用户名: 密码: 验证码:
青海湖流域河岸植被群落结构特征及退化机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青海湖作为青藏高原的重要组成部分,是维系青藏高原东北部生态安全的重要水体,是国际重要湿地。近几十年来由于气候变化、过度放牧及人类活动的影响,流域内的植被出现了不同程度的退化。河流是青海湖流域重要湿地类型,但河岸植被严重退化影响了河流生态系统健康,进而对流域整体生态环境产生十分不利的影响。因此,对青海湖流域河岸植被群落结构特征及退化机理进行研究,可为流域内河岸植被退化研究提供理论基础,有助于开展河岸植被生态恢复,从而保证青海湖流域社会经济的健康发展。
     论文以沙柳河为例,在对河岸植被进行样方调查的基础上,研究了沙柳河流域河岸植被的群落组成、生物多样性和生态位等群落结构特征;利用实测的水柏枝林地和草地的微气象数据、棵间土壤蒸发量数据,分析了两种植被类型的能量平衡和蒸散规律,并通过对流域内气候变化特征、沙柳河河川径流量变化、河岸稳定入渗率和饱和导水率等进行分析的基础上,结合实地考察资料,分析和探讨了流域内河岸植被退化的原因,并在此基础上提出了退化河岸植被修复方案,主要研究结论如下:
     1.在沙柳河河岸植被组成中,草本样地分为芨芨草群落、西伯利亚蓼+盐地凤毛菊群落、珠芽蓼+高山嵩草群落等12种植被类型,灌木样地分为具磷水柏枝群落、金露梅群落和沙棘群落等3种植被类型。草本植物群落的分布与海拔高度和土壤总盐量显著相关,而灌木植物群落的分布与沿河道距入湖口的距离和距河道的垂直距离有关,但是关系不显著。
     2.沙柳河流域中主要优势灌木种水柏枝和草地在能量平衡和蒸散方面差异显著,水柏枝林地的地下5cm土壤热通量与冠层净辐射变化趋势一致,而草地的地下5cm土壤热通量与冠层净辐射存在1小时的延时,草地和水柏枝林地的显热通量在白天均为负值,而潜热通量在白天均为正值。在生长季,水柏枝林地的蒸散量显著大于草地的蒸散量,二者的日蒸散强度相差0.7mm/d,水柏枝林地月平均蒸散量的大小为148.7~223.6mm,草地月平均蒸散量的大小为146.2~179.3mm,水柏枝林地的蒸散耗水主要依靠河水补给,而草地的蒸散耗水主要依靠雨水补给。
     3.在沙柳河河岸植被中,绝大多数草本植物群落的多样性指数、均匀度指数和丰富度指数都明显较大,灌木群落的的生物多样性指数、均匀度和丰富度指数都比较小,草本植物群落之间的相似性较小,灌木群落之间的相似性较大。草本植物群落各优势种之间生态位重叠较大,灌木植被群落中,具磷水柏枝、金露梅和沙棘之间的生态位重叠也比较大。
     4.沙柳河流域河岸植被退化的主要原因是过度放牧,过度放牧导致流域内河岸植被的生物量减小,群落组成发生变化;流域内气候变化和沙柳河河川径流量变化对河岸植被产量和群落演替具有重要影响。此外,流域内工程设施建设和鼠类危害也是河岸植被退化的原因。
     5.沙柳河流域河岸植被恢复应主要依靠围栏封育、人工种植恢复和确定流域内草场的适宜载畜量等措施。在河岸植被种植过程中,应选择生态位宽度大且适口性为优良的物种,因此沙柳河河岸植被恢复过程中,推荐矮生嵩草、荸荠、垂穗披碱草、大药碱茅、多枝黄芪、华扁穗草、毛穗赖草、青藏苔草、沙生冰草、线叶嵩草、珠芽蓼和紫野大麦物种作为草本植物恢复过程中首选物种,具磷水柏枝和金露梅作为灌木植物恢复过程中的首选物种。要根据物种的自然分布规律来进行种植,珠芽蓼和高山嵩草适合在海拔高度相对较高的地区种植,而垂穗披碱草和草地早熟禾则适合在海拔高度相对较低的区域种植,具磷水柏枝适合生长在3200~3400m的海拔高度范围,而金露梅适合生长在3300~3500m的海拔高度范围。应保持沙柳河的年径流量大于0.75亿m3。加强鼠害治理、进行毒杂草防治以及减少人为因素对植被的破坏也是实现流域内植被恢复的有效手段。
Lake Qinghai, the important international wetland, is of great importance for protecting the ecology safety of northeast Qinghai-Tibet plateau. The vegetation degradated during the past decaeds of years due to climate change, overgrazing and human activity. River is the main wetland type of Lake Qinghai basin, and the degradation of riparian vegetation threated not noly the ecosystem health of of river system but also the eco-environment safety of Lake Qinghai basin, so the study on the community structure and degradation mechanism of riparian vegetation in Lake Qinghai basin not only can provide scientific basis for the study of riparian vegetation degradation but also is helpful to vegetation restoration, and so as to make sure that the social economy of the basin has a healthy development.
     Based on the samples of the riparian vegetation of Lake Qinghai basin, the community structure, biodiversity and niche of riparian vegetation was studied, and also the energy balance and microclimate of riparian vegetation was studied by the data of microclimate and soil evaporation. The cause of vegetation degradation was studied by analyzing the climate change of Lake Qinghai basin, streamflow of Shaliu river, stable infiltration and saturated hydraulic conductivity on the banks of Shaliu river, here are the key conclusions.
     1. The herbosa raparian vegetation on the banks of Shaliu river was classified into 12 kinds of different groups, and shrubs was classified into 3 kinds of different groups. The distribution of herb communities has a sigificant correlation with altitude and soil salt content, while the fruticetum was not sigificant affected by the distance to Lake Qinghai along Shaliu river and the vertical distance to river.
     2. The shrub’s changing trend of the 5cm underground soil heat flux is the same as the canopy net radiation, while the grassland has an one hour time lapse compared to shrub, the sensible heat flux of shrub and grassland is negative during the daytime, while the latent heat flux is positive. During the growing season, the daily evapotranspiration of shrub is 0.7mm lager than grassland, and the monthly evapotranspiration of shrubs is 148.7~223.6mm, while the grassland is 146.2~179.3mm, the water consumption of shrub evapotranspiration is supplied by the streamflows of Shaliu river, while the grassland by the precipitation.
     3. Almost all the herbosa have a great value of diversity index, species richness and species evenness, while the shrubs have a small value of diversity index, species richness and species evenness. The herbosa of the raparian vegetation shows the small similarity index , while the shrubs shows the big similarity index. Almost all the herb dominant species have the great niche overlap, so dose all the shrub dominant species but Salix qinghaiensis Y.L.Chou.
     4. The vegetation degradation is mainly caused by overgrazing in this area, and overgrazing can cause the decrease of the biomass and the change of community composition. The rise of temperature and the streamflow change of Shaliu river can affected the biomass and degradation of the riparian vegetation, and moreover the vegetation degradation can also affected by construction and grassland rodent.
     5. Enclosure, planting and optimum stock capacity are the main reparation method in the study area, and during the reparation species with palatability and wide niche breadth can be selected to plant, and the natural distribution law of the species should be followed. The streamflow should be kept more than 0.075 billion m3, and prevent and cure the grassland rodent and poisonous weeds and reduce the damage to riparian by human should also be the effective method.
引文
Alca?ntaraa, F.A. de, Buurmanb, P., Curi, N., 2004. Changes in soil organic matter composition after introduction of riparian vegetation on shores of hydroelectric reservoirs (Southeast of Brazil). Soil Biology & Biochemistry, 36 :1497–1508.
    Al-Hamdani, S. H., Todd, G. W. and Francko, D. A., 1990. Response of wheat growth and CO2 assimilation to altering root-zone temperature. Can. J. Bot, 68: 2 698–2 702.
    Anderson, B.G., Rutherfurd, I.D., Western, A.W., 2006. An analysis of the influence of riparian vegetation on the propagation of flood waves. Environmental Modelling & Software 21: 1290-1296.
    Bonan, G. B. and Shugart, H. H., 1989. Environmental factors and ecological processes in boreal forests. Annu. Rev.Ecol. Syst, 20: 1–28.
    Boone, R. D., Nadelhoffer, K. J., Canary, J. D. and Kaye, J. P., 1998. Roots exert a strong influence on the temperature sensitivity of soil respiration. Nature, 396: 570–572.
    Campbell, D.G., Stone, J.L., Rosas Jr, A., 1992. A comparison of the phytosociology and dynamics of three floodplain (Va′rzea) forests of known ages, rio Jurua′, western Brazilian Amazon. Bot. J. Linn. Soc. 108, 213–237.
    Clinnick, P.F., 1985. Buffer strip management in forest operations: a review. Aust. For. 48 (1), 34–45.
    Cody, M.L. Competition and the structure of bird communities[M]. Princeton: Princeton University Press,1974.
    Collier, K.J., Cooper, A.B., Davies-Colley, R.J., Rutherford, J.C., Smith, C.M., Williamson, R.B., 1995. Managing Riparian Zones: A Contribution to Protecting New Zealand’s Rivers and Streams: Vol. 1: Concepts. Department of Conservation, Wellington, NZ.
    Collins S L., 1985.Effects of disturbance on diversity in a mixed grass Prairie. Vegetation, 64:87-94.
    Corbacho, C., Sánchez, J. M., Costillo, E., 2003. Patterns of structural complexity and human disturbance of riparian vegetation in agricultural landscapes of a Mediterranean area. Agriculture, Ecosystems and Environment, 95 :495–507.
    Damasceno-Junior G. A., Semirb J., Santosb F. A. M.s D.,2005. Structure, distribution of species and inundation in a riparian forest of Rio Paraguai, Pantanal, Brazil.Flora 200:119–135.
    Dang, Q. L. and Cheng, S. 2004. Effect of soil temperature on ecophysiological traits in seedlings of four boreal tree species. Forest Ecology and Management, 194: 379–387.
    DeLucia, E. H., 1987. The effect of freezing nights on photosynthesis, stomatal conductance, and internal CO2 concentration in seedlings of Engelmann spruce. Plant Cell Environ, 10: 333–338.
    DeLucia, E. H., Day, T. A. and Oquist, G., 1991. The potential for photoinhibition of Pinus sylvestris L. seedlings exposed to high light and low soil temperature. J. Exp. Botany, 42: 611–617.
    Donald H. Burn, Mohamed A. 2002. Hag Elnur. Detection of hydraulic trends and variability, (255):107-122
    Dueser, R D & Shugart, H. H., 1979. Niche pattern in a forest-floor small-mammal fauan. Ecology, 60(1):108-118.
    Fierke, M. K., Kauffman, J. B., 2005. Structural dynamics of riparian forests along a black cottonwood successional gradient. Forest Ecology and Management, 215:149–162.
    Gilliam, J.W., Schipper, L.A., Beets, P.N., McConchie, M., 1992. Riparian buffers in New Zealand forestry. NZ For. 37, 21–25.
    Gordon, E., Meentemeyer, R. K.,2006. Effects of dam operation and land use on stream channel morphology and riparian vegetation. Geomorphology, 82:412–429.
    Hancock, C. N., Ladd,P.G., Froend, R.H.,1996. Biodiversity and management of riparian vegetation in Western Australia. Forest Ecology and Management, 85:239-250.
    Harper, G. J. and Camm, E. L., 1993. Effects of frozen storage duration and soil temperature on the stomatal conductance and net photosynthesis of Picea glauca seedlings. Can. J. Forest Res, 23: 2 459–2 466.
    Hood, G. A., Bayley, S. E., 2009. A comparison of riparian plant community response to herbivory by beavers (Castor canadensis) and ungulates in Canada’s boreal mixed-wood forest. Forest Ecology and Management 258:1979–1989.
    Hutchinson, G. E. The ecological theatre and the evolutionary play[M]. New Heaven, Connecticut: Yale University Press, 1965.
    Jace.T Fahnestock & James K. Detling., 1999. The influence of herbivory on plant cover and species composition in the Pryor Mountain Wide Horse Range,USA. Plant Ecology, 144:145-157.
    Jerald A B,Kenneth C C., 2000. Estimating sensible heat flux from Oklahoma Mesonet. J.App1.M eteoro1, 39:102- 111.
    Joly, C.A., 1994. Flooding tolerance: a reinterpretation of Crawford’s metabolic theory. Proc. R. Soc. Edinburgh 102, 343–354.
    Jordan W R, Gilpin M E, Aber J D, et al. Restoration ecology: a synthetic approach to ecological research[M]. Cambridge: Cambridge University press, 1987.
    Junk, W., 1996. Ecology of floodplains—a challenge for tropical limnology. In: Shiemer, F., Boland, K.T. (Eds.), Perspectives in Tropical Limnology. SPB Academic Publishing, Amsterdam, pp. 255–265.
    Kasper, T. K and Bland, W. L. 1992. Soil temperature and root growth. Soil Sci, 1992,154: 290–299.
    Khaled H. Hamed., 2008. Trend detection in hydrologic data: The Mann–Kendall trend test under the scaling hypothesis. Journal of Hydrology, (349):350-363
    Kleinfelder, D., Swanson, S., Norris, G., Clary, W., 1992. Unconfined compressive strength of some streambank soils with herbaceous roots. Soil Sci. Soc. Am. J. 56, 1920–1925.
    Landhaeusser, S. M., Wein, R. W. and Lange, P., 1996. Gas exchange and growth of three arctic tree-line tree species under different soil temperature and drought pre conditioning regime. Can. J. Bot, 74: 1 686–1 693.
    Langer, E.R., Steward, G.A., Kimberley, M.O.,2008. Vegetation structure, composition and effect of pine plantation harvesting on riparian buffers in New Zealand. Forest Ecology and Management, 256:949–957.
    Levis, R. Evolution in changing environment: Some theoretical exploration[M]. Princeton: Princeton University Press, 1968.
    Lowett, S., Price, P., 1999. Riparian land management technical guidelines, vol. 1. In: Principles of Sound Management, Land and Water Resources Research and Development Corporation,Canberra, Australia.
    Lowrance, R., 1998. Riparian forest ecosystems as filters for nonpoint-source pollution. In: Pace, M.L., Groffman, P.M. (Eds.), Successes, Limitations, and Frontiers in Ecosystem Science. Springer–Verlag, New York, pp. 113–141.
    Ludwig J A, Reynolds J F., 1988. Statistical Ecology:A Primer on Methods and Computing[M].New York: John Wiley, 337.
    Margalef R., 1958.Information theory in ecology [J].General Systerms, 3:36-71.
    May, R. M. Stability and complexity in model ecosystems[M]. Princeton: Princeton University Press,1974.
    McMichael, B. L. and Burke, J. B. Temperature effects on root growth. In Waisel et al. (eds.) Plant Roots: The Hidden Half[M]. Marcel Dekker, Inc., New York, USA. 1996.
    Mechoso C R, Iribarren G P., 1992. Streamflow in Southern America and the Southern Oscillimation[J]. J of climate, (5):1535-1539.
    Meek, C. S., Richardson, D. M., Mucina, L.,2010. A river runs through it: Land-use and the composition of vegetation along a riparian corridor in the Cape Floristic Region, South Africa. Biological Conservation 143:156–164.
    Metzler, K.J., Damman, W.H., 1985. Vegetation patterns in the Connecticut river flood plain in relation to frequency and duration of flooding. Nat. Can. 112, 535–547.
    Michal Ha′jek, Michal Horsa′k, Petra Ha′jkova, et al, 2006. Habitat diversity of central European fens in relation to environmental gradients and an effort to standardise fen term inology in ecological studies. Perspectives in Plant Ecology, Evolution and Systematics, (8) :97–114.
    Miller, R. S.. Pattern and process in competition. In: Cragg, J.B.ed. Advances in Ecological Research[M]. Vol.4.New York: Academic Press,1967.
    Modarresa R., Vicente de Paulo Rodrigues da Silva., 2007.Rainfall trends in arid and semi-arid regions of Iran[J]. Journal of Arid Environments, (70) :344-355
    Morton J D and Baird D B.Spatial distribution of dung patches under sheep grazing[J].New Zealand Journal of Agricultural Research,1990,33:285-294.
    Murgatroyd, A.L., Ternan, J.L., 1983. The impact of afforestation on stream bank erosion and channel form. Earth Surf. Process. Landforms 8, 357–369.
    Nabi,G., Mullins, C.E., 2008. Soil temperature dependent growth of cotton seedlings before emergence.Pedosphere, 18(1):54-59.
    Nagler, P. L., Glenn E. P., Huete A. R., 2001.Assessment of spectral vegetation indices for riparian vegetation in the Colorado River delta, Mexico.Journal of Arid Environments, 49: 91–110.
    Nakamura, F., Yajima, T., Kikuchi, S., 1997. Structure and composition of riparian forests with special reference to geomorphic site conditions along the Tokachi River, northern Japan. Plant. Ecol. 133, 209–219.
    Narumalani S., Zhou Y. C., Jensenb, J. R., 1997.Application of remote sensing and geographic information systems to the delineation and analysis of riparian buffer zones. Aquatic Botany,58:393-409.
    Oguntunde, P. G., Friesen, J., Giesen, N. V. D. , et al. Hydroclimatology of the Volta River Basin in West Africa: Trends and variability from 1901 to 2002[J], Physics and Chemistry of the Earth 2006 (31) :1180–1188
    Oliveira-Filho, A.T., Vilela, E.A., Gavilanes, M.L., Carvalho, D.A., 1994. Effect of flooding regime and understorey bamboos on the physiognomy and tree species composition of atropical semideciduous forest in southeastern Brazil. Vegetatio 113, 99–124.
    Pabst, R.J., Spies, T.A., 1998. Distribution of herbs and shrubs in relation to landform and canopy cover in riparian forests of coastal Oregon. Can. J. Bot 76, 298–315.
    Paine, Laura. K., Ribic, C. A.,2002. Comparison of riparian plant communities under four land management systems in southwestern Wisconsin. Agriculture, Ecosystems and Environment, 92 :93–105.
    Parrish, J. A. D.& F. A. Bazzaz, 1982. Niche responses of early and late successional tree seedlings on three resource gradients[J]. Bulletin of the Torrey Botanical Club, 109:451-456.
    Peterken G. F. and Game M., 1984. Historical factors affecting the number and distribution of vascular plant species in the woodlands of Central Lincolnshire[J]. Journal of Ecology, 72:155-182.
    Petranka, J. W., Smith, C. K., 2005.A functional analysis of streamside habitat use by southern Appalachian salamanders: Implications for riparian forest management.Forest Ecology and Management 210:443–454.
    Pfeil, E. K., Casacchia, N., Kerns, G. J., et al, 2007. Distribution, composition, and orientation of down deadwood in riparian old-growth woodlands of Zoar Valley Canyon, western New York State, USA. Forest Ecology and Management,239: 159–168.
    Pianka, E.R. Competition and niche theory. In: May, R.M. ed. Theoretical Ecology: Principles and applications. Philadelphia(Pennsylvania):Saunders,1976.
    Pichett S. T. A. and White P. S.. The Ecology and natural disturbance and patch dynamics[M]. Orlando: Academic press, 1985.
    Platts, W.S., Gebhardt, K.A., Jackson, W.L., 1985. The effects of large storm events on basin-range riparian stream habitats. Proceedings of a Symposium: Riparian ecosystems and their management: Reconciling conflicting uses. US Department of Agriculture and Forest Service Technical Report RM-120, pp. 30–34.
    Puhakka, M., Kalliola, R., 1995. Floodplain vegetation mosaics in western amazonia. Biogeographica 71, 1–14.
    Qiang Zhang, Chong-yu Xu, Stefan Becker,2006. Sediment and runoff changes in the Yangtze River basin during past 50 years[J].Journal of Hydrology, (331):511-523.
    Qiang Zhang, Chunling Liu, Chong-yu Xu, et al, 2006. Observed trends of annual maximum water level and streamflowduring past 130 years in the Yangtze River basin, China[J].Journal of Hydrology, (324):255-265.
    Reader R. J. and Bricker B. D., 1992. Response of five diciduous forest herbs to partial canopy removal and patch size[J]. American Midland Naturalist, 127:149-157.
    Ringrose, S.,2003. Characterisation ofriparian woodlands and their potential water loss in the distal Okavango Delta, Botswana. Applied Geography, 23:281–302.
    Savage, M.J., Everson, C.S., Metelerkamp, B.R., 2009. Bowen ratio evaporation measurement in a remote montane grassland: Data integrity and fluxes[J]. Journal of Hydrology, 376: 249–260.
    Schnitzler, A., 1997. River dynamics as a forest process: Interaction between fluvial systems and alluvial forests in large European River Plains. Bot. Rev. 63, 40–64.
    Schnitzlera, A., Haleb, B. W., Alsumc, E. M.,2007. Examining native and exotic species diversity in European riparian forests. Biological conservation, 138:146-156.
    Sieben, E. J. J., Reinecke, M. K., 2008. Description of reference conditions for restoration projects of riparian vegetation from the species-rich fynbos biome. South African Journal ofBotany,74:401–411.
    Silvertown J W. Plants in limestone pavements: test of species interaction and niche separation[J]. J Ecol, 1983,71(2):819-828.
    Simpson E H. Measurement of diversity[J].Nature,1949,163:688.
    Sirois Allan. A brief and based overview of time series on how to find that evasive trend. In WMO Report No.133: WMO/EMEP Workshop on Advanced Statistical and Application to Air Quality Database 1998.
    Smith, C.M., 1992. Riparian afforestation effects on water yields and water quality in pasture catchments. J. Environ. Quality 21, 237–245.
    Smith, D.G., 1976. Effect of vegetation on lateral migration of anastomosed channels of a glacier meltwater river. Geol. Soc. Am. Bull. 87, 857–860.
    Sparovek, G., Ranieri, S. B. L., Gassner,A., et al, 2002.A conceptual framework for the definition of the optimal width of riparian forests.Agriculture, Ecosystems and Environment 90: 169–175.
    Stromberg, J. C., Tluczek,M. G. F., Hazelton. A. F.,2010. A century of riparian forest expansion following extreme disturbance: Spatio-temporal change in Populus/Salix/Tamarix forests along the Upper San Pedro River, Arizona, USA. Forest Ecology and Management 259:1181–1189.
    Sturtevant, B. R.,1998. A model of wetland vegetation dynamics in simulated beaver impoundments. Ecological Modelling, 112:195–225.
    Suzukia, W., Osumib, K., Masaki, T., et al, 2002. Disturbance regimes and community structures of a riparian and an adjacent terrace stand in the Kanumazawa Riparian Research Forest, northern Japan. Forest Ecology and Management,157:285–301.
    Thomas SM, Souza DC, Bini LM. Species richness and beta diversity of aquatic macrophytes in a large subtropical reservior(Itaipu Reservior, Brizal): The influence of limnology and morphometry. Hydrobiologia, 2003,509:119-128.
    Tilman D. Competion and biodiversity in spatially Sructured habitats[J].Ecology,1994,75(1):2-16.
    Tilman. D. Causes consequences and ethics of biodiversity[J]. Nature,2000,405:208-211.
    Timlina, D.J., Pachepsky, Ya., Acock, B.A., et al, 2002. Error analysis of soil temperature simulations using measured and estimated hourly weather data with 2DSOIL. Agricultural Systems, 2002, (72): 215–239.
    Todisco, F., Vergni, L., 2008. Climatic changes in Central Italy and their potential effects on corn water consumption, Agricultural and forest meteorology, (148):1-11
    Utrillaa, V. R., Brizuelac, M. A., Cibils, A. F., 2006. Structural and nutritional heterogeneity of riparian vegetation in Patagonia (Argentina) in relation to seasonal grazing by sheep. Journal of Arid Environments,67:661–670.
    Wang S P,Li Y H.The influence of different stocking rates and grazing periods on the chemical components in feces of grazing sheep and relationship among the fecal components[J].Acta Zoonvtrimenta Simca,1997,9(2):49-56.
    Warrington, I.J., Kanemasu, E.T. Corn growth response to temperature and photoperiod. II. Leaf initiation and leaf appearance rates[J]. Agron. J, 1983.,75:755-761.
    Webb, R. H., Leake, S. A., 2006. Ground-water surface-water interactions and long-term change in riverine riparian vegetation in the southwestern United States. Journal of Hydrology,320:302–323.
    Webba, A. A., Erskine, W. D.,2003. A practical scientific approach to riparian vegetation rehabilitation in Australia. Journal of Environmental Management 68:329–341.
    West. D C, T M Smith. Forest succession model and their ecological and management implications, Forest succession and stand development research in the Northwest[R]. Forest Research Lab, Oregon state University,1982.
    Whittaker R H. Evolution and measurement of Species diversity[J]. Taxon,1972,21:213-251.
    Whittaker RH. Evolution and measurement of species diversity. Taxon, 1972, 21: 213- 251.
    Wilkinson S R.Cycling of mineral nutrients in pasture ecosystems.In:Butler G W and Bailey R W,eds.Chemistry and Biochemistry of Herbage[M] .London:Academic Press,1973,247-315.
    Wilson E Q. Biodiversity[M]. Washington D C National Academy press, 1988.
    Wisheu IC, Keddy PA. The conservation and management of a threatened coastal plain plant community in eastern North America (Nova Scotia, Canada). Biological Conservation, 1989, 48: 229- 238.
    Wolda H. Similarity indices, sample size and diversity. Oecologia, 1981, 50: 296- 302
    Worbes, M., 1985. Structural and other adaptations to longterm flooding by trees in Central Amazonia. Amazoniana 9, 459–484.
    Z. X. Xu, J. Y. Li and C. M. Liu. Long-term trend analysis for major climate variables in theYellow River basin[J]. Hydrological processes,2007(21):1935-1948
    白福,李文鹏,黎志恒,等.黑河流域植被退化的主要原因分析[J].干旱区研究,2008,25(2):219-224.
    白永飞,刑恩荣,许志信,等.内蒙古高原针茅草原群落β多样性研究[J].应用生态学报,2000,11(3):408-412.
    边多,李春,杨秀海,等.藏西北高寒牧区草地退化现状与机理分析[J].自然资源学报,2008,23(2):254-262.
    曹成有,蒋德明,朱丽辉,等.科尔沁沙地草甸草场退化的原因与植物多样性变化[J].草业学报,2006,15(3):18-26.
    陈桂琛,彭敏.青海湖地区植被及其分布规律[J].植物生态学与地植物学学报,1993,17(1):71-81.
    陈晓光,李剑萍,李志军,等.青海湖地区植被覆盖及其与气温降水变化的关系[J].中国沙漠,2007,27(5):797-803.
    陈亚宁,李卫红,陈亚鹏,等.新疆塔里木河下游断流河道输水的生态响应与生态修复[J].干旱区研究,2006,23(4):521-530.
    陈亚宁,李卫红,陈亚鹏,等.新疆塔里木河下游断流河道输水与生态恢复[J].生态学报,2007,27(2):538-545.
    陈亚宁,李卫红,徐海量,等.新疆塔里木河下游地下水位对植被的影响[J].地理学报,2003,58(4):542-549.
    陈亚宁,徐宗学.全球气候变化对新疆塔里木河流域水资源的可能性影响[J].中国科学,2004,34(11):1047-1053.
    陈亚宁,张小雷,崔旺诚.塔里木河流域主要生态问题与对策建议[J].中国科学院院刊,2003(3):191-195.
    陈宜瑜.中国湿地研究[M] .长春:吉林出版社,1995.
    褚明尧,张忠孝.青海湖存在的经济价值及其取向[J].柴达木开发研究,2005,2:13-16.
    崔保山,杨志峰.湿地学[M].北京:北京师范大学出版社,2006.
    崔庆虎,蒋志刚,刘继科,等.青藏高原草地退化原因评述[J].草业科学,2007,24(5):20-26.
    邓聚龙.灰色系统理论教程[M].武汉:华中理工大学出版社,1992,33-78.
    邓艳,蒋忠诚,李先琨,等.广西弄岗不同演替阶段植被群落的小气候特征研究[J].热带地理,2004,24(4):316-325.
    董得红,王世红.青海湖流域生态环境保护与治理对策[J].林业建设,2006,(5):16-19.
    董哲仁.生态水工学——人与自然和谐的工程学[J].水利水电技术,2003,34(7):80-85.
    段晓峰,许学工.基于GIS的北京山区优势林分生态位分析[J].地理科学,2008,28(5):667-671.
    范广洲,华维,黄先伦.青藏高原植被变化对区域气候影响研究进展[J].高原山地气象研究,2008,28(1):72-80.
    冯宗炜,冯兆忠.青海湖流域主要生态环境问题及防治对策[J].生态环境,2004,13(4):467-469.
    付为国,李萍萍,吴沿友,等.镇江内江湿地不同演替阶段小气候日动态[J].应用生态学报,2006,17(9):1699-1704.
    高清竹,李玉娥,林而达,等.藏北地区草地退化的时空分布特征[J].地理学报,2005,60(6):965-973.
    高艳红,陈刘伟,冉有华,等.黑河流域植被覆盖度计算及其影响的中尺度模拟[J].高原气象,2007,26(2):270-277.
    郭勒峰.物种多样性的研究现状及趋势[A].李博.现代生态学讲座[C].北京:科学出版社,1995,89-107.
    郭利丹,夏自强,李捷.河流生态径流量常用计算方法的对比[J].人民黄河,2008,30(4):28-30.
    韩永荣.青海湖环境恶化危害与防治对策[J].中国水土保持,2000(8):18-19.
    何兴东,高玉葆,刘惠芬.重要值的改进及其在羊草群落分类中的应用[J].植物研究,2004,24(4):466-472.
    贺芳芳.上海市郊林带附近晴天热量平衡特征分析[J].气象科学,2008,28(1):37-44.
    贺有龙,周华坤,赵新全,等.青藏高原高寒草地的退化及其恢复[J].草业与畜牧,2008,11:1-9.
    侯扶江,常生华,于应文,等.放牧家畜的践踏作用研究评述[J].生态学报,2004,24(4):784-789.
    侯佩玲,沈小京.浅谈青海湖流域草地资源的可持续利用[J].青海环境,2004,14(3):119-122.
    胡顺军,宋郁东,田长彦,等.渭干河平原绿洲适宜规模[J].中国科学,2006,36(增刊Ⅱ):51-57.
    姜正实,麻俊仁.河流生态修复技术研究进展[J].吉林水利,2008,12(319):19-21.
    康乐.生态系统的恢复与重建[A] .马世骏.现代生态学透视[M] .北京:科学出版社,1990,300-308.
    康永祥,康博文,岳军伟,等.陕北黄土高原辽东栎(Quercus liaotungensis)群落划分及其生态位特征[J].生态学报,2007,27(10):4096-4105.
    李博.中国北方草地退化及其防治对策[J].中国农业科学,1997,30(6):1-9.
    李洁,朱金兆,朱清科.生态位理论和生态位测评[J].北京林业大学学报,2003,25(1):100-107.
    李金花,李镇清,任继周.放牧对草原植物的影响[J].草业学报,2002,11(1):4-12.
    李军玲,张金屯.太行山中段植物群落优势种生态位研究[J].植物学研究,2006,26(2):156-162.
    李丽娟,郑红星.海滦河流域河流生态系统环境需水量计算[J].地理学报,2000,55(4):495-500.
    李明,蒋德明,押田敏雄,等.科尔沁沙地人工固沙群落草本植物种群生态位特征[J].草业科学,2009,26(8):10-16.
    李明财,罗天祥,郭军,等.藏东南高山林冷杉原始林土壤热通量[J].山地学报,2008,26(4):490-495.
    李瑞,张克斌,刘云芳,等.西北半干旱区湿地生态系统植物群落空间分布特征研究[J].北京林业大学学报,2008,30(1):6-13.
    李瑞,张克斌,张生英,等.宁夏盐池人工封育草原植物生态位研究[J].干旱区资源研究,2006,4(1):49-54.
    李绍良,贾树海,陈有君,等.内蒙古草原土壤的退化过程及自然保护区在退化土壤的恢复与重建中的作用[J].内蒙古环境保护,1997,9(1):17-18,26.
    李新虎,宋郁东,李岳坦.开都河最小生态径流计算[J].水资源与水土工程学报,2006,17(5):71-73.
    李旭,谢永宏,黄继山.湿地植被格局成因研究进展[J].湿地科学,2009,7(3):280-288.
    李英年,赵亮,古松,等.海北高寒草甸地区能量平衡特征[J].草地学报,2003,11(4):289-295.
    李永宏.内蒙古草原草场放牧退化模式研究及退化监测专家系统雏议[J].植物生态学报,1994,1:68-79.
    李岳坦,胡顺军,李新虎,等.塔里木河流域白杨农田防护林蒸散量估算模型[J].干旱区地理,2007,30(1):115-120.
    李振基,陈小麟,郑海雷.生态学(第二版)[M].北京:科学出版社,2004.
    李宗锋,陶建平,王微,等.岷江上游退化植被不同恢复阶段群落小气候特征研究[J].生态学杂志,2005,24(4):364-367.
    蔺学东,张镱锂,姚治君,等.拉萨河流域近50年来径流变化趋势分析[J].地理科学进展,2007,26(3):58-67.
    刘红玉,吕宪国,张世奎.湿地景观变化过程与累计环境效应研究进展[J].地理科学进展,2003,22(1):60-70.
    刘吉平,吕宪国,杨青,等.三江平原环形湿地土壤养分的空间分布规律[J].土壤学报,2006,42(2):247-255.
    刘季科,王溪,刘伟,等.藏西绵羊实验放牧水平对啮齿动物群落作用的研究Ⅰ啮齿动物群落结构和功能的分析[A] .高寒草甸生态系统[C] .第3集,北京:科学出版社,1991,9-22.
    刘加珍,陈亚宁,李卫红,等.塔里木河下游植物群落分布与衰退演替趋势分析[J].生态学报,2004,24(2):379-383.
    刘加珍,陈亚宁,李卫红.塔里木河下游植物群落分布衰退演替趋势分析[J].生态学报,2004,24(2):379-383.
    刘锦霞,武高林,马涛.毛乌苏沙漠边缘荒漠植物群落生态位特征研究[J].草业科学,2007,24(12):9-13.
    刘进琪,王一博,程慧艳.青海湖区生态环境变化及其成因分析[J].干旱区资源与环境,2007,21(1):32-37.
    刘绿柳,肖风劲.黄河流域植被NDVI与温度降水关系的时空变化[J].生态学杂志,2006,25(5):477-481.
    刘淑明,孙丙寅,王得祥.不同地面覆盖对花椒冠层光能分布的影响[J].干旱地区农业研究,2005,23(6):124-127.
    刘思峰,韩天榜,党耀国.灰色系统理论极其应用[M].北京:科学出版社,1999,40-70.
    刘志军,张万军,曹健生,等.太行山石质山地石榴中幼龄林林地蒸散规律研究[J].应用生态学报,2003,14(6):879-881.
    卢玲,李新,Frank Veroustraete.黑河流域植被净初级生产力的遥感估算[J].中国沙漠,2005,25(6):823-830.
    鲁如坤主编.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999.
    吕宪国.湿地科学进展及研究方向[J].中国科学院院刊,2002,20(3):170-172.
    马金宝,罗永寿,王英成,等.石羊河上游水源涵养型流域植被恢复重建试验示范[J].林业科技,2009,34(5):21-24.
    马克平,叶万辉,于顺利等.北京东灵山地区植物群落多样性研究,Ⅶ群落组成海拔梯度的变化[J].生态学报,1997,17(6):593-600.
    马寅午,周晓阳.防洪系统洪水分类预测优化调度方法[J].水利学报,1997,28(4):1-8.
    闵文彬.丘陵区土壤热通量遥感估算模型适应性分析[J].气象科学,2009,29(3):386-389.
    年奎,张登山,张有生,等.青海湖流域植物群落分布特点[J].青海农林科技,1997,(4):9-12.
    宁远英,徐杰,张功.科尔沁沙地放牧干扰恢复过程中植被组成和生物结皮微生物数量的变化[J].内蒙古大学学报(自然科学版),2009,40(6):670-676.
    牛志春,倪绍祥.环青海湖地区草地植被生物量遥感监测模型[J].地理学报,2003,58(5):695-702.
    彭少麟.南亚热带森林群落动态学[M].北京:科学出版社,1996.
    钱迎倩,马克平.生物多样性研究的原理与方法[M].北京:中国科技出版社,1994,141-163.
    饶良懿,崔建国.河岸植被缓冲带生态水文功能研究进展[J].中国水土保持科学,2008,6(4):121-128.
    饶良懿,崔建国.河岸植被缓冲带生态水文功能研究进展[J].中国水土保持科学,2008,6(4):121-128.
    尚占环,姚爱兴,郭旭生.宁夏中卫羊核心产区生物多样性研究[J].宁夏农学院学报,2002,23(4):23-26.
    申双和,崔兆韵.棉田土壤热通量的计算[J].气象科学,1999,19(3):277-281.
    施稳萍,刘凌,王哲.太湖苕溪流域河流生态系统修复体系研究[J].水生态学杂志,2010,3(1):121-124.
    司建华,冯起,张小由,等.荒漠河岸林胡杨和柽柳群落小气候特征研究[J].中国沙漠,2005,25(5):668-674.
    孙儒泳,李博,诸葛阳,等.生态学[M].北京:高等教育出版社,1993,136.
    谭炳卿,孔令金,尚化庄.河流保护与管理[J].水资源保护,2002,3:53-57.
    唐小娟.石羊河流域北部平原区生态修复措施[J].人民黄河,2008,30(11):14-15.
    田峰巍,黄强,解建仓.水库实时调度及风险决策[J].水利学报,1998,29(3):57-62.
    王伯荪,李鸣光,彭少麟.植物种群学[M].广州:广东高等教育出版社,1995,132-148.
    王伯荪.植物群落学[M].北京:高等教育出版社,1987.
    王刚,赵松岭,张鹏云,等.关于生态位定义的探讨及生态位重叠计算公式改进的研究[J].生态学报,1984,4(2):119-127.
    王根绪,程国栋.江河源区的草地资源特征与草地生态变化[J].中国沙漠,2001,21(2):101-107.
    王海军,张勃,靳晓华,等.黑河流域植被空间特征遥感分析及其分布特点形成机制[J].干旱区资源与环境,2009,23(5):160-164.
    王宁,贾雁锋,李靖,等.基于丘陵沟壑区退耕地自然恢复植被主要物种生态位特征[J].水土保持通报,2007,27(6):34-40.
    王文,刘国友,于应文,等.放牧利用下气候因子和奶牛排泄物施肥对混播草地牧草生长的影响[J].草原与草坪,2007,2:22-27.
    王小利,张力,张德罡,等.环青海湖地区中度退化线叶嵩草型草地地下生物量的研究[J].草原与草坪,2006,(1):24-27.
    王鑫,胡玉昆,热合木都拉·阿迪拉,等.土壤盐分对高寒草甸主要植物生态位的影响[J].应用生态学报,2008,19(7):1448-1454.
    王旭,周国逸,张德强,等.南亚热带针阔混交林土壤热通量研究[J].生态环境,2005,14(2):260-265.
    王兆礼,陈晓红,李艳.珠江流域植被覆盖时空变化分析[J].生态科学,2006,25(4):303-307.
    吴红颜,申双,徐为根.棉田SPAS水热传输的多层模式[J].南京气象学院学报,2001,21(4):137-142.
    吴喜之,王兆军.非参数统计方法[M] .北京:高等教育出版社,1996.
    伍光和,田连恕,胡双熙,等.自然地理学[M].北京:高等教育出版社,2002.
    邢福,吕宪国,倪红伟.三江平原沼泽湿地群落演替系列β多样性[J].应用生态学报,2008,19(11):2455-2459.
    徐海量,宋郁东,王强,等.塔里木河中下游地区不同地下水位对植被的影响[J].植物生态学报,2004,28(3):400-405.
    徐文梅,李亚妮,廉振民,等.历史时期北洛河流域的植被状况[J].延安大学学报,2007,26(1):62-64.
    徐治国,何岩,闫百兴,等.三江平原典型沼泽湿地植物种群的生态位[J].应用生态学报,2006,4(1):49-54.
    闫玉春,唐海萍.草地退化相关概念辨析[J].草业学报,2008,17(1):693-99.
    颜江良,吴息,江志红,等.南京冬季城、郊下垫面能量平衡特征分析[J].气象科学,2008,28(1):21-29.
    杨川陵.青海湖流域湿地系统退化现状及原因分析[J].青海草业,2007,16(2):21-26.
    杨海龙,王芳,包昱峰,等.晋西北黄土区蔡家川封禁流域植被演替规律[J].水土保持研究,2008,15(5):129-131.
    杨修,孙芳,任娜.环青海湖地区生态环境问题及其治理对策[J].地域研究与开发,2003,22(2):39-42.
    于龙娟,夏自强,杜晓舜.最小生态径流的内涵及计算方法研究[J].河海大学学报(自然科学版),2004,32(1):18-22.
    余国营.湿地研究进展及展望[J].世界科技研究与发展,1999,23(3):61-66.
    余世孝.数学生态学[M].北京:科学技术文献出版社,1995.
    俞文正,常庆瑞,寇建村.青海湖流域草地类型变化及其生态服务价值研究[J].草业科学,2005,22(9):14-17.
    俞文正,常庆瑞,岳庆玲,等.青海湖流域草地类型变化及其结构演替研究[J].中国农学通报,2005,4(21):306-309,362.
    张大勇,王刚,杜国桢,等.甘南山地草原人工草场的演替[J].植物生态学与地植物学学报,1990,14(2):103-109.
    张代青,高军省.河道内生态环境需水量计算方法的研究现状及其改进探讨[J].水资源与水土工程学报,2006,17(4):68-73.
    张宏峰,陈亚宁,李卫红,等.塔里木河下游生物多样性与地下水位灰色关联分析[J].冰川冻土,2006,26(6):705-712.
    张洪亮,倪绍祥,蒋健军,等.环青海湖地区天然草地TM影像植被指数分析[J].中国草地,2002,24(2):6-11.
    张继义,赵哈林,张铜会,等.科尔沁沙地植物群落恢复演替系列种群生态位动态特征[J].生态学报,2003,23(12):2741-2746.
    张金屯.数量生态学[M].北京:科学出版社,2004.
    张明,曹梅英.浅谈城市环境整治与生态环境保护[J].中国水土保持,2002,(9):33-34.
    张小由,龚家栋,周茅先,等.柽柳灌丛热量收支特性与蒸散研究[J].高原气象,2004,23(2):229-232.
    张晓煜,王连喜,袁海燕.宁南半干旱地区农田和草地生态系统能量通量的季节变化[J].生态学报,2005,25(9):2333-2340.
    张学元.青海湖流域生态环境保护与治理对策[J].四川林勘设计,2006,(3):2-4,23.
    张一平,刘玉洪,马友鑫,等.热带森林不同生长时期的小气候特征[J].南京林业大学学报(自然科学版),2002,26(1):83-87.
    张永泽,王烜.自然湿地生态恢复研究综述[J].生态学报,2001,21(2):309-314.
    张元明,陈亚宁,张晓雷.塔里木河下游植物群落分布格局及其环境解释[J].地理学报,2004,59(6):903-910.
    赵平,彭少麟,张经炜.生态系统的脆弱性与退化生态系统[J].热带亚热带植物学报,1998,6(3):179-186.
    赵琪,刘建江,王均,等.玛纳斯河最小生态径流计算[J].干旱区地理,2005,28(3):292-294.
    赵彦伟,杨志峰.城市河流生态系统修复刍议[J].水土保持通报,2006,26(1):89-93.
    赵以莲,陈桂琛,周国英,等.青海湖鸟岛沙地植物群落多样性研究[J].中国沙漠,2003,23(3):295-299.
    周笃珺,马海州,山发寿,等.青海湖流域及周边地区的草地资源与生态保护[J].资源科学,2006,28(3):94-101.
    周国英,陈桂琛,韩友吉,等.围栏封育对青海湖地区芨芨草草原群落特征的影响[J].中国草地学报,2007,29(1):19-23.
    周红章,于晓东,罗天宏,等.物种多样性变化格局与时空尺度[J].物种多样性,2000,8(3):325-326.
    周筠珺,周立华.青海湖流域沼泽化草甸形成发育的主要气候因子[J].地理科学,1997,1(3):271-277.
    周茅先,肖洪浪,张小由,等.额济纳绿洲柽柳群落蒸散特征的初步分析[J].中国沙漠,2004,24(4):479-483.
    祝存冠,陈桂琛,周国英,等.青海湖区河谷灌丛草地植被群落多样性研究[J].草业科学,2007,24(3):31-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700