用于溶液工艺光电器件的金属氧化物界面层材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以溶液工艺的光电器件中的金属氧化物界面层为研究对象,以太阳能电池器件为主要载体,在优化活性层的基础上,重点研究基于胶体纳米晶及前驱体溶液低温工艺制备的n型氧化锌(ZnO)和p型氧化镍(NiO)薄膜界面层在有机太阳能电池以及钙钛矿有机-无机杂化型太阳能电池中的应用及界面特性。从材料体系、成膜工艺、表面修饰等多角度开展了一系列创新工作,并为材料和器件的进一步优化提供了思路。
     文中主体工作基于胶体ZnO纳米晶开展。基于对胶体ZnO纳米晶材料带电特性的理解,我们开发出一种室温电泳沉积的方法用于制备ZnO纳米晶薄膜。通过优化沉积条件,制备出均匀致密、厚度可控的ZnO纳米晶薄膜并将其应用于有机光电器件。基于对ZnO纳米晶薄膜表面缺陷态的理解,我们引入一种新型的小分子表面修饰方法,即用乙二硫醇钝化ZnO表面缺陷态,有效调控了薄膜内部多种缺陷态所引入的复杂能带结构,构建了更为有效的电子传输通道。该表面钝化方法显著降低了反型有机太阳能电池内部的载流子复合速率,改善了界面层对空气中水、氧的敏感程度,从而有效提升了器件效率和空气稳定性。该研究为ZnO表面缺陷态的修饰提供了新的认知和思路。同时我们也发现通过合金化手段能够有效调节ZnO纳米晶材料的能带结构,进而可以针对光电器件中所使用的材料体系为其量身定制更为匹配的电子传输层界面。
     对于钙钛矿有机-无机杂化电池体系,我们从钙钛矿薄膜本身入手,系统研究了后处理温度及成膜工艺条件对于薄膜表面形貌、结晶质量及载流子扩散距离等参数的影响。针对反型平面异质结器件结构稳定性差的难题,我们通过引入室温成膜的ZnO纳米晶薄膜有效改善了阴极界面,从而显著提升了器件性能和空气稳定性,为钙钛矿太阳能电池的薄膜质量控制及器件结构的优化提供了重要依据。
     本文也基于原位合成金属氧化物薄膜的前驱体溶液体系开展了相关研究,我们分别基于氨水络合物和溶液燃烧法的思路开发出了低温制备ZnO和NiO薄膜的水相前驱体溶液体系,并系统研究了所得两种氧化物薄膜的表面特性及其在有机光电器件中的应用。
This thesis investigates solution-processed metal oxide charge transport interlayers for optoelectronic devices. We focus on low temperature processed n-type zinc oxide (ZnO) and p-type nickel oxide (NiO) thin films, deposited from either colloidal nanocrystal or so-gel precursor solutions. New materials, novel deposition technology and innovative surface passivation strategy developed in this thesis provide novel thoughts for the application and optimization of the metal oxide-based optoelectronic devices.
     Primary works involved in this thesis are based on ZnO colloidal nanocrystal films. Based on our understanding on charging nature of ZnO nanocrystal, we developed a room-temperature electrophoretic deposition method to fabricate ZnO nanocrystal films, which were applied to organic electronics field. We introduced a small-molecule modification approach to passivate the surface defects of ZnO films. Upon the covalent bonds formed near surface, various gap states formed by the complex surface groups can be uniformed to a novel efficient electron transport channel. And hence the charge carrier recombination in devices and the sensitivity to oxygen and water of inverted organic solar cells can be further reduced. We find that the band structures of thin films based on ZnO nanocrystals can be efficiently tuned by alloying, which make it possible to customize interlayers for various organic materials used in the optoelectronic devices.
     For hybrid perovskite solar cells, we investigated the influence of processing conditions on surface morphology, crystalline quality and charge carrier diffusion lengths of the perovskite films. We further modified the cathode interface by integrating a room-temperature deposited ZnO nanocrystal interlayer. Device performance and air stability were significantly improved by optimizing the device structure.
     Based on zinc-ammonia complex and solution-combustion reactions, we designed new aqueous solutions to fabricate ZnO and NiO thin films at low temperatures, respectively. Surface properties of two kinds of interlayers and their applications in organic optoelectronics were also investigated.
引文
[1]Global Energy Statistical.Year book 2012. Enerdata (http://yearbook.enerdata.net),2012.
    [2]Renewables 2011 Global Status Report. REN21 (http://www.ren21.net),2012.
    [3]Chapin, D. M.; Fuller, C. S.; Pearson, G. L. A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power. Journal of Applied Physics 1954,25,676.
    [4]Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D. Solar cell efficiency tables (version 39). Progress in Photovoltaics:Research and Applications 2012,20,12.
    [5]Shockley, W.; Queisser, H. J. Detailed Balance Limit of Efficiency of p-n Junction Solar Cells. Journal of Applied Physics 1961,32,510.
    [6]Kerr, M. J.; Cuevas, A.; Campbell, P. Limiting efficiency of crystalline silicon solar cells due to Coulomb-enhanced Auger recombination. Progress in Photovoltaics:Research and Applications 2003,11,97.
    [7]King, R. R.; Law, D. C.; Edmondson, K. M.; Fetzer, C. M.; Kinsey, G. S.; Yoon, H.; Sherif, R. A.; Karam, N. H.40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells. Applied Physics Letters 2007,90.
    [8]Repins, I.; Contreras, M. A.; Egaas, B.; DeHart, C.; Scharf, J.; Perkins, C. L.; To, B.; Noufi, R. 19.9% efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor. Progress in Photovoltaics:Research and Applications 2008,16,235.
    [9]Gratzel, M. Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2003,4,145.
    [10]Nozik, A. J. Quantum dot solar cells. Physica E:Low-dimensional Systems and Nanostructures 2002,14,115.
    [11]Shaheen, S. E.; Brabec, C. J.; Sariciftci, N. S.; Padinger, F.; Fromherz, T.; Hummelen, J. C. 2.5% efficient organic plastic solar cells. Applied Physics Letters 2001,78,841.
    [12]Li, G.; Shrotriya, V.; Huang, J.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nature Materials 2005,4,864.
    [13]Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science 2012,338, 643.
    [14]Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society 2009,131,6050.
    [15]Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Gratzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013,499,316.
    [16]Kim, J. Y.; Lee, K.; Coates, N. E.; Moses, D.; Nguyen, T.-Q.; Dante, M.; Heeger, A. J. Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing. Science 2007, 317,222.
    [17]Liu, M.; Johnston, M. B.; Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013,501,395.
    [18]You, J.; Dou, L.; Yoshimura, K.; Kato, T.; Ohya, K.; Moriarty, T.; Emery, K.; Chen, C.-C.; Gao, J.; Li, G.; Yang, Y. A polymer tandem solar cell with 10.6% power conversion efficiency. Nature Communication 2013,4,1446.
    [19]Semonin, O. E.; Luther, J. M.; Choi, S.; Chen, H.-Y.; Gao, J.; Nozik, A. J.; Beard, M. C. Peak External Photocurrent Quantum Efficiency Exceeding 100% via MEG in a Quantum Dot Solar Cell. Science 2011,334,1530.
    [20]Kawano, K.; Pacios, R.; Poplavskyy, D.; Nelson, J.; Bradley, D. D. C.; Durrant, J. R. Degradation of organic solar cells due to air exposure. Solar Energy Materials and Solar Cells 2006,90,3520.
    [21]Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions. Science 1995,270,1789.
    [22]Graetzel, M.; Janssen, R. A. J.; Mitzi, D. B.; Sargent, E. H. Materials interface engineering for solution-processed photovoltaics. Nature 2012,488,304.
    [23]Po, R.; Carbonera, C.; Bernardi, A.; Camaioni, N. The role of buffer layers in polymer solar cells. Energy & Environmental Science 2011,4,285.
    [24]Greiner, M. T.; Lu, Z.-H. Thin-film metal oxides in organic semiconductor devices:their electronic structures, work functions and interfaces. NPG Asia Mater 2013,5, e55.
    [25]Hau, S. K.; Yip, H.-L.; Baek, N. S.; Zou, J.; O'Malley, K.; Jen, A. K.-Y. Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer. Applied Physics Letters 2008,92.
    [26]Zilberberg, K.; Meyer, J.; Riedl, T. Solution processed metal-oxides for organic electronic devices. Journal of Materials Chemistry C 2013,1,4796.
    [27]Sun, Y.; Seo, J. H.; Takacs, C. J.; Seifter, J.; Heeger, A. J. Inverted Polymer Solar Cells Integrated with a Low-Temperature-Annealed Sol-Gel-Derived ZnO Film as an Electron Transport Layer. Advanced Materials 2011,23,1679.
    [28]Steirer, K. X.; Chesin, J. P.; Widjonarko, N. E.; Berry, J. J.; Miedaner, A.; Ginley, D. S.; Olson, D. C. Solution deposited NiO thin-films as hole transport layers in organic photovoltaics. Organic Electronics 2010,11,1414.
    [29]Yang, Y.; Jin, Y.; He, H.; Wang, Q.; Tu, Y.; Lu, H.; Ye, Z. Dopant-Induced Shape Evolution of Colloidal Nanocrystals:The Case of Zinc Oxide. Journal of the American Chemical Society 2010,132,13381.
    [30]Tang, J.; Kemp, K. W.; Hoogland, S.; Jeong, K. S.; Liu, H.; Levina, L.; Furukawa, M.; Wang, X.; Debnath, R.; Cha, D.; Chou, K. W.; Fischer, A.; Amassian, A.; Asbury, J. B.; Sargent, E. H. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nature Materials 2011,10,765.
    [31]Hau, S. K.; Yip, H.-L.; Acton, O.; Baek, N. S.; Ma, H.; Jen, A. K. Y. Interfacial modification to improve inverted polymer solar cells. Journal of Materials Chemistry 2008,18,5113.
    [32]Chen, S.; Small, C. E.; Amb, C. M.; Subbiah, J.; Lai, T.-h.; Tsang, S.-W.; Manders, J. R.; Reynolds, J. R.; So, F. Inverted Polymer Solar Cells with Reduced Interface Recombination. Advanced Energy Materials 2012,2,1333.
    [33]Corriu, R. J. P.; Leclercq, D.; Lefevre, P.; Mutin, P. H.; Vioux, A. Materials chemistry communications. Preparation of monolithic metal oxide gels by a non-hydrolytic sol-gel process. Journal of Materials Chemistry 1992,2,673.
    [34]Niederberger, M. Nonaqueous Sol-Gel Routes to Metal Oxide Nanoparticles. Accounts of Chemical Research 2007,40,793.
    [35]Kim, M.-G.; Hennek, J. W.; Kim, H. S.; Kanatzidis, M. G.; Facchetti, A.; Marks, T. J. Delayed Ignition of Autocatalytic Combustion Precursors; Low-Temperature Nanomaterial Binder Approach to Electronically Functional Oxide Films. Journal of the American Chemical Society 2012,134,11583.
    [36]Kim, M.-G.; Kanatzidis, M. G.; Facchetti, A.; Marks, T. J. Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. Nature Materials 2011,10,382.
    [37]Jansen, M.; Guenther, E. Oxide Gels and Ceramics Prepared by a Nonhydrolytic Sol-Gel Process. Chemistry of Materials 1995,7,2110.
    [38]Spanhel, L.; Anderson, M. A. Semiconductor clusters in the sol-gel process:quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids. Journal of the American Chemical Society 1991,113,2826.
    [39]Bradley, D. C. Metal alkoxides as precursors for electronic and ceramic materials. Chemical Reviews 1989,89,1317.
    [40]Schubert, U. Chemical modification of titanium alkoxides for sol-gel processing. Journal of Materials Chemistry 2005,15,3701.
    [41]Hubert-Pfalzgraf, L. G. Metal alkoxides and β-diketonates as precursors for oxide and non-oxide thin films. Applied Organometallic Chemistry 1992,6,627.
    [42]Meyers, S. T.; Anderson, J. T.; Hung, C. M.; Thompson, J.; Wager, J. F.; Keszler, D. A. Aqueous Inorganic Inks for Low-Temperature Fabrication of ZnO TFTs. Journal of the American Chemical Society 2008,130,17603.
    [43]Jun, Y.-W.; Choi, J.-S.; Cheon, J. Shape Control of Semiconductor and Metal Oxide Nanocrystals through Nonhydrolytic Colloidal Routes. Angewandte Chemie International Edition 2006,45,3414.
    [44]Pinna, N.; Niederberger, M. Surfactant-Free Nonaqueous Synthesis of Metal Oxide Nanostructures. Angewandte Chemie International Edition 2008,47,5292.
    [45]Green, M. The nature of quantum dot capping ligands. Journal of Materials Chemistry 2010, 20,5797.
    [46]Small, C. E.; Chen, S.; Subbiah, J.; Amb, C. M.; Tsang, S.-W.; Lai, T. H.; Reynolds, J. R.; So, F. High efficiency inverted dithienogermole thienopyrrolodione-based polymer solar cells. Nature Photonics 2012,6,115.
    [47]Li, S.-S.; Chang, C.-P.; Lin, C.-C; Lin, Y.-Y.; Chang, C.-H.; Yang, J.-R.; Chu, M.-W.; Chen, C.-W. Interplay of Three-Dimensional Morphologies and Photocarrier Dynamics of Polymer/Ti02 Bulk Heterojunction Solar Cells. Journal of the American Chemical Society 2011,133,11614.
    [48]Stubhan, T.; Krantz, J.; Li, N.; Guo, F.; Litzov, I.; Steidl, M.; Richter, M.; Matt, G. J.; Brabec, C. J. High fill factor polymer solar cells comprising a transparent, low temperature solution processed doped metal oxide/metal nanowire composite electrode. Solar Energy Materials and Solar Cells 2012,107,248.
    [49]Look, D. C.; Farlow, G. C.; Reunchan, P.; Limpijumnong, S.; Zhang, S. B.; Nordlund, K. Evidence for Native-Defect Donors in n-Type ZnO. Physical Review Letters 2005,95, 225502.
    [50]Tuomisto, F.; Ranki, V.; Saarinen, K.; Look, D. C. Evidence of the Zn Vacancy Acting as the Dominant Acceptor in n-Type ZnO. Physical Review Letters 2003,91,205502.
    [51]Trost, S.; Zilberberg, K.; Behrendt, A.; Polywka, A.; Gorrn, P.; Reckers, P.; Maibach, J.; Mayer, T.; Riedl, T. Overcoming the "Light-Soaking" Issue in Inverted Organic Solar Cells by the Use of Al:ZnO Electron Extraction Layers. Advanced Energy Materials 2013,3,1437.
    [52]Liu, H.; Wu, Z.; Hu, J.; Song, Q.; Wu, B.; Lam Tarn, H.; Yang, Q.; Hong Choi, W.; Zhu, F. Efficient and ultraviolet durable inverted organic solar cells based on an aluminum-doped zinc oxide transparent cathode. Applied Physics Letters 2013,103.
    [53]https://http://www.webelements.com/compounds/zinc/zinc_oxide.html.
    [54]Pacholski, C.; Kornowski, A.; Weller, H. Self-Assembly of ZnO:From Nanodots to Nanorods. Angewandte Chemie International Edition 2002,41,1188.
    [55]Bahnemann, D. W.; Kormann, C.; Hoffmann, M. R. Preparation and characterization of quantum size zinc oxide:a detailed spectroscopic study. The Journal of Physical Chemistry 1987,91,3789.
    [56]Beek, W. J. E.; Wienk, M. M.; Kemerink, M.; Yang, X.; Janssen, R. A. J. Hybrid Zinc Oxide Conjugated Polymer Bulk Heterojunction Solar Cells. The Journal of Physical Chemistry B 2005,109,9505.
    [57]de Bruyn, P.; Moet, D. J. D.; Blom, P. W. M. A facile route to inverted polymer solar cells using a precursor based zinc oxide electron transport layer. Organic Electronics 2010,11, 1419.
    [58]Beek, W. J. E.; Slooff, L. H.; Wienk, M. M.; Kroon, J. M.; Janssen, R. A. J. Hybrid Solar Cells Using a Zinc Oxide Precursor and a Conjugated Polymer. Advanced Functional Materials 2005,15,1703.
    [59]Kroger, F. A. Point defects and phase stability of transition metal compounds. Journal of Physics and Chemistry of Solids 1968,29,1889.
    [60]Mrowec, S.; Grzesik, Z. Oxidation of nickel and transport properties of nickel oxide. Journal of Physics and Chemistry of Solids 2004,65,1651.
    [61]Qian, L.; Zheng, Y.; Choudhury, K. R.; Bera, D.; So, F.; Xue, J.; Holloway, P. H. Electroluminescence from light-emitting polymer/ZnO nanoparticle heterojunctions at sub-bandgap voltages. Nano Today 2010,5,384.
    [62]Qian, L.; Zheng, Y.; Xue, J.; Holloway, P. H. Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures. Nature Photonics 2011,5,543.
    [63]Schwartz, D. A.; Norberg, N. S.; Nguyen, Q. P.; Parker, J. M.; Gamelin, D. R. Magnetic Quantum Dots:Synthesis, Spectroscopy, and Magnetism of Co2+ and Ni2+ -Doped ZnO Nanocrystals. Journal of the American Chemical Society 2003,125,13205.
    [64]Ratcliff, E. L.; Meyer, J.; Steirer, K. X.; Garcia, A.; Berry, J. J.; Ginley, D. S.; Olson, D. C.; Kahn, A.; Armstrong, N. R. Evidence for near-Surface NiOOH Species in Solution-Processed NiOx Selective Interlayer Materials:Impact on Energetics and the Performance of Polymer Bulk Heterojunction Photovoltaics. Chemistry of Materials 2011,23,4988.
    [65]Hugel, J.; Belkhir, M. Nature of the NiO absorption edge within a spin polarized band scheme. Solid State Communications 1990,73,159.
    [66]Hufner, S.; Steiner, P.; Sander, I. High energy spectroscopies and the electronic structure of NiO. Solid State Communications 1989,72,359.
    [67]Greiner, M. T.; Helander, M. G.; Wang, Z.-B.; Tang, W.-M.; Lu, Z.-H. Effects of Processing Conditions on the Work Function and Energy-Level Alignment of NiO Thin Films. The Journal of Physical Chemistry C 2010,114,19777.
    [68]Manders, J. R.; Tsang, S.-W.; Hartel, M. J.; Lai, T.-H.; Chen, S.; Amb, C. M.; Reynolds, J. R.; So, F. Solution-Processed Nickel Oxide Hole Transport Layers in High Efficiency Polymer Photovoltaic Cells. Advanced Functional Materials 2013,23,2993.
    [69]http://www.webelements.com/compounds/nickel/nickel_oxide.html.
    [70]Ratcliff, E. L.; Meyer, J.; Steirer, K. X.; Armstrong, N. R.; Olson, D.; Kahn, A. Energy level alignment in PCDTBT:PC70BM solar cells:Solution processed NiOx for improved hole collection and efficiency. Organic Electronics 2012,13,744.
    [71]Haase, M.; Weller, H.; Henglein, A. Photochemistry and radiation chemistry of colloidal semiconductors.23. Electron storage on zinc oxide particles and size quantization. The Journal of Physical Chemistry 1988,92,482.
    [72]Mashford, B. S.; Nguyen, T.-L.; Wilson, G. J.; Mulvaney, P. All-inorganic quantum-dot light-emitting devices formed via low-cost, wet-chemical processing. Journal of Materials Chemistry 2010,20,167.
    [73]Cerc Korosec, R.; Bukovec, P. The role of thermal analysis in optimization of the electrochromic effect of nickel oxide thin films, prepared by the sol-gel method:Part Ⅱ. Thermochimica Acta 2004,410,65.
    [74]Steirer, K. X.; Ndione, P. F.; Widjonarko, N. E.; Lloyd, M. T.; Meyer, J.; Ratcliff, E. L.; Kahn, A.; Armstrong, N. R.; Curtis, C. J.; Ginley, D. S.; Berry, J. J.; Olson, D. C. Enhanced Efficiency in Plastic Solar Cells via Energy Matched Solution Processed NiOx Interlayers. Advanced Energy Materials 2011,1,813.
    [75]Kallmann, H.; Pope, M. Photovoltaic Effect in Organic Crystals. The Journal of Chemical Physics 1959,30,585.
    [76]Tang, C. W. Two-layer organic photovoltaic cell. Applied Physics Letters 1986,48,183.
    [77]Mikhnenko, O. V.; Azimi, H.; Scharber, M.; Morana, M.; Blom, P. W. M.; Loi, M. A. Exciton diffusion length in narrow bandgap polymers. Energy & Environmental Science 2012,5, 6960.
    [78]Campoy-Quiles, M.; Ferenczi, T.; Agostinelli, T.; Etchegoin, P. G.; Kim, Y.; Anthopoulos, T. D.; Stavrinou, P. N.; Bradley, D. D. C.; Nelson, J. Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends. Nature Materials 2008, 7,158.
    [79]Park, S. H.; Roy, A.; Beaupre, S.; Cho, S.; Coates, N.; Moon, J. S.; Moses, D.; Leclerc, M.; Lee, K.; Heeger, A. J. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nature Photonics 2009,3,297.
    [80]Lou, S. J.; Szarko, J. M.; Xu, T.; Yu, L.; Marks, T. J.; Chen, L. X. Effects of Additives on the Morphology of Solution Phase Aggregates Formed by Active Layer Components of High-Efficiency Organic Solar Cells. Journal of the American Chemical Society 2011,133, 20661.
    [81]Ma, W.; Yang, C.; Gong, X.; Lee, K.; Heeger, A. J. Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology. Advanced Functional Materials 2005,15,1617.
    [82]Lee, J. K.; Ma, W. L.; Brabec, C. J.; Yuen, J.; Moon, J. S.; Kim, J. Y.; Lee, K.; Bazan, G. C.; Heeger, A. J. Processing Additives for Improved Efficiency from Bulk Heterojunction Solar Cells. Journal of the American Chemical Society 2008,130,3619.
    [83]Ma, W.; Kim, J. Y.; Lee, K.; Heeger, A. J. Effect of the Molecular Weight of Poly(3-hexylthiophene) on the Morphology and Performance of Polymer Bulk Heterojunction Solar Cells. Macromolecular Rapid Communications 2007,28,1776.
    [84]He, Z.; Zhong, C.; Su, S.; Xu, M.; Wu, H.; Cao, Y. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nature Photonics 2012,6,591.
    [85]Clubb, H. Low-temperature characterisation of polymer diodes. University of Cambridge Ph.D. thesis (2009).
    [86]Credgington, D.; Jamieson, F. C; Walker, B.; Nguyen, T.-Q.; Durrant,J. R. Quantification of Geminate and Non-Geminate Recombination Losses within a Solution-Processed Small-Molecule Bulk Heterojunction Solar Cell. Advanced Materials 2012,24,2135.
    [87]Deibel, C.; Dyakonov, V. Polymer-fullerene bulk heterojunction solar cells. Reports on Progress in Physics 2010,73,096401.
    [88]Brabec, C. J.; Gowrisanker, S.; Halls, J. J. M.; Laird, D.; Jia, S.; Williams, S. P. Polymer-Fullerene Bulk-Heterojunction Solar Cells. Advanced Materials 2010,22,3839.
    [89]Mott, N. F. The metal-insulator transition in extrinsic semiconductors. Advances in Physics 1972,21,785.
    [90]Miller, A.; Abrahams, E. Impurity Conduction at Low Concentrations. Physical Review 1960, 120,745.
    [91]Westenhoff, S.; Howard, I. A.; Hodgkiss, J. M.; Kirov, K. R.; Bronstein, H. A.; Williams, C. K.; Greenham, N. C.; Friend, R. H. Charge Recombination in Organic Photovoltaic Devices with High Open-Circuit Voltages. Journal of the American Chemical Society 2008,130, 13653.
    [92]Potscavage, W. J.; Sharma, A.; Kippelen, B. Critical Interfaces in Organic Solar Cells and Their Influence on the Open-Circuit Voltage. Accounts of Chemical Research 2009,42,1758.
    [93]Blom, P. W. M.; Mihailetchi, V. D.; Koster, L. J. A.; Markov, D. E. Device Physics of Polymer:Fullerene Bulk Heterojunction Solar Cells. Advanced Materials 2007,19,1551.
    [94]Braun, S.; Salaneck, W. R.; Fahlman, M. Energy-Level Alignment at Organic/Metal and Organic/Organic Interfaces. Advanced Materials 2009,21,1450.
    [95]Tengstedt, C.; Osikowicz, W.; Salaneck, W. R.; Parker, I. D.; Hsu, C.-H.; Fahlman, M. Fermi-level pinning at conjugated polymer interfaces. Applied Physics Letters 2006,88.
    [96]Xu, Z.; Chen, L.-M.; Chen, M.-H.; Li, G.; Yang, Y. Energy level alignment of poly(3-hexylthiophene):[6,6]-phenyl C61 butyric acid methyl ester bulk heterojunction. Applied Physics Letters 2009,95.
    [97]Xu, Z.; Chen, L.-M.; Yang, G.; Huang, C.-H.; Hou, J.; Wu, Y.; Li, G.; Hsu, C.-S.; Yang, Y. Vertical Phase Separation in Poly(3-hexylthiophene):Fullerene Derivative Blends and its Advantage for Inverted Structure Solar Cells. Advanced Functional Materials 2009,19,1227.
    [98]Lloyd, M. T.; Olson, D. C.; Lu, P.; Fang, E.; Moore, D. L.; White, M. S.; Reese, M. O.; Ginley, D. S.; Hsu, J. W. P. Impact of contact evolution on the shelf life of organic solar cells. Journal of Materials Chemistry 2009,19,7638.
    [99]Brabec, C. J.; Cravino, A.; Meissner, D.; Sariciftci, N. S.; Fromherz, T.; Rispens, M. T.; Sanchez, L.; Hummelen, J. C. Origin of the Open Circuit Voltage of Plastic Solar Cells. Advanced Functional Materials 2001,11,374.
    [100]Mihailetchi, V. D.; Koster, L. J. A.; Blom, P. W. M. Effect of metal electrodes on the performance of polymer:fullerene bulk heterojunction solar cells. Applied Physics Letters 2004,85,970.
    [101]Hau, S. K.; O'Malley, K. M.; You-Jung, C.; Yip, H.-L.; Ma, H.; Jen, A. K. Y. Optimization of Active Layer and Anode Electrode for High-Performance Inverted Bulk-Heterojunction Solar Cells. Selected Topics in Quantum Electronics, IEEE Journal of 2010,16,1665.
    [102]Yip, H.-L.; Jen, A. K. Y. Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells. Energy & Environmental Science 2012,5,5994.
    [103]Jergensen, M.; Norrman, K.; Krebs, F. C. Stability/degradation of polymer solar cells. Solar Energy Materials and Solar Cells 2008,92,686.
    [104]O'Malley, K. M.; Li, C.-Z.; Yip, H.-L.; Jen, A. K. Y. Enhanced Open-Circuit Voltage in High Performance Polymer/Fullerene Bulk-Heterojunction Solar Cells by Cathode Modification with a C60 Surfactant. Advanced Energy Materials 2012,2,82.
    [105]Oh, S.-H.; Na, S.-L.; Jo, J.; Lim, B.; Vak, D.; Kim, D.-Y. Water-Soluble Polyfluorenes as an Interfacial Layer Leading to Cathode-Independent High Performance of Organic Solar Cells. Advanced Functional Materials 2010,20,1977.
    [106]Peumans, P.; Forrest, S. R. Very high efficiency double heterostructure copper phthalocyanine/C60 photovoltaic cells. Applied Physics Letters 2001,79,126.
    [107]Clarke, T. M.; Durrant, J. R. Charge Photogeneration in Organic Solar Cells. Chemical Reviews 2010,110,6736.
    [108]Walzer, K.; Maennig, B.; Pfeiffer, M.; Leo, K. Highly Efficient Organic Devices Based on Electrically Doped Transport Layers. Chemical Reviews 2007,107,1233.
    [109]Moule, A. J.; Meerholz, K. Morphology Control in Solution-Processed Bulk-Heterojunction Solar Cell Mixtures. Advanced Functional Materials 2009,19,3028.
    [110]Hoppe, H.; Sariciftci, N. S. Morphology of polymer/fullerene bulk heterojunction solar cells. Journal of Materials Chemistry 2006,16,45.
    [111]Germack, D. S.; Chan, C. K.; Hamadani, B. H.; Richter, L. J.; Fischer, D. A.; Gundlach, D. J.; DeLongchamp, D. M. Substrate-dependent interface composition and charge transport in films for organic photovoltaics. Applied Physics Letters 2009,94.
    [112]Germack, D. S.; Chan, C. K.; Kline, R. J.; Fischer, D. A.; Gundlach, D. J.; Toney, M. F.; Richter, L. J.; DeLongchamp, D. M. Interfacial Segregation in Polymer/Fullerene Blend Films for Photovoltaic Devices. Macromolecules 2010,43,3828.
    [113]Bulliard, X.; Ihn, S.-G.; Yun, S.; Kim, Y.; Choi, D.; Choi, J.-Y.; Kim, M.; Sim, M.; Park, J.-H.; Choi, W.; Cho, K. Enhanced Performance in Polymer Solar Cells by Surface Energy Control. Advanced Functional Materials 2010,20,4381.
    [114]Hadipour, A.; Cheyns, D.; Heremans, P.; Rand, B. P. Electrode Considerations for the Optical Enhancement of Organic Bulk Heterojunction Solar Cells. Advanced Energy Materials 2011,1,930.
    [115]Tvingstedt, K.; Andersson, V.; Zhang, F.; Inganas, O. Folded reflective tandem polymer solar cell doubles efficiency. Applied Physics Letters 2007,91.
    [116]Na, S.-I.; Kim, S.-S.; Jo, J.; Oh, S.-H.; Kim, J.; Kim, D.-Y. Efficient Polymer Solar Cells with Surface Relief Gratings Fabricated by Simple Soft Lithography. Advanced Functional Materials 2008,18,3956.
    [117]Kim, M.-S.; Kim, J.-S.; Cho, J. C.; Shtein, M.; Kim, J.; Guo, L. J.; Kim, J. Flexible conjugated polymer photovoltaic cells with controlled heterojunctions fabricated using nanoimprint lithography. Applied Physics Letters 2007,90.
    [118]Gilot, J.; Barbu, I.; Wienk, M. M.; Janssen, R. A. J. The use of ZnO as optical spacer in polymer solar cells:Theoretical and experimental study. Applied Physics Letters 2007,91.
    [119]Kim, J. Y.; Kim, S. H.; Lee, H. H.; Lee, K.; Ma, W.; Gong, X.; Heeger, A. J. New Architecture for High-Efficiency Polymer Photovoltaic Cells Using Solution-Based Titanium Oxide as an Optical Spacer. Advanced Materials 2006,18,572.
    [120]Zhang, D.; Choy, W. C. H.; Xie, F.; Sha, W. E. I.; Li, X.; Ding, B.; Zhang, K.; Huang, F.; Cao, Y. Plasmonic Electrically Functionalized TiO2 for High-Performance Organic Solar Cells. Advanced Functional Materials 2013,23,4255.
    [121]Choi, H.; Ko, S.-J.; Choi, Y.; Joo, P.; Kim, T.; Lee, B. R.; Jung, J.-W.; Choi, H. J.; Cha, M.; Jeong, J.-R.; Hwang, I.-W.; Song, M. H.; Kim, B.-S.; Kim, J. Y. Versatile surface plasmon resonance of carbon-dot-supported silver nanoparticles in polymer optoelectronic devices. Nature Photonics 2013,7,732.
    [122]Wu, J.-L.; Chen, F.-C.; Hsiao, Y.-S.; Chien, F.-C.; Chen, P.; Kuo, C.-H.; Huang, M. H.; Hsu, C.-S. Surface Plasmonic Effects of Metallic Nanoparticles on the Performance of Polymer Bulk Heterojunction Solar Cells. ACS Nano 2011,5,959.
    [123]Yang, J.; You, J.; Chen, C.-C.; Hsu, W.-C.; Tan, H.-r.; Zhang, X. W.; Hong, Z.; Yang, Y. Plasmonic Polymer Tandem Solar Cell. ACS Nano 2011,5,6210.
    [124]Kulkarni, A. P.; Noone, K. M.; Munechika, K.; Guyer, S. R.; Ginger, D. S. Plasmon-Enhanced Charge Carrier Generation in Organic Photovoltaic Films Using Silver Nanoprisms. Nano Letters 2010,10,1501.
    [125]Sun, Y.; Park, S.; Lee, T.; Chung, W.; Kim, K.; Kim, M. TEM Study of Stability of Inverted Photovoltaic (PV) Cells. Microscopy and Microanalysis 2010,16,1378.
    [126]Wong, K. W.; Yip, H. L.; Luo, Y.; Wong, K. Y.; Lau, W. M.; Low, K. H.; Chow, H. F.; Gao, Z. Q.; Yeung, W. L.; Chang, C. C. Blocking reactions between indium-tin oxide and poly (3,4-ethylene dioxythiophene):poly(styrene sulphonate) with a self-assembly monolayer. Applied Physics Letters 2002,80,2788.
    [127]Huang, J.; Li, G.; Yang, Y. A Semi-transparent Plastic Solar Cell Fabricated by a Lamination Process. Advanced Materials 2008,20,415.
    [128]Tung, V. C.; Kim, J.; Cote, L. J.; Huang, J. Sticky Interconnect for Solution-Processed Tandem Solar Cells. Journal of the American Chemical Society 2011,133,9262.
    [129]Eperon, G. E.; Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L. M.; Snaith, H. J. Formamidinium lead trihalide:a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy & Environmental Science 2014,7,982.
    [130]Hodes, G. Perovskite-Based Solar Cells. Science 2013,342,317.
    [131]Docampo, P.; Ball, J. M.; Darwich, M.; Eperon, G. E.; Snaith, H. J. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nature Communication 2013, DOI:10.1038/ncomms3761.
    [132]Abrusci, A.; Stranks, S. D.; Docampo, P.; Yip, H.-L.; Jen, A. K. Y.; Snaith, H. J. High-Performance Perovskite-Polymer Hybrid Solar Cells via Electronic Coupling with Fullerene Monolayers. Nano Letters 2013,13,3124.
    [133]Ball, J. M.; Lee, M. M.; Hey, A.; Snaith, H. J. Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy & Environmental Science 2013,6,1739.
    [134]Cai, B.; Xing, Y.; Yang, Z.; Zhang, W.-H.; Qiu, J. High performance hybrid solar cells sensitized by organolead halide perovskites. Energy & Environmental Science 2013,6,1480.
    [135]Im, J.-H.; Lee, C.-R.; Lee, J.-W.; Park, S.-W.; Park, N.-G.6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 2011,3,4088.
    [136]Newcomer Juices Up the Race to Harness Sunlight. Science 2013,342,1438.
    [137]Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E.; Gratzel, M.; Park, N.-G. Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Scientic Reports 2012,2,591.
    [138]Heo, J. H.; Im, S. H.; Noh, J. H.; Mandal, T. N.; Lim, C.-S.; Chang, J. A.; Lee, Y. H.; Kim, H.-j.; Sarkar, A.; NazeeruddinMd, K.; Gratzel, M.; Seok, S.I. Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat Photon 2013,7,486.
    [139]Malinkiewicz, O.; Yella, A.; Lee, Y. H.; Espallargas, G. M.; Graetzel, M.; Nazeeruddin, M. K.; Bolink, H. J. Perovskite solar cells employing organic charge-transport layers. Nature Photonics 2014,8,128.
    [140]Etgar, L.; Gao, P.; Xue, Z.; Peng, Q.; Chandiran, A. K.; Liu, B.; Nazeeruddin, M. K.; Gratzel, M. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. Journal of the American Chemical Society 2012,134,17396.
    [141]Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science 2013,342,341.
    [142]Xing, G.; Mathews, N.; Sun, S.; Lim, S. S.; Lam, Y. M.; Gratzel, M.; Mhaisalkar, S.; Sum, T. C. Long-Range Balanced Electron-and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3. Science 2013,342,344.
    [143]Liu, D.; Kelly, T. L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nature Photonics 2014,8,133.
    [144]Chen, Q.; Zhou, H.; Hong, Z.; Luo, S.; Duan, H. S.; Wang, H. H.; Liu, Y.; Li, G.; Yang, Y. Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process. Journal of the American Chemical Society 2014,136,622.
    [145]Sun, S.; Salim, T.; Mathews, N.; Duchamp, M.; Boothroyd, C.; Xing, G.; Sum, T. C.; Lam, Y. M. The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy & Environmental Science 2014,7,399.
    [146]Jeng, J.-Y.; Chiang, Y.-F.; Lee, M.-H.; Peng, S.-R.; Guo, T.-F.; Chen, P.; Wen, T.-C. CH3NH3PbI3 Perovskite/Fullerene Planar-Heterojunction Hybrid Solar Cells. Advanced Materials 2013,25,3727.
    [147]Nayak, P. K.; Garcia-Belmonte, G.; Kahn, A.; Bisquert, J.; Cahen, D. Photovoltaic efficiency limits and material disorder. Energy & Environmental Science 2012,5,6022.
    [148]Boix, P. P.; Larramona, G.; Jacob, A.; Delatouche, B.; Mora-Sero,I.; Bisquert, J. Hole Transport and Recombination in All-Solid Sb2S3-Sensitized TiO2 Solar Cells Using CuSCN As Hole Transporter. The Journal of Physical Chemistry C 2011,116,1579.
    [149]Boix, P. P.; Nonomura, K.; Mathews, N.; Mhaisalkar, S. G. Current progress and future perspectives for organic/inorganic perovskite solar cells. Materials Today 2014,17,16.
    [150]Lee, Y.-J.; Yi, J.; Gao, G. F.; Koerner, H.; Park, K.; Wang, J.; Luo, K.; Vaia, R. A.; Hsu, J. W. P. Low-Temperature Solution-Processed Molybdenum Oxide Nanoparticle Hole Transport Layers for Organic Photovoltaic Devices. Advanced Energy Materials 2012,2,1193.
    [151]Zilberberg, K.; Trost, S.; Meyer, J.; Kahn, A.; Behrendt, A.; Lutzenkirchen-Hecht, D.; Frahm, R.; Riedl, T. Inverted Organic Solar Cells with Sol-Gel Processed High Work-Function Vanadium Oxide Hole-Extraction Layers. Advanced Functional Materials 2011,21,4776.
    [152]Meyer, J.; Khalandovsky, R.; Gorrn, P.; Kahn, A. MoO3 Films Spin-Coated from a Nanoparticle Suspension for Efficient Hole-Injection in Organic Electronics. Advanced Materials 2011,23,70.
    [153]You, J.; Chen, C.-C.; Dou, L.; Murase, S.; Duan, H.-S.; Hawks, S. A.; Xu, T.; Son, H. J.; Yu, L.; Li, G.; Yang, Y. Metal Oxide Nanoparticles as an Electron-Transport Layer in High-Performance and Stable Inverted Polymer Solar Cells. Advanced Materials 2012,24, 5267.
    [154]Yao, C.; Xu, X.; Wang, J.; Shi, L.; Li, L. Low-Temperature, Solution-Processed Hole Selective Layers for Polymer Solar Cells. ACS Applied Materials & Interfaces 2013,5,1100.
    [155]Jin, Y.; Wang, J.; Sun, B.; Blakesley, J. C.; Greenham, N. C. Solution-Processed Ultraviolet Photodetectors Based on Colloidal ZnO Nanoparticles. Nano Letters 2008,8,1649.
    [156]Hau, S. K.; Yip, H.-L.; Ma, H.; Jen, A. K..-Y. High performance ambient processed inverted polymer solar cells through interfacial modification with a fullerene self-assembled monolayer. Applied Physics Letters 2008,93,233304.
    [157]Kazim, S.; Nazeeruddin, M. K.; Gratzel, M.; Ahmad, S. Perovskite as Light Harvester:A Game Changer in Photovoltaics. Angewandte Chemie International Edition 2014,53,2812.
    [158]Delia Gaspera, E.; Bersani, M.; Cittadini, M.; Guglielmi, M.; Pagani, D.; Noriega, R.; Mehra, S.; Salleo, A.; Martucci, A. Low-Temperature Processed Ga-Doped ZnO Coatings from Colloidal Inks. Journal of the American Chemical Society 2013,135,3439.
    [159]Van der Biest, O. O.; Vandeperre, L. J. Electrophoretic Deposition of Materials. Annual Review of Materials Science 1999,29,327.
    [160]Amman, M. Electrophoretic deposition under modulated electric fields:a review. RSC Advances 2012,2,7633.
    [161]Salant, A.; Shalom, M.; Hod, I.; Faust, A.; Zaban, A.; Banin, U. Quantum Dot Sensitized Solar Cells with Improved Efficiency Prepared Using Electrophoretic Deposition. ACS Nano 2010,4,5962.
    [162]Salant, A.; Shalom, M.; Tachan, Z.; Buhbut, S.; Zaban, A.; Banin, U. Quantum Rod-Sensitized Solar Cell:Nanocrystal Shape Effect on the Photovoltaic Properties. Nano Letters 2012,12,2095.
    [163]Song, K. W.; Costi, R.; Bulovic, V. Electrophoretic Deposition of CdSe/ZnS Quantum Dots for Light-Emitting Devices. Advanced Materials 2013,25,1420.
    [164]Sun, B.; Sirringhaus, H. Solution-Processed Zinc Oxide Field-Effect Transistors Based on Self-Assembly of Colloidal Nanorods. Nano Letters 2005,5,2408.
    [165]Schaefgen, J. R.; Newman, M. S.; Verhoek, F. H. Ionization Constants of Butylamine, Piperidine and Triethylamine in Methanol. Journal of the American Chemical Society 1944, 66,1847.
    [166]Ma, Z.; Tang, Z.; Wang, E.; Andersson, M. R.; Inganas, O.; Zhang, F. Influences of Surface Roughness of ZnO Electron Transport Layer on the Photovoltaic Performance of Organic Inverted Solar Cells. The Journal of Physical Chemistry C 2012,116,24462.
    [167]Huang, J.; Yin, Z.; Zheng, Q. Applications of ZnO in organic and hybrid solar cells. Energy & Environmental Science 2011,4,3861.
    [168]Bai, S.; Wu, Z.; Xu, X.; Jin, Y.; Sun, B.; Guo, X.; He, S.; Wang, X.; Ye, Z.; Wei, H.; Han, X.; Ma, W. Inverted organic solar cells based on aqueous processed ZnO interlayers at low temperature. Applied Physics Letters 2012,100,203906.
    [169]Zhao, G.; He, Y.; Li, Y.6.5% Efficiency of Polymer Solar Cells Based on poly(3-hexylthiophene) and Indene-C60 Bisadduct by Device Optimization. Advanced Materials 2010,22,4355.
    [170]Shao, S.; Zheng, K.; Pullerits, T.; Zhang, F. Enhanced Performance of Inverted Polymer Solar Cells by Using Poly(ethylene oxide)-Modified ZnO as an Electron Transport Layer. ACS Applied Materials & Interfaces 2012,5,380.
    [171]Jo, S. B.; Lee, J. H.; Sim, M.; Kim, M.; Park, J. H.; Choi, Y. S.; Kim, Y.; Ihn, S.-G.; Cho, K. High Performance Organic Photovoltaic Cells Using Polymer-Hybridized ZnO Nanocrystals as a Cathode Interlayer. Advanced Energy Materials 2011,1,690.
    [172]Tang, J.; Brzozowski, L.; Barkhouse, D. A. R.; Wang, X.; Debnath, R.; Wolowiec, R.; Palmiano, E.; Levina, L.; Pattantyus-Abraham, A. G.; Jamakosmanovic, D.; Sargent, E. H. Quantum Dot Photovoltaics in the Extreme Quantum Confinement Regime:The Surface-Chemical Origins of Exceptional Air and Light Stability. ACS Nano 2010,4,869.
    [173]Clifford, J. P.; Konstantatos, G.; Johnston, K. W.; Hoogland, S.; Levina, L.; Sargent, E. H. Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors. Nature Nanotechnology 2009,4,40.
    [174]Cohn, A. W.; Kittilstved, K. R.; Gamelin, D. R. Tuning the Potentials of "Extra" Electrons in Colloidal n-Type ZnO Nanocrystals via Mg2+ Substitution. Journal of the American Chemical Society 2012,134,7937.
    [175]Guo, X.; Cui, C.; Zhang, M.; Huo, L.; Huang, Y.; Hou, J.; Li, Y. High efficiency polymer solar cells based on poly(3-hexylthiophene)/indene-C70 bisadduct with solvent additive. Energy & Environmental Science 2012,5,7943.
    [176]Luther, J. M.; Law, M.; Song, Q.; Perkins, C. L.; Beard, M. C.; Nozik, A. J. Structural, Optical, and Electrical Properties of Self-Assembled Films of PbSe Nanocrystals Treated with 1,2-Ethanedithiol. ACS Nano 2008,2,271.
    [177]Deng, S.-Z.; Fan, H.-M.; Wang, M.; Zheng, M.-R.; Yi, J.-B.; Wu, R.-Q.; Tan, H.-R.; Sow, C.-H.; Ding, J.; Feng, Y.-P.; Loh, K.-P. Thiol-Capped ZnO Nanowire/Nanotube Arrays with Tunable Magnetic Properties at Room Temperature. ACS Nano 2009,4,495.
    [178]Singh, J.; Im, J.; Whitten, J. E.; Soares, J. W.; Steeves, D. M. Encapsulation of Zinc Oxide Nanorods and Nanoparticles. Langmuir 2009,25,9947.
    [179]Dvorak, J.; Jirsak, T.; Rodriguez, J. A. Fundamental studies of desulfurization processes: reaction of methanethiol on ZnO and Cs/ZnO. Surface Science 2001,479,155.
    [180]Barteau, M. A. Organic Reactions at Well-Defined Oxide Surfaces. Chemical Reviews 1996, 96,1413.
    [181]Shuttle, C. G.; O'Regan, B.; Ballantyne, A. M.; Nelson, J.; Bradley, D. D. C.; de Mello, J.; Durrant, J. R. Experimental determination of the rate law for charge carrier decay in a polythiophene:Fullerene solar cell. Applied Physics Letters 2008,92.
    [182]Garcia-Belmonte, G.; Boix, P. P.; Bisquert, J.; Sessolo, M.; Bolink, H. J. Simultaneous determination of carrier lifetime and electron density-of-states in P3HT:PCBM organic solar cells under illumination by impedance spectroscopy. Solar Energy Materials and Solar Cells 2010,94,366.
    [183]Liu, S.; Zhang, K.; Lu, J.; Zhang, J.; Yip, H.-L.; Huang, F.; Cao, Y. High-Efficiency Polymer Solar Cells via the Incorporation of an Amino-Functionalized Conjugated Metallopolymer as a Cathode Interlayer. Journal of the American Chemical Society 2013,135,15326.
    [184]Tang, Z.; Andersson, L. M.; George, Z.; Vandewal, K.; Tvingstedt, K.; Heriksson, P.; Kroon, R.; Andersson, M. R.; Inganas, O. Interlayer for Modified Cathode in Highly Efficient Inverted ITO-Free Organic Solar Cells. Advanced Materials 2012,24,554.
    [185]Garcia, M. A.; Merino, J. M.; Fernandez Pinel, E.; Quesada, A.; de la Venta, J.; Ruiz Gonzalez, M. L.; Castro, G. R.; Crespo, P.; Llopis, J.; Gonzalez-Calbet, J. M.; Hernando, A. Magnetic Properties of ZnO Nanoparticles. Nano Letters 2007,7,1489.
    [186]Wang, X.; Jin, Y.; He, H.; Yang, F.; Yang, Y.; Ye, Z. Bandgap engineering and shape control of colloidal CdxZn1-xO nanocrystals. Nanoscale 2013,5,6464.
    [187]Hoye, R. L. Z.; Ehrler, B.; Bohm, M. L.; Munoz-Rojas, D.; Altamimi, R. M.; Alyamani, A. Y.; Vaynzof, Y.; Sadhanala, A.; Ercolano, G.; Greenham, N. C.; Friend, R. H.; MacManus-Driscoll, J. L.; Mussehnan, K. P. Improved Open Circuit Voltage in ZnO-PbSe Quantum Dot Solar Cells by Understanding and Reducing Losses Arising from the ZnO Conduction Band Tail. Advanced Energy Materials 2014, DOI:10.1002/aenm.201301554.
    [188]Musselman, K. P.; Albert-Seifried, S.; Hoye, R. L. Z.; Sadhanala, A.; Munoz-Rojas, D.; MacManus-Driscoll, J. L.; Friend, R. H. Improved Exciton Dissociation at Semiconducting Polymer:ZnO Donor:Acceptor Interfaces via Nitrogen Doping of ZnO. Advanced Functional Materials 2014, DOI:10.1002/adfin.201303994.
    [189]O'Regan, B.; Gratzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991,353,737.
    [190]Jean, J.; Chang, S.; Brown, P. R.; Cheng, J. J.; Rekemeyer, P. H.; Bawendi, M. G.; Gradecak, S.; Bulovic, V. ZnO Nanowire Arrays for Enhanced Photocurrent in PbS Quantum Dot Solar Cells. Advanced Materials 2013,25,2789.
    [191]Zhao, J.; Wang, A.; Green, M. A.; Ferrazza, F.19.8% efficient "honeycomb" textured multicrystalline and 24.4% monocrystalline silicon solar cells. Applied Physics Letters 1998, 73,1991.
    [192]Chen, S.; Manders, J. R.; Tsang, S.-W.; So, F. Metal oxides for interface engineering in polymer solar cells. Journal of Materials Chemistry 2012,22,24202.
    [193]Irwin, M. D.; Buchholz, D. B.; Hains, A. W.; Chang, R. P. H.; Marks, T. J. p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. Proceedings of the National Academy of Sciences 2008,105, 2783.
    [194]Hennek, J. W.; Smith, J.; Yan, A.; Kim, M.-G.; Zhao, W.; Dravid, V. P.; Facchetti, A.; Marks, T. J. Oxygen "Getter" Effects on Microstructure and Carrier Transport in Low Temperature Combustion-Processed a-InXZnO (X=Ga, Sc, Y, La) Transistors. Journal of the American Chemical Society 2013,135,10729.
    [195]Erri, P.; Pranda, P.; Varma, A. Oxidizer-Fuel Interactions in Aqueous Combustion Synthesis. 1. Iron(III) Nitrate-Model Fuels. Industrial & Engineering Chemistry Research 2004,43, 3092.
    [196]Jung, C.-H.; Jalota, S.; Bhaduri, S. B. Quantitative effects of fuel on the synthesis of Ni/NiO particles using a microwave-induced solution combustion synthesis in air atmosphere. Materials Letters 2005,59,2426.
    [197]Wen, W.; Wu, J.-M. Eruption Combustion Synthesis of NiO/Ni Nanocomposites with Enhanced Properties for Dye-Absorption and Lithium Storage. ACS Applied Materials & Interfaces 2011,3,4112.
    [198]Pettersson, L. A. A.; Roman, L. S.; Inganas, O. Modeling photocurrent action spectra of photovoltaic devices based on organic thin films. Journal of Applied Physics 1999,86,487.
    [199]Ramsdale, C. M.; Greenham, N. C. The optical constants of emitter and electrode materials in polymer light-emitting diodes. Journal of Physics D:Applied Physics 2003,36, L29.
    [200]Hoppe, H.; Sariciftci, N. S.; Meissner, D. Optical constants of conjugated polymer/fullerene based bulk-heterojunction organic solar cells. Molecular Crystals and Liquid Crystals 2002, 385,113.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700