并联机构奇异位形的微分几何理论以及冗余并联机构的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着并联机构向实用化和产品化方向发展,对并联机构的性能提出了越来越高的要求。
     丰富而复杂的奇异位形是并联机构的一个重要特点,位形空间中的奇异位形对并联机构的精
     度、刚度以及运动性能有着重要的影响。对并联机构奇异位形的特性进行深入的研究是减小
     和消除奇异位形的影响,提高并联机构性能的基础。
     并联机构的奇异位形和冗余问题已有较多的学者进行了研究,但还没有形成一个系统的
     理论,还有很多的问题尚待解决,本论文将在这方面做一些有益的探索工作。
     本论文将首先研究并联机构奇异位形的分类问题。采用微分拓扑和微分流形等现代数学
     工具,在对并联机构位形空间的拓扑结构进行分析的基础上,提出了一种新的奇异位形的分
     类方法,即把奇异位形分为拓扑奇异位形、参数化奇异位形两种类型,这种分类方法充分体
     现了并联机构位形空间的特点,具有十分明确的物理和数学意义。
     其次对参数化奇异位形进行了深入的研究,分析了并联机构位形空间中参数化奇异流形
     的特点及分布,根据参数化流形的切空间与零化子空间的关系提出了一阶参数化奇异位形和
     二阶参数化奇异位形的概念。研究了退化和非退化奇异位形的特点,给出了判断退化参数
     奇异位形的充分和必要条件,其中对必要条件,提出了一种方便实用的Morse判断函数。
     研究了一个与参数化奇异位形有关的问题,即并联机构运动学正解不同解之间无奇异位
     形连接路径问题,采用微分几何的基本概念解释了同一驱动关节对应的不同正解之间是有可
     能有不经过驱动奇异位形的路径的原因。
     研究奇异位形的目的是为了避免和消除奇异位形对机构的影响,而机构冗余是消除奇异
     位形,提高机构性能的重要方法。
     在冗余问题上,本论文首先研究冗余的分类问题,根据并联机构所受的约束以及驱动
     器、末端执行器的选择,提出了一种新的分类方法,把并联机构的冗余分为位形空间冗余、
     驱动冗余以及末端执行器冗余三种类型,并分析了各种冗余情况下的奇异位形,这种分类方
     法能较好的说明各种冗余并联机构的特点。
     其次对驱动冗余进行了深入的研究,驱动冗余是并联机构所特有的一种冗余,它也是并
     联机构消除奇异位形影响的主要的冗余方法。分析了驱动奇异位形对并联机构精度、刚度和
     动力学性能的影响。然后引入驱动冗余,详细分析了冗余后机构精度、刚度以及动力学性能
     提高的原因。
     最后对冗余并联机构的控制问题进行了初步研究,采用伪逆的方法把串联机构的控制方
     法引入到冗余并联机构中,并对一个二自由度冗余平面并联机构进行了控制实验,结果表明
     机构具有较好的定位精度以及高速性能。
With the development of parallel mechanisms towards practicalization and productization, the requirements for high performance of mechanisms are more and more critical. There are abundant and complicated singularities in parallel mechanisms, which have great effects on the accuracy, stiffness and motion ability of parallel mechanisms. Deep and clear understanding of singularities of parallel mechanisms is the fundament to reduce or eliminate the effect of singularity and improve the performance of parallel mechanisms.
    Although many authors have done a lot of research on singularities of parallel mechanisms, there is not a systematical theory yet, many problems are still to be solved. This dissertation will do some helpful research on this area.
    First, the classification of singularities of parallel mechanisms is studied. Based on the analysis of topology structure of parallel mechanisms and using differential topology and differential manifolds as mathematical tools, we propose a new classification method. This method classifies singularities of parallel mechanisms into two basic types, i.e. topology singularity and parameterization singularity. This kind of classification has clear physical and mathematical meaning and fully reveals the characteristic of configuration space of parallel mechanisms.
    Secondly, further research is performed on parameterization singularity. The property and distribution of parameterization singularity manifolds are analyzed. According to the relation between tangent space and annihilation space of parameterization singularity manifolds, we present the new concepts of first order and second order singularity. Degenerate and non-degenerate parameterization singularities are analyzed and the sufficient and necessary conditions for degenerate singularity are derived. For necessary condition, we present a practical Morse function to judge.
    Thirdly, a problem related to parameterization singularity and forward kinematics is studied, i.e., whether there exists singularity-free path between different solutions of forward kinematics. We give a clear explanation to this problem using standard idea from differential geometry.
    In order to avoid or eliminate the effect of singularity and improve the performance of parallel mechanisms, the redundancy is applied to the parallel mechanisms based the studying of singularity.
    First, the classification of redundancy of parallel mechanisms is studied. According to the mechanism constraints and the choice of actuators and end-effectors, we present a new classification method, which identifies three basic types redundancy: configuration redundancy, actuator redundancy and end-effector redundancy. And singularities are analyzed for all types of redundancy. This method gives us an unambiguous understanding of redundant parallel mechanisms.
    Secondly, we make a deep study of actuator redundancy. Actuator redundancy is a unique redundancy for parallel mechanism and it is also the main redundancy to eliminate the singularity effects on parallel mechanisms. At first, singularity effects on accuracy, stiffness and dynamics are analyzed, and then the reasons of improving accuracy, stiffness and
    
    
    dynamics by introducing actuator redundancy are analyzed in detail.
    Finally, we make a preliminary study on the control problem of redundant parallel mechanisms. Using pseudo-inverse method, control strategies for serial mechanisms are applied to redundant parallel mechanisms. A 2-DOF redundant planar parallel mechanism is used as control example; the experiment results show that the redundant mechanism has good localization accuracy and good performance at high speeds.
引文
[1] Gosselin C., Angeles J., Singularity analysis of closed-loop kinematic chains, IEEE Transactions on Robotics and Automation, 1990, 6(3): 281~290
    [2] Ma O., Angeles J., Architecture singularities of parallel manipulators, The International Journal of Robotics and Automation, 1992, 7(1): 23~29
    [3] F.C. Park, J.M. Kim, Singularity analysis of closed kinematic chains. ASME Journal of Mechanical Design, 1999, 121(1): 32~38
    [4] 陈维恒,微分流形初步,北京:高等教育出版社,1998
    [5] 王则柯,凌志英,拓扑理论及其应用,北京:国防工业出版社,1991
    [6] 韩其智,孙洪洲,群论,北京:北京大学出版社,1987
    [7] 黄真,并联机器人机构学理论及控制,北京:机械工业出版社 1997
    [8] J.W.米尔诺 (熊金城译),从微分观点看拓扑,上海:上海科学技术出版社,1983
    [9] 孟道骥,梁科,微分几何,北京:科学出版社 2000
    [10] J.W.米尔诺(江嘉禾译),莫尔斯理论,北京:科学出版社 1988
    [11] David Chillingworth(王明淑等译),应用观点下的微分拓扑,北京:高等教育出版社 1989
    [12] 杨万年,微分流形及其应用,重庆:重庆大学出版社 1992
    [13] Tchon K. Differential topology of inverse kinematics problem for redundant robot manipulators, Intl. J. Robotics Research, 1997, 10(5): 492~504
    [14] Merlet J.P, Singular configuration of parallel manipulators and grassman geometry The Int. Journal of Robotics Research, 1989, 8(5): 45~56
    [15] C.L Collins, Singularity analysis and design of parallel manipulators, Ph.D dissertation of UCI, 1997
    [16] T. Shamir, The singularities of redundant robot arms, Int. Journal of Robotics Research, 1990, 9(1): 113~121
    [17] D. Baker, C. Wampler, On the inverse kinematics of redundant manipulators, Int. Journal of Robotics Research, 1988, 7(2): 3~21
    [18] K.H. Hunt, Kinematic geometry of mechanisms, Clarendon Press, Oxford, 1978
    [19] Vijar Kumar, Instantaneous kinematics of parallel-chain robotic mechanisms, ASME J. Mechanical Design, 1992, 114(3): 349~358
    [20] F.C. Park, Jin Wook Kim, Manipulability and singularity analysis of multiple robot systems: A Geometric Approach, ICRA, 1998:1032~1036
    [21] J.P. Merlet, Redundant parallel manipulators, J. of Laboratory Robotics and automation, 1996, 8:17~24
    [22] J. Kim, F.C. Park, Geometric design tools for stiffness and vibration analysis of robotics mechanisms, ICRA, 2000:1942~1947
    [23] S. Kock, W. Schumacher, A parallel x-y manipulator with actuation redundancy for high-speed and active stiffness application, ICRA, 1998:2295~230
    [24] Y. Nakamura, M. Ghodoussi, Dynamics computation of Closed-Link Robot Mechanisms with Nonredundant and Redundant Actuators, IEEE Tans. Robotics and
    
     Automation, 1989, 5(3) : 294-302
    [25] Park, F C. Choi Jihyeon, Ploen S R, Symbolic formulation of closed chain dynamics in independent coordinates, Mechanism & Machine Theory. 1999, 34(5) : 731-751
    [26] G.F. Liu, Y.L.Wu, X.Z. Wu, Z.X. Li, Analysis and Control of Redundant Parallel Manipulators, ICRA, 2001: 3748-3754
    [27] Y.K. Yiu, S.L. Jiang, H. Cheng, Z.H.Xiong , G.F. Liu, Z.X. Li, On the Dynamics of Parallel Manipulators, ICRA, 2001: 3766-3771
    [28] H. Cheng, Y.L Wu, Z.X. Li, Dynamics and Control of Parallel Manipulators with Redundant Actuation, SCI2001
    [29] Fathi Ghorbel, Modeling and PD Control of Close-Chain Mechanism systems, Proc. Of 34~(th) IEEE Conference on Decision and Control, 1995: 540-542
    [30] Nahon Meyer A, Angeles Jorge, Force optimization in Redundantly-actuated Closed Kinematic Chains, ICRA, 1989: 951-956
    [31] Richard M Murray, Zexiang Li, S.S Sastray, A Mathematical Introduction to Robotic Manipulation, CRC Press, 1994.
    [32] W.M.Boothby, An Introduction to differentiable manifolds and riemannian geometry, 2nd Edition, USA: Academic Press, 1986.
    [33] E.Sahin Conkur, Rob Buckingham, Clarifying the definition of redundancy as used in robotics, Robotica, 1997,15: 583-586
    [34] Roy Featherstone, David Orin, Robot dynamics: equations and algorithms, ICRA, 2000: 826-833
    [35] J.P Merlet, Parallel Robots, Kluwer Academic Publishers, Netherlands, 2001
    [36] Victor Guillemin, Alan Pollack, Differential Topology, Prentice-Hall, New Jersey, 1974
    [37] V.I Arnold, S.M.Grusein-Zade,A.N.Varchenko, Singularities of differential maps, Birkhauser, Boston, 1985
    [38] S. Kock and W. Schumacher, Control of a Fast Parallel Robot with a Redundant Chain and Gearboxes: Experimental Results ICRA, 2000: 1924-192
    [39] F.C Park, J.E Bobrow, S.R Ploen, A Lie Group Formulation of Robot Dynamics, The International Journal of Robotics Research, 1995,14(6) : 609-618
    [40] Spong M.W., Vidyasagar M., Robot dynamics and control, Wiley, New York, 1989
    [41] Vijay Kumar, John F. Gardner, Kinematics of redundantly actuated closed chains, IEEE Transactions on Robotics and Automation, 1990,6(2) : 269-274
    [42] J.A. Soons, Error Analysis of a hexapod machine tool, Laser Metrology and Performance, 1997, 346-358
    [43] Han S. Kim, Yong J. Choi, The Kinematics error bound analysis of the Stewart platform, Journal of Robotic System, 2000, 17(1) : 63-73
    [44] D. Zlatanov, R. G. Fenton, B. Benhabib, Identification and classification of the singular configurations of mechanisms, Mech. Mach. Theory, 1998, 33(6) : 743-760
    [45] Charles C. Nguyen, et. al, Analysis and control of a kinematically redundant Manipulator, Computers Elect. Engineering, 1991,17(3) : 147-161
    [46] Luecke, Greg R. Lai, Kien Wee, Joint error-feedback approach to internal force regulation in cooperating manipulator systems, Journal of Robotic Systems. 1997,
    
     14(9) : 631-648
    [47] Byung-Ju Yi, Sang-Rok Oh, Hong Suh, A five-bar finger mechanism involving redundant actuators: analysis and its applications, IEEE Transactions on Robotics and Automation, 1999,15(6) : 1001-1010
    [48] C. Innocenti, V.Parenti-Caselli, Singularity-free evolution from one configuration to another in serial and fully-parallel manipulators, Journal of Mechanical Design, 1998, 120(3) : 73-79
    [49] Edward Y.L. Gu, A configuration manifold embedding model for dynamic control of redundant robots, The International Journal of Robotics Research, 2000, 19(3) : 289-304
    [50] Nakamura,Y., Advanced Robotics: Redundancy and Optimization, Addison Wesley, MA, US A, 1991
    [51] J. J. E. Slotine, Weiping Li, On the adaptive control of robot manipulators, The International Journal of Robotics Research, 1987, 6(3) : 49-59
    [52] A. J. Patel, K.F. Ehmann, Volumetric error anlysis of a Stewart platform based machine tool, Annals of CIRP, 1997,46(1) : 287-290
    [53] Ropponen T, Arai T, Accuracy analysis of a modified Stewart platform manipulator, ICRA, 1995: 521-525
    [54] Wang J., Masory O., On the accuracy of a Stewart platform-part i the effect of manufacturing tolerances, ICRA, 1993: 114-120
    [55] Wang S. M., Ehmann K. F., Error model and accuracy analysis of a six-dof Stewart platform, Manufacturing Science and Engineering, 1995, 2(1) : 519-530
    [56] H. R. Mohammadi Danial, P. J. Zsombor-Murray, J. Angeles, Singularity analysis of planar parallel manipulators, Mech. Mach. Theory, 1995, 30(5) : 665-678
    [57] James Nielsen, Bernard Roth, On the kinematics analysis of robotic mechanisms, International Journal of Robotics Research, 1999, 18(12) : 1147-1160
    [58] J. P Merlet, Parallel Robots: Open Problems, http://www.inria.fr/saga/personnel/-merlet/merlet_eng.html. 1999
    [59] S. R. Polen, J. E. Bobrow, F.C. Park, Geometric algorithms for operational space dynamics and control, ICRA, 1997: 1606-1610
    [60] F.C. Park, Distance metric on the rigid-body motion with applications to mechanism design, Journal of Mechanical Design, 1995,117(3) : 48-54
    [61] C. C.Iurascu, F. C. Park, Geometric algorithms for closed chain kinematic calibration, ICRA, 1999: 1752-1756
    [62] K. H. Hunt, P. R. McAree, The octahedral manipulator: geometry and mobility, International Journal of Robotics Research, 1998, 17(8) : 868-885
    [63] F. C. Park, A coordinate-free description of robot dynamics, ICRA, 1997: 2282-2286
    [64] J. M. Selig, Curvature in force/position control, ICRA, 1998: 1761-1766
    [65] J. P. Merlet, Kinemetics' not dead, ICRA, 2000: 1-6
    [66] Doid Kim, Wankyun Chung, Youngil Youm, Singularity analysis of 6-dof maipulators with the analytical representionof the determinant, ICRA, 1999: 889-894
    [67] Guilin Yang, I-Ming Chjen, Wei Lin, Jorge Angeles, Singularity analysis three-legged parallel robots based on passive-joint velocities, ICRA, 2001: 2407-2411
    
    
    [68] John F. O'Brien, John T. Wen, Redundant actuation for improving kinematic manipulability, ICRA, 1999:1520~1524
    [69] K. Tchon, Singularity avoidance in robotic manipulators: a differential form approach, System & Control Letter, 1997, 30:165~176
    [70] G.F. Liu, Z. X. Li, A unified geometric approach to modeling and control constrained mechanical systems, Submitted to IEEE Transactions on Robotics and Automation
    [71] F. C. Park, Optimal robot design and differential geometry, ASME Special 50th Anniversary Design Issue, 1995, 117(6): 87~92
    [72] 王卫平,冗余机器人奇异位形分析的新方法,东莞理工学院学报,1998,5(2):30~33
    [73] 赵新华,彭商贤,并联机器人奇异位形研究,机械工程学报,2000,36(5):35~37
    [74] 徐礼钜,范守文,机器人奇异曲面及工作空间界限面分析的数字-符号法,机械科学与技术,2000,19(6):861~863
    [75] 吕崇耀,熊有伦,Stewart并行机构位姿误差分析,华中理工大学学报,1999,27(8):4~6
    [76] 刘文涛等,并联杆系机床工作空间与精度分析制造技术与机床1998,11:9~11
    [77] 卢强 张友良,Stewart平台误差的蒙特卡洛模拟 机械科学与技术2001,20(4):543~544
    [78] 黄真,方跃法,三自由度并联角台机构转轴存在的子空间,燕山大学学报,1997 21(2):95~99
    [79] 孙立宁,安辉,蔡鹤皋,压电陶瓷驱动并联微动机器人的研究,高技术通讯,1997,03:29~31
    [80] 韩林,文福安,梁崇高,6-5平台型并联机构的位置正解,北京邮电大学学报,1998,21(2):33~38
    [81] 韩林,廖启征,梁崇高,3-TPS型空间并联机械手位移分析Wu-Ritt法,机械科学与技术,1998,17(4):520~522
    [82] 陈吉清,陈秉聪,宁素俭,张书军,虚拟轴加工中心机构特点及其刚度分析方法,吉林工业大学自然科学学报,1998,28(4):37~43
    [83] 李桥梁,吴洪涛,朱剑英,Stewart机床发展大事记,机械设计与制造工程,1999 28(4):6~7
    [84] 王忠华,汪劲松,杨向东,魏永明,VAMTlY虚拟轴机床数控系统直线和圆弧插补仿真研究,中国机械工程,1999,10(10):1121~1123
    [85] 宣孝英,傅祥志,6-PSS并联机构的研究,华中理工大学学报,1999,27(11):82~84
    [86] 黄真,杜雄,3/6-SPS型Stewart机器人的一般线性丛奇异分析,中国机械工程,1999,10(9):997~1000
    [87] 刘得军,车仁生,杨玉国,孙玉芹,三自由度并联机构坐标测量机及其虚拟原型研究,中国机械工程,2000,11(3):252~255
    [88] 王忠华,李铁民,汪劲松,杨向东,段广洪,虚拟轴机床插补的姿态控制策略研究,制造技术与机床,2000,06:6~8
    [89] 李铁民,汪劲松,虚拟轴机床作业空间快速检验算法的研究,中国机械工程,2000,11(12):1364~1367
    [90] 赵铁石,高英杰,杨铁林,赵永生,黄真,混合型四自由度并联平台机构及其位置分析,光学精密工程,2000,8(1):42~45
    
    
    [91] 李鹭扬,吴洪涛,并联机构正运动学一维搜索法,扬州大学学报(自然科学版),2000,3(1):66~71
    [92] 赵铁石,黄真,欠秩3-RPS立方角台机器人位置解,燕山大学学报,2000,24(1):4~7
    [93] 邹豪,王启义,余晓流,赵明扬,并联Stewart机构位姿误差分析,东北大学学报(自然科学版),2000,21(3):301~304
    [94] 金振林,高峰,新型6-PSS微操作机器人的加速度性能指标分析,机械设计与制造,2000,03:29~30
    [95] 刘惠林,张同庄,丁洪生,3-RPR平面并联机构正解的吴方法,北京理工大学学报,2000,20(5):565~569
    [96] 余晓流,王启义,赵明扬,邹豪,钱方美,四坐标位姿测量仪设计研究与误差分析,东北大学学报(自然科学版),2000,21(4):380~382
    [97] 刘得军,车仁生,罗小川,黄庆成,坐标测量机的新发展——并联运动机构坐标测量机,光学精密工程,2000,8(5):497~502
    [98] 赵铁石,黄真,一种新型四自由度并联平台机构及其位置分析,机械科学与技术,2000,19(6):927~929
    [99] 曹清林,洪小南,沈世德,用作平面虚拟轴机床的三自由度平面并联机构的型与运动分析,机械科学与技术,2000,19(6):992~994
    [100] 王忠华,李铁民,汪劲松,杨向东 虚拟轴机床插补的姿态控制策略研究,制造技术与机床,2000,06:6~8
    [101] 金振林,高峰,刘辛军,新型力解耦和各向同性机器人六维力传感器,传感器技术,2000,19(4):26~28
    [102] 苏玉鑫,段宝岩,南仁东,大射电望远镜精调稳定平台逆动力学分析,西安电子科技大学学报,2000,27(5):554~558
    [103] 郭祖华,陈五一,陈鼎昌,6杆并联机构运动学及杆受力的仿真,北京航空航天大学学报,2001,27(1):101~104
    [104] 陈伟海,武桢,丁希伦,张启先,冗余度机器人动力学容错控制技术研究,北京航空航天大学学报,2000,26(6):726~730
    [105] 陈伟海,李健,张启先,杨宗煦,基于最小值原理的冗余度机器人动力学控制,北京航空航天大学学报,1999,25(1):108~111
    [106] 陈伟海,张启先,杨宗煦,李健,冗余度机器人动力学优化控制研究,北京航空航天大学学报,1998,24(5),607~610
    [107] 李鲁亚,张启先,刘亚斌,陈伟海,冗余度机器人力控制的运动学稳定性分析,北京航空航天大学学报,1997,23(4):425~429
    [108] Gough V.E., Contribution to discussion of papers on research in automobile stability, control and tyre performance, 1956-1957. Proc. Auto Div. Inst. Mech. Eng.
    [109] Stewart D., A platform with 6 degrees of freedom, Proc. of the Institution of mechanical engineers, 180(Part 1, 15): 371~386, 1965
    [110] Clavel R., DELTA, A fast robot with parallel geometry, 18th Int. Symp. on Industrial Robot, 1988:91~100
    [111] http://www05.abb.se/robotics/picker/index.html
    [112] Pierrot F., Dauchez P., et Foumier A. Towards a fully-parallel 6 d.o.f, robot for high speed applications, ICRA, 1991:1288~1293
    
    
    [113] Uchiyama M.A, 6 DOF parallel robot HEXA. Advanced Robotics, 1994, 8(6) :601
    [114] Bernier D., Castelain J-M., et Li X, A new parallel structure with six degree of freedom, 9th World Congress on the Theory of Machines and Mechanisms, 1995: 8-12
    [115] Hunt K.H., Structural kinematics of in parallel actuated robot arms, J. of Mechanisms, Transmissions and Automation in Design, 1983, 105(3) : 705-712
    [116] Han C-S., Hudgens J.C., Tesar D., et Traver A.E., Modeling, synthesis, analysis and design of high resolution micromanipulator to enhance robot accuracy, IEEE Int. Workshop on Intelligent Robot and Systems (IROS), 1991: 1153-1162
    [117] Tsai L-W, et Tahmasebi F., Synthesis and analysis of a new class of six-degree-of-freedom parallel minimanipulators, J. of Robotic Systems, 1993, 10(5) : 561-580
    [118] Tahmasebi R, et Tsai L.-W., Closed form direct kinematics solution of a new parallel minimanipulator, ASME J. of Mechanical Design, 1994, 116(4) : 1141-1147
    [119] Innocenti C., Direct kinematics in analytical form of the 6-4 fully parallel mechanism, ASME J. of Mechanical Design, 1995,117(1) : 89-95
    [120] Patarinski S.P., et Uchiyama M., Position/orientation decoupled parallel manipulator. InICAR, 1993: 153-158
    [121] Wohlhart K., Displacement analysis of the general spherical Stewart platform, Mechanism and Machine Theory, 1994, 29(4) :581-589
    [122] Chirikjian G.S., A binary paradigm for robotic manipulators, ICRA, pages 1994: 3063-3070
    [123] R. W. Brockett, Robotic manipulators and the product of exponentials formula, Mathematical Theory of Networks and Systems, New York: Springer-Verlag, 1984
    [124] R. W. Brockett, Some mathematical aspects of robotics, In Robotics, AMS Short Course Lecture Notes, Vol. 14
    [125] R. W. Brockett, A. Stokes, R Park, A geometrical formulation of the dynamic equations describing kinematic chains, ICRA, 1993: 637-641
    [126] D. E. Koditschek, Robot kinematics and coordinate transformations, IEEE Conf. Decision and Control, 1985: 1-4
    [127] R. Featherstone, Robot dynamics algorithms, Boston, MA: Kluwer, 1987
    [128] M. W. Spong, Remarks on robot dynamics: Canonical transformations and riemannian geometry, ICRA, 1992: 554-559
    [129] F. C. Park, Computational aspects of the product-of-exponentials formula for robot kinematics, IEEE Transactions on Robotics and Automation, 1994, 39(3) : 643-647
    [130] J. M. McCarthy, Introduction to theoretical kinematics, Cambridge, MA: MIT Press, 1990
    [131] 冯纯伯,费树岷,非线性控制分析与设计,北京:电子工业出版社, 1998
    [132] L. W. Tsai, Robot analysis, John Wiley & Sons, 1999
    [133] Mayer St-Onge B., et Gosselin C., Singularity analysis and representation of spatial six-dof parallel manipulators, Recent Advances in Robot Kinematics, Kluwer, 1996
    [134] Daniali H.R.M., Zsombor-Murray P.J., et Angeles J., Singularity analysis of a general class of planar parallel manipulators, ICRA, 1995: 1547-1552
    
    
    
    [135] Fioretti A., Implementation-oriented kinematics analysis of a 6 dof parallel robotic platform. 4th IFAC Symp. on Robot Control, 1994: 43-50
    [136] Tahmasebi F., et Tsai L.-W., Workspace and singularity analysis of a novel six-dof parallel mini-manipulator. J. of Applied Mechanisms and Robotics, 1994,1(2) :31-40
    [137] Arun V. et al., Determination of the workspace of the 3-dof double-octahedral variable-geometry-truss manipulator, 22nd Biennial Mechanisms Conf., 1992; 493-500
    [138] Liu K., Lewis F., Lebret G., et Taylor D., The singularities and dynamics of a Stewart platform manipulator, J. of Intelligent and Robotic Systems, 1993, 8: 287-308
    [139] Mohamed M.G. et Duffy J., A direct determination of the instantaneous kinematics of fully parallel robot manipulators, J. of Mechanisms, Transmissions and Automation in Design, 1985,107:226-229
    [140] Collins C.L. et Long G.L., The singularity analysis of an in-parallel hand controller for force-reflected teleoperation, IEEE Trans, on Robotics and Automation, 1995, 11(5) : 661-669
    [141] Notash L., Uncertainty configurations of parallel manipulators, Mechanism and Machine Theory, 1998,33(1/2) : 123-138
    [142] Hao F., et McCarthy J.M., Conditions for line-based singularities in spatial platform manipulators. J. of Robotic Systems, 1998,15(1) : 43-55
    [143] Hunt K. H., et. al., Special configurations of multi-finger multi-freeedom grippers: a kinematic study, International Journal of Robotics Research, 1991, 10(2) : 123-134
    [144] Xu Y-X., Kohli D., et Weng T-C., Direct differential kinematics of hybrid-chain manipulators including singularities and stability analyses, 22nd Biennial Mechanisms Conf, 1992: 65-73
    [145] Shi X., et Fenton R.G., Structural instabilities in platform-type parallel manipulators due to singular configurations, 22nd Biennial Mechanisms Conf., 1992: 347-352
    [146] Landsberger S.E., et Sheridan T.B., A minimal, minimal linkage: the tension-compression parallel link manipulator. IMACS/SICE Int. Symp. on Robotics, Mechatronics, and Manufacturing Systems, 1992: 493-500
    [147] Sefrioui J., et Gosselin C., Singularity analysis and representation of planar parallel manipulators. Robotics and Autonomous Systems, 1992,10: 209-224
    [148] Sefrioui J., et Gosselin C., On the quadratic nature of the singularity curves of planar three-degree-of-freedom parallel manipulators, Mechanism and Machine Theory, 1995, 30(4) :533-551
    [149] Wang J., et Gosselin C.M., Kinematic analysis and singularity loci of spatial four-degree-of-freedom parallel manipulators using a vector formulation. ASME J. of Mechanical Design, 1998,120(4) : 555-558
    [150] Ryu R.J., et al., Eclipse: An overactuated parallel mechanism for rapid machining. In 12th RoManSy, 1998:79-86
    [151] Yi, Byung-Ju and Cox, Daniel and Tesar, Delbert, Analysis and Design Criteria for a Redundantly Actuated 4-Legged Six Degree-of-Freedom Parallel Manipulator, ICRA, 2001:3286-3293
    [152] T. Yoshikawa, Analysis and control of robot manipulators with redundancy, 1~(st) Int.
    
     Symp. On Robotics Research, 1983: 735-747
    [153] Kock S., Regelungsstrategien fur parallel roboter mit redundanten antrieben. New machine concepts for handling and manufacturing devices on the basis of parallel structures, 1998: 155-164
    [154] Tadokoro S., Control of parallel mechanisms. Advanced Robotics, 1994, 8(6) : 59-71
    [155] Gosselin C., Stiffness mapping for parallel manipulators, IEEE Trans, on Robotics and Automation, 1990, 6(3) : 377-382
    [156] El-Khaswneh B., et Ferreira P.M., Computation of stiffness and stiffness bounds for parallel manipulators, Int. J. of Machine Tools & Manufacture, 1989, 39(2) : 321-342
    [157] Kim W-K., Lee J-Y.., et Yi B.J., Analysis for a planar 3 degree-of-freedom parallel mechanism with actively adjustable stiffness characteristics, IEEE Int. Conf. on Robotics and Automation, 1997: 2663-2670
    [158] Hanafusa, H., M.A. Adli, (1991) . Effect of internal forces on stiffness of closed mechanisms, Proc. 5th Int. Conf. on Advanced Robotics, 1991: 845-850.
    [159] M.M. Svinin, S. Hosoe M. Uchiyama, On the stiffness and stability of Gough-Stewart platforms, ICRA, 2001: 3268-3273
    [160] Ma O., et Angeles J., Direct kinematics and dynamics of a planar three-dof parallel manipulator, ASME Design and Automation Conf., 1989: 313-320
    [161] Reboulet C., et Berthomieu T., Dynamic model of a six degree of freedom parallel manipulator, ICAR, 1991: 1153-1157
    [162] Geng Z., et Haynes L.S., On the dynamic model and kinematic analysis of a class of Stewart platforms. Robotics and Autonomous Systems, 1992, 9: 237-254
    [163] Lebret G., Liu K., et Lewis F., Dynamic analysis and control of a Stewart platform manipulator, J. of Robotic Systems, 1993,10(5) : 629-655
    [164] D. A. Smith, Reaction force analysis in generalized machine system, Trans. ASME J. Eng. For Industry, 1973, 95: 617-623
    [165] Tim Ropponen, Actuator redundancy in a closed-chain robot mechanism, Ph.D Dissertation, Helsinki Univesity of Technology, Espoo, Finland, 1993
    [166] Whitney D. E., Resolved motion rate control of manipulators and human protheses, IEEE Tran. On Man-Machine Systems, 1969, MMS-10(2) :47-53
    [167] Alberts T. E., Soloway D. I., Force control of a multi-arm robot system, ICRA, 1988: 1490-1496
    [168] Yi B-J. et Freeman R.A., Geometric analysis of antagonistic stiffness in redundantly actuated mechanisms, Journal of Robotic Systems, 1993, 10(5) : 581-604
    [169] Kumar V., Waldron K. J., Force distribution in closed kinematic chains, IEEE Journal of Robotics and Automation, 1988, 4(6) : 657-664
    [170] L. Sciavicco P. Chiacchio, B. Siciliano, Practical design of independent joint controller for industrial robot manipulators, Proc. 1992 American Control Conference, 1992: 1239-1240
    [171] Ghorbel F., Chetelat O., et Longchamp R., A reduced model for constrained rigid bodies with application to parallel robots, In 4th IFAC Symp. on Robot Control, 1994: 57-62
    [172] Burdick, J., A recursive method for finding revolute-jointed manipulator singularities,
    
    ASME J. Mechanical Design, 1995, 117(1): 55~63
    [173] H. Cheng, Dynamics and control of parallel manipulators with redundant actuation, thesis of master degree of philosophy, HongKong University of Science and Technology, 2001
    [174] 吕祟耀 Stewart并行机构位姿误差分析 华中理工大学学报,1999,27(8):4~6
    [175] 刘文涛,李建生,祁勇,王知行,并联杆系机床工作空间与精度分析,制造技术与机床,1999,11:9~11

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700