二阶退化抛物型方程的系数反问题的理论和数值算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要考虑具退化系数的二阶抛物型方程的系数反演问题,研究在适当的附加条件下解的唯一性,最优控制问题解的存在性、唯一性、稳定性,以及稳定的数值计算方法。此类问题在人口预测与控制,多孔介质流体力学,以及金融衍生产品定价等许多应用科学领域有重要意义。与普通的抛物型方程系数反问题不同,这里的方程在部分边界存在退化。方程的退化性一方面会导致在部分边界可能会缺少边界条件,另一方面会导致方程的解可能没有好的正则性。另外,由于反问题的不适定性,终端观测数据的微小扰动将会导致解的巨大变化。
     第一章对本文的数学模型及其相关的研究背景作了简要介绍,
     第二章中介绍了一些关于二阶线性偏微分方程的定理,引理和预备知识。
     第三章讨论了一个利用终端观测值重构二阶退化抛物型方程的辐射系数的反问题。我们首先证明了原问题的解的唯一性,进而在最优控制理论框架下将原问题转化为一个优化问题,证明了最优解的存在性和所满足的必要条件。由于控制泛函非凸,一般来说没有唯一性。在假设T比较小的情况下,我们利用极小元所满足的必要条件结合正问题的一些先验估计结果,证明了极小元的唯一性和稳定性。
     第四章主要从数值分析的角度讨论了一个利用区域内部给定的附加条件重构二阶退化抛物型方程的一阶项系数的反问题。该问题有明显的金融背景,在金融衍生品定价等研究领域具有重要意义。与前而类似,我们先证明了反问题的解的唯一性,这说明了问题的提法是正确的。接下来我们利用有限差分方法给出了正问题的一个隐式计算格式。对于反问题,我们采用预测-校验方法构造了一个迭代算法,并针对其中的数值微分问题提出了两种计算方法。最后,我们进行了数值实验,数值结果表明算法是稳定的,且收敛速度很快。
     第五章讨论了一个二元泛函极小元的适定性问题,该问题来源于一个同时重构初值和辐射系数的逆热传导问题。与普通的一元控制问题不同,这里的控制泛函含有两个独立的未知函数和两个独立的正则化参数。我们先导出了控制泛函极小元所满足的必要条件,并采用分项估计的方法,在假设T比较小的前提下,证明了极小元的唯一性和稳定性。
In this paper, we mainly discuss some inverse coefficient problems for second-order degenerate parabolic equations. Under some appropriate additional condi-tions, we will study the uniqueness of the solution, the existence, uniqueness, sta-bility of the solution for the corresponding optimal control problem, and stable numerical computation methods for the solution of the inverse problem. Such kinds of problems have great significance in the fields of population prediction and control, porous media fluid mechanics, financial mathematics and other applied science. Be-ing different from ordinary inverse coefficient problems in parabolic equations, there exists degeneracy on a part of boundaries in the mathematical model. On one hand, the degeneracy may cause the corresponding boundary conditions missing; on the other hand, it can also make that the solution may has no good regularity. More-over, due to the ill-posedness for inverse problems, arbitrarily small changes in the final measurement data may lead to arbitrarily large changes in the solution.
     In the first chapter, we introduce the mathematical models and their research background.
     Some lemmas, theorems and preliminary knowledge regarding to the second-order linear partial differential equation are given in the second chapter.
     In the third chapter, we discuss an inverse problem of identifying the radiation coefficient in a second-order degenerate parabolic equation using the final obser-vations. The uniqueness of the original problem is proved, and then the inverse problem is transformed into an optimization problem on the basis of optimal con-trol framework. The existence and necessary condition of the optimal solution are obtained. Since the control functional is non-convex, we can not guarantee the uniqueness of the optimal solution. Assuming that T is relatively small, we succeed in proving the uniqueness and stability of the minimizer by utilizing the necessary condition and some prior estimates of the direct problem.
     In the fourth chapter, we mainly from the numerical analysis angle discuss an inverse problem of reconstructing the first-order term coefficient in a second-order degenerate parabolic equation using the extra condition imposed in the domain. Such a problem has obvious financial background, and is of great importance in the field of financial derivatives pricing. Similarly, we first prove the uniqueness of solution for the inverse problem, which illustrate the statement of the problem is correct. Then an implicit scheme on the basis of finite difference method is designed to obtain the numerical solution of the direct problem. For the inverse problem, we apply the predictor-corrector method to construct an iterative algorithm, and propose two numerical methods for the numerical differential problem arising in the iterative procedure. Finally, the numerical experiments are also done and the corresponding numerical results show that the algorithm is stable and it converges very quickly.
     In the fifth chapter, we discuss the well-posedness of the minimizer of a bi-nary functional. This problem originates from an inverse problem of simultaneously reconstructing the initial value and radiation coefficient in a heat conduction equa-tion. Being different from other ordinary one-variable control problems, the cost functional constructed in the paper contains two independent unknown functions and two independent regularization parameters. We first derive the necessary con-dition which should be satisfied by the minimizer of the cost functional. Then we use the method of estimating by part to prove the uniqueness and stability of the minimizer on the condition of that the parameter T is assumed to be relatively small.
引文
[1]R.A.Adams著,叶其孝等译.索波列夫空间.北京:人民教育出版社,1981.
    [2]陈恕行,洪家兴.偏微分方程近代方法.上海:复旦大学出版社,1988.
    [3]陈亚浙,吴兰成.二阶椭圆型方程与椭圆型方程组.北京:科学出版社,1991.
    [4]陈亚浙.二阶抛物型偏微分方程.北京:北京大学出版社,2002.
    [5]A.弗里德曼著,夏宗伟译.抛物型偏微分方程.北京:科学出版社,1984.
    [6]辜联昆.二阶抛物型偏微分方程.厦门:厦门大学出版社,2002.
    [7]姜礼尚,陈亚浙等.数学物理方程讲义(第二版).北京:高等教育出版社,1996.
    [8]姜礼尚,孔德兴等.应用偏微分方程讲义.北京:高等教育出版社,2008.
    [9]刘继军.不适定问题的正则化方法及应用.北京:科学出版社,2005.
    [10]陆金甫,关治.偏微分方程数值解法(第二版).北京:清华大学出版社,2003.
    [11]伍卓群,尹景学,工春明.椭圆与抛物型方程引论.北京:科学出版社,2003.
    [12]肖庭延,于慎根,王彦飞.反问题的数值解法.北京:科学出版社,2003.
    [13]H.T. Banks, F. Kojima, Boundary shape identification problems in two-dimensional domains related to thermal testing of materials, Q. Appl. Math., 47 (1989) 273-93.
    [14]H.T. Banks, F. Kojima, W.P. Winfree, Boundary estimation problems arising in thermal tomography, Inverse Problems, 6 (1990) 897-922.
    [15]G. Bao, Y. Chen, F.M. Ma, Regularity and stability for the scattering map of a linearized inverse medium problem, J. Math. Anal. Appl., 247 (2000) 255-271.
    [16]S. Boitard, P. Loisel, Probability distribution of haplotype frequencies under the two-locus Wright-Fisher model by diffusion approximation, Theoretical Population Biology, 71 (2007) 380-391.
    [17]V.T. Borukhov, P.N. Vabishchevich, Numerical solution of the inverse problem of reconstructing a distributed right-hand side of a parabolic equation. Comput. Phys. Commun., 126 (2000) 32-36.
    [18]I. Bouchouev, V. Isakov, The inverse problem of option pricing, Inverse Problems, 13 (1997) 7-11.
    [19]I. Bouchouev, V. Isakov, Uniqueness, stability and numerical methods for the inverse problem that arises in financial markets, Inverse Problems, 15 (1999) R95-116
    [20]K. Bryan, L. Caudill, Reconstruction of an unknown boundary portion from Cauchy data in n dimensions, Inverse Problems, 21 (2005) 239-255.
    [21]K. Bryan, L. Caudill, An inverse problem in thermal imaging, SIAM J. Appl. Math., 59 (1996) 715-735.
    [22]A.L. Bukhgeim, J. Cheng, M. Yamamoto, Conditional stability in an inverse problem of determining a non-smooth boundary, J. Math. Anal. Appl., 242 (2000) 57-74.
    [23]A.L. Bukhgeim, J. Cheng, M. Yamamoto, Stability for an inverse boundary problem of determining a part of a boundary, Inverse Problems, 15 (1999) 1021-1032.
    [24]P. Cannarsa, P. Martinez, J. Vancostenoble, Carleman estimates for a class of degen-erate parabolic operators, SIAM J. Control Optim., 47 (2008) 1-19.
    [25]P. Cannarsa, J. Tort, M. Yamamoto, Determination of source terms in a degenerate parabolic equation, Inverse Problems, 26 (2010) 105003 (20pp).
    [26]J. R. Cannon, The One-Dimensional Heat Equation, Addison-Wesley, 1984.
    [27]J.R. Cannon, Determination of an unknown heat source from overspecified boundary data, SIAM J. Numer. Anal., 5 (1986) 275-286.
    [28]J.R. Cannon, Y. Lin, S. Xu, Numerical procedure for the determination of an un-known coefficient in semilinear parabolic partial differential equations, Inverse Prob-lems, 10 (1994) 227-243.
    [29]J.R. Cannon, Y. Lin, An inverse problem of finding a parameter in a semilinear heat equation, J. Math. Anal. Appl., 145 (1990) 470-484.
    [30]R. Chapko, R. Kress, J.R. Yoon, An inverse boundary value problem for the heat equaiton: The Neumann condition, Inverse Problems, 15 (1999) 1033-1049.
    [31]R. Chapko, R. Kress, J.R. Yoon, On the numerical solution of an inverse boundary-value problem for the heat equation, Inverse Problems, 14 (1998) 853-867.
    [32]Q. Chen, J.J. Liu, Solving an inverse parabolic problem by optimization from final measurement data, J. Comput. Appl. Math., 2006, 193: 183-203.
    [33]J. Cheng, J.J. Liu, A quasi Tikhonov regularization for a two-dimensional backward heat problem by a fundamental solution, Inverse Problems, 24 (2008) 065012 (18pp).
    [34]J. Cheng, Y.C. Hon, M. Yamamoto, Conditional stability estimation for an inverse boundary problem with non-smooth boundary in R3, Trans. AMS, 353 (2001) 4123-4138.
    [35]J. Cheng, M. Choulli, J. S. Lin, Stable determination of a boundary coefficient in an elliptic equation, Math. Models Meth. Appl. Sci., 18 (2008) 77-105.
    [36]J. Cheng, L. Peng, M. Yamamoto, The conditional stability in line unique continua-tion for a wave equation and an inverse wave source problem, Inverse Problems, 21 (2005) 1993-2007.
    [37]J. Cheng, M. Yamamoto, Identification of convection term in a parabolic equation with a single measurement, Nonlinear Anal. TMA, 50 (2002) 163-171.
    [38]M. Chouli, M. Yamamoto, Generic well-posedness of an inverse parabolic problem-the Holder space approach, Inverse Problems, 12 (1996) 195-206.
    [39]S. Crepey, Calibration of the local volatility in a generalized Black-Scholes model using Tikhonov regularization, SIAM J. Math. Anal.. 34 (2003) 1183-1206.
    [40]D.S. Daoud, Determination of the source parameter in a heat equation with a non-local boundary condition, J. Comput. Appl. Math., 221 (2008) 261-272.
    [41]M. Dehghan, M. Tatari, Determination of a control parameter in a one-dimensional parabolic equation using the method of radial basis functions, Math. Comput. Mod-elling, 44 (2006) 1160-1168.
    [42]M. Dehghan, An inverse problems of finding a source parameter in a semilinear parabolic equation, Appl. Math. Modelling, 25 (2001) 743-754.
    [43]M. Dehghan, Finding a control parameter in one-dimensional parabolic equation, Appl. Math. Comput.. 135 (2003) 491-503.
    [44]A. Demir, A. Hasanov, Identification of the unknown diffusion coefficient in a linear parabolic equation by the semigroup approach, J. Math. Anal. Appl., 340 (2008) 5-15.
    [45]Z.C. Deng, J.N. Yu, L. Yang, Optimization method for an evolutional type inverse heat conduction problem, J. Phys. A: Math. Theor., 41 (2008) 035201 (20pp).
    [46]Z.C. Deng, L. Yang, J.N. Yu. G. W. Luo, Identifying the radiative coefficient of an evolutional type heat conduction equation by optimization method, J. Math. Anal. Appl., 362 (2010) 210-223.
    [47]H.P. Dong, F.M. Ma, Reconstruction of the shape of object with near field measure-ments in a half-plane , Sci. China Math., 51 (2008) 1059-1070.
    [48]H. Egger, H.W. Engl, Tikhonov regularization applied to the inverse problem of option pricing: convergence analysis and rates, Inverse problems, 21 (2005) 1027-1045.
    [49]H. W. Engl, M. Hanke, A. Neubauer, Regularization of Inverse Problems, Kluwer Academic Publishers Group, Dordrecht, 1996.
    [50]L.X. Feng, F.M. Ma, Uniqueness and local stability for the inverse scattering problem of determining the cavity, Sci. China Math., 48 (2005) 1113-1123.
    [51]C.L. Fu, Simplified Tikhonov and Fourier regularization methods on a general side-ways parabolic equation, J. Comput. Appl. Math., 167 (2004) 449-463.
    [52]C.L. Fu, X.T. Xiong, Z. Qian, Fourier regularization for a backward heat equation. J. Math. Anal. Appl., 331 (2007) 472-480.
    [53]Y.K. Guo, F.M. Ma, D.Y. Zhang, An optimization method for acoustic inverse ob-stacle scattering problems with multiple incident waves, Inverse Problems Sci. Eng., 19 (2011) 461-484.
    [54]M. Hanke, O. Scherzer, Inverse problems light: numerical differentiation, Amer. Math. Monthly, 108 (2001) 512-521.
    [55]T. Hein, B. Hofmann, On the nature of ill-posedness of an inverse problem in option pricing, Inverse Problems, 19 (2003) 1319-1338.
    [56]F.Hettlichy, W.Rundell, Iterative methods for the reconstruction of an inverse poten-tial problem, Inverse problems, 12 (1996) 251-266.
    [57]F.Hettlichy, W.Rundell, The determination of a discontinuity in a conductivity from a single boundary measurement, Inverse Problems, 14 (1998) 67-82.
    [58]F.Hettlichy, W.Rundell, Recovery of the support of a source term in an elliptic dif-ferential equation, Inverse Problems, 13 (1997) 959-976.
    [59]Y.C. Hon, T. Wei, A fundamental solution method for inverse heat conduction prob-lem, Eng. Anal. Boundary Elem., 28 (2004) 489-495.
    [60]J. Hull, Options, Futures, and other Derivatives, 5th ed., Prentice Hall, Upper Saddle River, NJ, 2005.
    [61]V. Isakov, S. Kindermann, Identification of the diffusion coefficient in a one-dimensional parabolic equation, Inverse Problems, 16 (2000) 665-680.
    [62]V. Isakov, Inverse parabolic problems with the final overdetermination, Comm. Pure Appl. Math., 1991, 44(2): 185-209.
    [63]V. Isakov, Inverse Problems for Partial Differential Equations, Springer-Verlag, New York, 1998.
    [64]L.S. Jiang, Q. Chen, L. Wang, J.E. Zhang, A new well-posed algorithm to recover implied local volatility, Quantitative Finance, 3 (2003) 451-457.
    [65]L.S. Jiang, Y. Tao, Identifying the volatility of underlying assets from option prices, Inverse Problems, 17 (2001) 137-155.
    [66]T. Johansson, D. Lesnic, Determination of a spacewise dependent heat source, J. Comput. Appl. Math., 209 (2007) 66-80.
    [67]Y. L. Keung, J. Zou, Numerical identifications of parameters in parabolic systems, Inverse Problems, 14 (1998) 83-100.
    [68]A. Kirsch. An Introduction to the Mathematical Theory of Inverse Problem, Springer, New York, 1999.
    [69]O. Ladyzenskaya, V. Solonnikov, N. Ural' Ceva, Linear and quasilinear equations of parabolic type, Providence. KI: American Mathematical Society. 1968.
    [70]R. Lagnado, S. Osher. A technique for calibrating derivative security pricing models: numerical solution of the inverse problem J. Comput. Finance, 1 (1997) 13-25.
    [71]S.M. Lenharts, J.M. Yong, Optimal control for degenerate parabolic equations with Logistic growth, Nonlinear Anal. TMA, 25 (1995) 681-698.
    [72]D. Lesnic, B. Bin-Mohsin, Inverse shape and surface heat transfer coefficient identi-fication, J. Comput. Appl. Math., 236 (2012) 1876-1891.
    [73]D. Lesnic, L. Elliott, The decomposition approach to inverse heat conduction, J. Math. Anal. Appl., 232 (1999) 82-98.
    [74]G.S. Li, Y.J. Tan, J. Cheng, X.Q. Wang, Determining magnitude of groundwater pollution sources by data compatibility analysis, Inverse Probl. Sci. Eng., 14 (2006) 287-300.
    [75]J.J. Liu, Numerical solution of forward and backward problem for 2-D heat conduc-tion problem, J. Comput. Appl. Maths., 145 (2002) 459-82.
    [76]J.J. Liu, M. Sini, On the accuracy of the numerical detection of complex obstacles from far field data using the probe method, SIAM J. Sci. Comput., 31 (2009) 2665-2687.
    [77]J.J. Liu. Continuous dependance for a backward parabolic problem, J. Partial Diff. Eqns., 16 (2003) 211-222.
    [78]P. Martinez, J.P. Raymond, J. Vancostenoble. Regional null controllability of a lin-earized Crocco-type equation, SIAM J. Control Optim., 42 (2003) 709-728.
    [79]I. Montvay, E. Pietarinen, The Stefan Boltzmann law at high-temperature for the gluon gas, Phys. Lett. B, 110 (1982) 148-154.
    [80]D.A. Murio, The Mollification Method and the Numerical Solution of Ill-Posed Prob-lems, Wiley-Interscience, New York, 1993.
    [81]O.A. Oleinik, E.V. Radkevic, Second Order Differential Equations with Non-negative Characteristic Form, Rhode Island and Plenum Press, New York: American Mathe-matical Society, 1973.
    [82]W. Rundell, The determination of a parabolic equation from initial and final data, Proc. Amer. Math. Soc, 99 (1987) 637-642.
    [83]A. Shidfar, A. Zakeri, A numerical technique for backward inverse heat conduction problems in one-dimensional space. Appl. Math. Comput., 171 (2005) 1016-1024.
    [84]A.J. Silva Neto, M.N. Ozisik, Inverse problem of simultaneously estimating the timewise-varying strengths of two plane heat sources, J. Appl. Phys., 73 (5) (1993) 2132-2137.
    [85]A.J. Silva Neto, M.N. Ozisik, Two-dimensional inverse heat conduction problem of estimating the time-varying strength of a line heat source, J. Appl. Phys., 71 (1992) 5357-5362.
    [86]J. Stoer, R. Bulirsch, Introduction to Numerical Analysis. Springer, New York, 1980.
    [87]A.N. Tikhonov, V.Y. Arsenin, Solutions of Ill-posed Problems, Winston and Sons, Washington. 1977.
    [88]Y.B Wang, X.Z. Jia, J. Cheng, A numerical differentiation method and its application to reconstruction of discontinuity, Inverse Problems, 18 (2002) 1461-1476.
    [89]Z. Wang, J. Liu, Identification of the pollution source from one-dimensional parabolic equation models, Appl. Math. Comput., (2008) doi: 10.1016/j.amc.2009.03.014.
    [90]T. Wei, M. Yamamoto, Reconstruction of a moving boundary from Cauchy data in one-dimensional heat equation, Inverse Probl. Sci. Eng., 17 (2009) 551-567.
    [91]T. Wei, Y. S. Li, An inverse boundary problem for one-dimensional heat equation with a multilayer domain, Eng. Anal. Bound. Elem., 33 (2009) 225-232.
    [92]M. Yamamoto, J. Zou, Simultaneous reconstruction of the initial temperature and heat radiative coefficient, Inverse Problems, 17 (2001) 1181-1202.
    [93]L. Yan, C.L. Fu, F.L. Yang, The method of fundamental solutions for the inverse heat source problem, Eng. Anal. Boundary Elem., 32 (2008) 216-222.
    [94]L. Yang, J.N. Yu, Z.C. Deng, An inverse problem of identifying the coefficient of parabolic equation. Appl. Math. Modelling, 32(10) (2008) 1984-1995.
    [95]L. Yang, M. Dehghan, J.N. Yu, G.W. Luo, Inverse problem of time-dependent heat sources numerical reconstruction, Math. Comput. Simul., 81 (2011) 1656-1672.
    [96]L. Yang, Z.C. Deng, J.N. Yu, G.W. Luo, Two regularization strategies for an evolu-tional type inverse heat source problem, J. Phys. A: Math. Theor., 42 (2009) 365203 (16pp).
    [97]Z. Yi, D.A. Murio, Source term identification in 1-D IHCP, Comput. Math. Appl., 47 (2004) 1921-1933.
    [98]G.Q. Zhang, P.J. Li, An inverse problem of derivative security pricing. Recent devel-opment in theories & numerics: international conference on inverse problems, 411-419, World Scientific, 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700