,姜树李,郭晨海等.基于有限元方法的YZ4DE柴油机气缸套变形分析研究[J],内燃机工程,2008,29(4):59-62.
    [36]卢登飞.基于有限单元法的柴油机气缸套失圆研究[D].[硕士研究生论文].天津:天津大学,2008年。
    [37]李超,廖日东,张卫正等.基于正交试验设计的内燃机气缸套预紧工况变形研究[J],北京理工大学学报,2009,29(7):59-62.
    [38]王虎.内燃机缸套失圆研究[D].[博士研究生论文].安徽:合肥工业大学,2010年.
    [39]董小瑞,张翼,苏铁熊等.机体刚度对气缸盖—气缸套密封性能的影响[J].内燃机学报,2003,21(2),187-191.
    [40]王希珍,严兆大,周军.柴油机缸套热负荷评估的分析及实验研究方法[J].内燃机工程,2001,22(4):62-65.
    [41]刘月花,毕玉华,申立中等.柴油机气缸套温度场有限元分析[J].拖拉机与农用机械运输车,2006,06:75-77.
    [42]徐亚飞,毕玉华,申立中.4100QBZL柴油机湿式气缸套温度场试验研究[J].拖拉机与农用机械运输车,2007,34(1):57-60.
    [43]祖炳锋,徐玉梁,刘捷.车用柴油机缸孔在缸盖螺栓预紧力下变形的数值模拟与试验研究[J].内燃机工程,2010,31(2):98-104.
    [44]丁铁新,自敏丽.用耦合分析法解决内燃机活塞传热问题[J].小型内燃机与摩托 车.2004,1(5):8-11.
    [45]白敏丽,丁铁新,吕为祖.活塞一气缸套耦合传热模拟[J].内燃机学报,2005,23(1):172-176.
    [46]李婷,俞小莉,李迎等.基于有限元法的活塞一缸套一冷却水系统固流耦合传热研究.内燃机工程,2006,27(5):42-45.
    [47]刘捷,付光琦,徐玉梁等.缸套变形对柴油机颗粒物排放影响的试验与模拟[J].农业机械学报,2008.2(39):6-1 0.
    [48]闰理贵,李国祥.柴油机气缸套耦合场的有限元分析[J].内燃机与动力装置,2010,3:21-25.
    [49]李坤,苏铁熊,赵静.顶置湿式气缸套温度场及热机耦合分析[J].小型内燃机与摩托车,2010,39(1):45-48.
    [50]宁海强.薄壁干式缸套—活塞组热负荷有限元分析[D].[硕士研究生论文].江苏:江苏大学,2010年。
    [51]杨涛.V型柴油机机体强度及缸套变形计算分析[D].[硕士学位论文].山东:山东大学,2009.
    [52]徐玉梁.正向工程中车用柴油机缸孔变形的研究[D].[博士学位论文].天津:天津大学,2008.
    [53]祖炳锋,徐玉梁,刘捷.车用柴油机缸孔变形整体接触多场分步耦合模拟[J].天津大学学报,2009,42(11):45-48.
    [54]蒋文虎.发动机缸筒变形测试分析[C].2006年APC联合学术年会论文集,2006:146-149.
    [55]娄云,朱命怡,刘庆庭等.柴油机气缸套形状偏差预测方法[J].农业机械学报,2006,37(9):57-60.
    [56]黎华文,郑胜敏.柴油机气缸套变形测量研究[J].装备制造技术,2009,4:12-15.
    [57]黄锦成,余克橡,唐治宏等.柴油机气缸套动态变形位移的测试研究[J].内燃机工程,2004,25(5):63-65.
    [58]沈晓文,钱湘群,盛奎山等.气缸垫对机体和缸套变形影响的实验研究[J].力学与实践,2004,26(3):30-32.
    [59]F. Koch, E. Fahl, A. Haas. Ein neues Verfahren zur Messung der Zylinderdeformation im Motorbetrieb [J]. Wiener Motoren Symposium,1994.
    [60]F. Koch, E. Fahl, A. Haas. A New Technique for Measuring the Deformation of Cylinder Bores During Engine Operation[C]. SAE Paper 950540,1995.
    [61]Usui M, Murayama K, Oogake K, et al. Study of Oil Flow Surrounding Piston Rings and Visualization Observation[C]. SAE Paper 2008-01-0795.
    [62]Gunder Essig, Hartmut Kamp, Erich Wacker. Diesel Engine Emissions Reduction The Benefits of Low Oil Consumption Design[C]. SAE Paper,900591.
    [63]P.J. Burnett Shell. Relationship Between Oil Consumption,Deposit Formation and Piston Ring Motion for Single-Cylinder Diesel Engines[C]. SAE Paper,920089.
    [64]Claudio Gerhard, Milton C.L.Almeida, Joao L.G. Palermo. Oil Consumption Improvement in a D.I. Diesel Engine[C]. SAE Paper,921490.
    [65]V. Dunaevsky, S. Alexandrov. Development of Conformability Model of Piston Rings with Consideration of Their Three-Dimensional Torsional Distortions and Fourier Series Representation of Cylinder Bore Geometry[C]. SAE Paper,2002-01-313 v001.
    [66]Hideki Yoshida, Masaki Yamada, Hiroyuki Kobayashi. Diesel Engine Oil Consumption Depending on Piston Ring Motion and Design[C]. SAE Paper,930995.
    [67]Walter Zottin, Marcos Clemente, Jose Manoel Martins Leite. Predictive Analysis of Lube Oil Consumption for a Diesel Engine[C]. SAE Paper,950520.
    [68]Hideshi Hitosugi, Katsuyuki Nagoshi.Study on Mechanism of Lubricating Oil Consumption Caused by Cylinder Bore Deformation[C]. SAE Paper,960305.
    [69]Tian Tian, Remi Rabute.Hideshi Hitosugi, Katsuyuki Nagoshi. Effects of Piston-Ring Dynamics on Ring/Groove Wear and Oil Consumption in a Diesel Engine Tian Tian[C]. SAE Paper,970835.
    [70]Byung-Soon Min,Joong-Soo Kim.Dae-Yoon Oh. Dynamic Characteristics Oil Consumption Relationship Between the Location of Piston Ring Gap[C]. SAE Paper,982442.
    [71]Hubert M. Herbst, Hans H Priebsch. Simulation of Piston Ring Dynamics and Their Effect on Oil Consumption[C]. SAE Paper,2000-01-0919.
    [72]Masatoshi Basaki, Kimitaka Saito, Tatsushi Nakashima, et al. Analysis of Oil Consumption at High Engine Speed by Visualization of the Piston Ring Behaviors[C]. SAE Paper 2000-01-2877.
    [73]Thirouard B, Tian T. Oil Transport in the Piston Ring Pack (Part 2):Zone Analysis and Macro Oil Transport Model[C]. SAE Paper 2003-01-1953.
    [74]Thirouard B. Tian T. Oil Transport in the Piston Ring Pack (Part 1):Identification and Characterization of the Main Oil Transport Routes and Mechanisms[C]. SAE Paper 2003-01-1952.
    [75]Vokac A, Tian T. An Experimental Study of Oil Transport on the Piston Third Land and the Effects of Piston and Ring Designs[C]. SAE Paper 2004-01-1934.
    [76]Przesmitzki S, Vokac A, Tian T. An Experimental Study of Oil Transport between the Piston Ring Pack and Cylinder Liner[C]. SAE Paper 2005-01-3823.
    [77]Ito A, Shirakawa H, Nakamura M, et al. A Study on the Mechanism of Lubricating Oil Consumption of Diesel Engines (1st report):The Effect of the Design of Piston Skirt on Lubricating Oil Consumption[C]. SAE Paper 2005-01-2169.
    [78]Nakamura M, Hayashi H, Ito A. A Study on the Mechanism of Lubricating Oil Consumption of Diesel Engines (2nd report):Mechanism of Oil Film Generation on Piston Skirt[C]. SAE Paper 2005-01-2167.
    [79]Nakamura M, Hayashi H, Ito A. A Study on the Mechanism of Lubricating Oil Consumption of Diesel Engines (3rd Report):Effect of Piston Motion on Piston Skirt Oil Film Behavior[C]. SAE Paper 2006-01-3349.
    [80]Ito A, Tsuchihashi K, Nakamura M. A Study on the Mechanism of Lubricating Oil Consumption of Diesel Engines (4th Report):The Measurement of Oil Pressure Under the Piston Oil Ring[C]. SAE Paper,2006-01-3440.
    [82]仲志全,李华字,尹琪.发动机运行工况对机油耗影响的试验研究[J].内燃机工程,2004,25(5):69-71.
    [83]雷基林,申立中,刘强等.活塞环结构对柴油机机油耗的影响分析[J].内燃机工程,2011,32(5):79~83.
    [84]童号.柴油机缸套变形对机油消耗的影响分析[D].[硕士研究生论文],上海:上海交通大学,2006年.
    [85]马呈新,赵旭东.优化活塞结构降低柴油机机油耗[J].内燃机与动力装置,2007(5):37—39.
    [86]吴东兴,夏兴兰,卜安珍等.柴油机机油耗的模拟分析[J].现代车用动力,2008(2):31—35.
    [87]王树青,吴国栋,郭金宝.活塞环动力学数值模拟计算及试验研究[J].内燃机与动力装置,2008(1):14-19.
    [88]张卧波,刘世英.发动机缸内摩擦副组件性能数值模拟与试验研究[J].内燃机工程,2008,29(2):42—45.
    [89]董立辉.缸套变形下润滑油的消耗以及活塞环追随性的研究[D]-[硕士研究生论文].天津:天津大学,2009年.
    [90]张思泽,张富红,陈希颖等.活塞环对降低颗粒排放的影响[J].现代车用动力,2010,139(3):43—45.
    [91]Ragot P, Rebbert M. Investigations of Crank Offset and It's Influence on Piston and Piston Ring Friction Behavior Based on Simulation and Testing. SAE Paper 2007-01-1248.
    [92]Kurbet SN, Malagi R R. Review On Effects of Piston and Piston Ring Dynamics Emphasis with Oil Consumption and Frictional Losses in Internal Combustion Engines[C]. SAE Paper 2007-24-0059.
    [93]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [94]Akalin O, Newaz G M. A New Experimental Technique for Friction Simulation in Automotive Piston Ring and Cylinder Liners[C]. SAE Paper 981407.
    [95]Akalin O, Newaz G M. Piston ring-cylinder bore friction modeling in mixed lubrication regime:Part I-Analytical results[J]. Journal of Tribology-Transactions of the ASME,2001, 123(1):211-218.
    [96]Nakayama K, Tamaki S, Miki H, et al. The Effect of Crankshaft Offset on Piston Friction Force in a Gasoline Engine[C]. SAE Paper 2000-01-0922.
    [97]Wakabayashi R, Takiguchi M, Shimada T, et al. The Effects of Crank Ratio and Crankshaft Offset on Piston Friction Losses[C]. SAE Paper 2003-01-0983.
    [98]Cho S W, Choi S M, Bae C S. Frictional modes of barrel shaped piston rings under flooded lubrication[J]. Tribology International,2000,33:545-551.
    [99]Teraguchi S, Suzuki W, Takiguchi M, et al. Effects of Lubricating Oil Supply on Reductions of Piston Slap Vibration and Piston Friction[C]. SAE Paper 2001-01-0566.
    [100]Mufti R A, Priest M. Experimental evaluation of piston-assembly friction under motored and fired conditions in a gasoline engine[J]. Journal of Tribology-Transactions of the ASME,2005,127(4):826-836.
    [101]Kenji Sato, Kinya Fujii, Makoto Ito, et al. Application to Engine Development of Friction Analysis by Piston Secondary Motion Simulation in Consideration of Cylinder Block Bore Distortion and Shinsuke Koda[C]. SAE Paper 2006-01-0428.
    [102]Livanos G A, Kyrtatos N P. Friction model of a marine diesel engine piston assembly[J]. Tribology International,2007,40(12):1441-1453.
    [103]Mazouzi R, Maspeyrot P. Kellaci A, et al. Effects of piston design parameters on skirt-liner friction[J].Mecanique & Industries,2009,10(2):91-101.
    [104]刘煜,谢友柏.内燃机缸套—活塞环混合润滑特性及摩擦力分析[J].内燃机学报,1995,13(3):299~305
    [105]刘煜,桂长林,谢友柏.活塞环—缸套润滑状态周向不均匀性的研究[J].内燃机学报,1997,15(3):281-289
    [106]于旭东,王政,王成焘,等.新型光纤式油膜厚度探测系统的研究[J].内燃机学报,1999,17(4):379~382
    [107]杨俊伟,于旭东,王成焘,等.考虑活塞热变形的活塞裙部润滑计算分析[J].内燃机学报,2002,20(4):365-368
    [108]戴旭东,袁小阳,谢友柏.缸套—活塞系统润滑行为与动力学行为耦合分析[J].摩擦学学报,2003,23(6):519~523
    [109]王义亮,谢友柏.多缸内燃机缸套—活塞系统摩擦学与动力学耦合问题的研究[J].润滑与密封,2005,2:1-5
    [100]张执南,张效翔,李响,等.活塞二阶运动及活塞裙部摩擦的瞬态分析[J].摩擦学学报,2010,30(2):184~189.
    [111]韩志武,任露泉,刘祖斌.激光织构仿生非光滑表面抗磨性能研究[J].摩擦学学报,2004,24(4):289—293.
    [112]白敏丽,丁铁新,董卫军.活塞环—气缸套润滑摩擦研究[J].内燃机学报,2005,23(1):72-76
    [113]周龙,白敏丽,吕继组,等.用耦合分析法研究内燃机活塞环—气缸套传热润滑摩擦问题[J].内燃机学报,2008,26(1):69~75.
    [114]余志壮,宋正华,董光能等.内燃机气缸套失圆对活塞动压润滑和摩擦特性的影响[J].摩擦学学报,2005,25(3):243-246.
    [115]叶晓明,蒋炎坤,郝秀丽等.气缸套径向变形对活塞环弹流润滑性能的影响[J].车用发动机,2007,168(4):22-25.
    [118]王文斌.机械设计手册[M].北京:机械工业出版社[M],2005.
    [119]石秀勇,李国祥,胡玉平.基于接触分析的气缸盖/气缸套密封性能研究[J].润滑与密 封,2006,177(5):111-114.
    [120]马成良.现代试验设计优化方法及应用[M].北京:机械工业出版社[M],2007.
    [121]Hakan Bjornsson, Lena Johansson. Turbo System Technology for Downsized High Volume Engines with PZEV Capability. Aachener Kolloquium Fahrzeug- und Motorentechnik 2008.
    [122]王兆文.重载车用柴油机缸盖内冷却水流动分析及强化传热研究[M].博士研究生论文.武汉:华中科技大学.
    [123]肖永宁,潘克煜,韩国埏.内燃机热负荷和热强度[M].北京:机械工业出版社,1988.
    [125]雷基林,申立中,毕玉华,等.增压中冷柴油机活塞温度场试验研究[J].内燃机工程,2007,28(5):41~44.
    [126]钱若军,董石麟,袁行飞等.流固耦合理论研究进展[J].空间结构报,2008.14(1):3-15.
    [127]陈卓如.工程流体力学(第2版)[M].高等教育出版社,2004.
    [128]傅德薰,马延文.计算流体力学(第1版)[M].高等教育出版社,2002.
    [129]钱作勤.内燃机动态热负荷及其虚拟故障的研究[D].[博士研究生论文].武汉:武汉理工大学,2001年
    [130]Ngy-SrunAp, Michelle Tarquis. Innovative engine cooling systems comparison[C]. SAE 2005-01-1378.
    [131]陈红岩,李迎,李孝禄.柴油机流固耦合传热仿真研究[J].中国计量学院学报.2006,17(4):
    [132]杨万里,许敏,辛君等.发动机缸盖耦合热应力分析[J].内燃机工程.2007,28(2):47-50.
    [133]严兆大.内燃机测试技术(修订版)[M].浙江:浙江大学出版社,1993.
    [134]徐劲松,毕玉华,申立中等.增压中冷柴油机冷却水套流动特性研究[J].汽车工程,2010,32(11):956~961.
    [135]毕玉华,雷基林,申立中等.增压中冷柴油机缸盖水套CFD分析[J].拖拉机与农用运输车.2010,37(3):38-40.
    [136]王希珍,严兆大,周军.柴油机缸套热负荷评估分析及实验研究方法[J].内燃机工程.2001(4):62-65.
    [137]姜求志.火力发电厂金属材料手册[M].北京:中国电力出版社,2001.
    [138]李娜,张强.欧-Ⅲ排放柴油机缸盖冷却水腔流动与传热的数值模拟[J].内燃机工程, 2007,28(1):52-55.
    [139]郑秀瑗,谢大吉.应力应变电测技术[M].北京:国防工业出版社.1985.9
    [140]毕玉华,申立中,杨永忠等.柴油机气缸套应变的动态测量[J].农业机械学报,2006,37(5):163~166.
    [141]黄长艺,严普强.机械工程测试技术基础[M],北京:机械工业出版社,2001.
    [142]Jung H S, Sung-Su J, Wook-Hyeon Y, etc. Design and Application of Composite Piston for High Power Diesel Engine[C]. SAE Paper 2009-01-0192.
    [143]黄长艺,严普强.材料力学[M],北京:机械工业出版社,2001
    [144]毕玉华,申立中,杨永忠等.增压中冷柴油机湿式气缸套周向应变的动态测试与分析[J].汽车工程,2006,28(11):1043~1047.
    [145]毕玉华,申立中,杨永忠等.自然吸气与增压中冷柴油机气缸套应变对比研究[J].农业机械学报,2007,38(6):48~53.
    [146]Assanis, D., Baker, D.M., Bohac, V. A global model for steady-state and transient SI engine heat transfer studies[C]. SAE paper 960073.
    [147]姚仲鹏,王新国.车辆冷却传热[M].北京:北京理工大学出版社.2001
    [148]李娜,张强.欧-Ⅲ排放柴油机缸盖冷却水腔流动与传热的数值解析[J].内燃机工程,2007,28(1)
    [149]陈群.车用柴油机冷却水套的计算流体力学的分析[D].长春:吉林大学,2003.
    [150]Kazunori Matsuo Shinichi Kiga Satoshi Murata采用机体缸孔高圆度加工技术降低活塞组件摩擦损失[J].国外内燃机,2008(1):P51-54.
    [151]雷基林,申立中,杨永忠,等.4100QBZ增压柴油机活塞机械负荷与热负荷耦合分析[J].燃烧科学与技术,2008,14(1):61-66.
    [152]陈传举.内燃机活塞裙部型面设计.北京:机械工业出版社,2006:46-54.
    [153]Ramesh B. Edara. Reciprocating Engine Piston Secondary Motion-Literature Review[C]. SAE Paper 2008-01-1045,2008.
    [154]AVL. Theory of AVL Excite Piston & Rings[M]. Version 7.0.3,2007,12.
    [155]雷基林.高效低污染非道路卧式柴油机关键技术研究[M].[博士研究生论文].昆明:昆明理工大学,2010年.
    [156]郭磊,郝志勇,张鹏伟等.活塞动力学二阶运动的仿真方法与试验研究[J].内燃机工程,2009,30(6):41-47.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700