流域分布式土壤侵蚀学坡长提取与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
坡长是土壤侵蚀研究中重要的地形参数之一,认识、理解、反应侵蚀过程的坡长概念对土壤侵蚀定量评价的研究十分重要。本研究在前人对坡长提取工作的基础上,做进一步探索,并对坡长提取相关限制条件进行分析、设计、提取,同时对结果进行了精度及不确定性的分析。主要研究结果如下:
     (1)流域分布式侵蚀坡长是与坡面土壤侵蚀过程(包括剥蚀、搬运和沉积)相适应的、能够反映侵蚀随地形变化的,流域内任一点上的侵蚀学坡长。给出了分布式坡长的理论公式,该坡长可由DEM设置截断因子,结合流向算法设计实现,并给出了相关设计流程及方法;
     (2)基于理想曲面证明了基于D8、MS、FMFD、DEMON、Dinf五种算法设计的正确性,研究同时表明Demon方法可以得到较与理论结果相近的坡长值。
     (3)基于实际DEM(县南沟流域),通过地形图与沟道和沟沿线提取结果的对比,验证了沟道、沟沿线提取方法的可行性;DEMON、D8算法对沟道提取的效果较好;阈值决定了沟道级别,不同阈值决定了坡长的最大值,但不同区域具有不同的地貌特征,阈值需要对研究区较熟悉的专家进行设置;
     (4)不同分辨率、不同地形起伏状况对坡长提取的准确性影响较大,通过理想DEM的研究、对比发现DEMON方法在精度、误差方面表现较好,适合作为提取坡长的流向算法;但同时也发现在复杂坡面条件下,与理论值相比较,基于GIS的方法高估了坡长;
     (5)对不同分辨率下沟道截断的阈值进行了探讨(以县南沟为例),研究发现由于分辨率降低,栅格尺寸增大,沟道的影响亦增大,高分辨率DEM下沟道阈值较低分辨率下的沟道阈值低,并给出了不同分辨率下对应的阈值;
     (6)对坡长的尺度变换进行了探讨和研究,基于直方图匹配的方法能够较好地实现坡长的尺度变换;
     (7)结合经验模型(RUSLE、CLSE)设计并实现了模型计算的软件,该软件可以对相关数据进行合理转换、分析、计算,完成流域尺度上土壤侵蚀估算。
Extraction and Analysis on Distributed Erosion Slope Length in Watershed Scale
     The slope length is one of the important terrain parameters in soil erosion research area. Itis very important for quantitative evaluation of the erosion processes in the reaction of theconcept of slope length on soil erosion. In this study, on the basis of the previous work of theextraction of the slope length, the author does a further study in slope length extraction limitscondition for analysis, design, and extraction. The results of accuracy and uncertainty analysisare also being analysised.The main findings are as follows:
     (1) Distributed erosion slope length (including erosion, transport, and deposition)compatible with the soil erosion process, to reflect the erosion with the terrain changes, anypoint erosion slope length at watershed scale. Distributed slope of the theoretical formula, thecombination of truncated by the DEM, the slope length factor, by the flow of algorithmdesign and design processes and methods;
     (2) The artifical DEM was used to prove the correctness of the D8, MS, FMFD,DEMON, Dinf five kinds of algorithm design, studies have shown that the Demon can becompared to theoretical results similar slope length values.
     (3) Based on the actual DEM (Xiannangou catchment), the comparison of the relief mapwith extraction result of channel networks and shoulder line, verify the correctness of thechannel networks and shoulder line extraction method; the DEMON, D8algorithm forchannel extraction effect better;the threshold determines the channel level, a differentthreshold to decide the maximum slope, but different regions have different geomorphologicalfeatures, so so the experts who is more familiar with the study area to set the threshold;
     (4) Different resolutions, different undulating terrain conditions affect the accuracy ofthe extracted slope length ideal DEM contrast DEMON method performed better in precisionerror, suitable for the extraction of slope flow algorithm; but alsofound in the complex slopeconditions, compared with the theoretical value of GIS-based approach overestimated theslope length.
     (5) Discussion the cutoff condition in different resolution in Xiannangou catchment.The study found that the lower resolution, the grid size increases, the impact of the channelincreases, high-resolution DEM ditchchannel threshold low resolution channel threshold, andgives the corresponding threshold under different resolutions;
     (6) Slope length scale transformation exploration and study, based on histogrammatching method can achieve better slope length scale transformation;
     (7) Design the software combined with empirical models (RUSLE, CLSE) and model.The software can be a reasonable conversion of the relevant data, analyze, calculate, completesoil erosion on the watershed scale estimates.
引文
Beskowa S, Mellob C R, Nortonc L D, Curid N, Violab M R, Avanzia J C,2009. Soil erosion prediction in theGrande River Basin, Brazil using distributed modeling. Catena79(1),49-59.
    Booth A M, Roering J J, Perron J T,2009. Automated landslide mapping using spectral analysis andhigh-resolution topographic data: Puget Sound lowlands, Washington, and Portland Hills, Oregon.Geomorphology109(3-4),132-147.
    Carson M A, Kirkby M J,1972. Hillslope form and process. Cambridge University Press, Cambridge,475.
    Cohen M J, Shepherd K D, Walsh M G,2005. Empirical reformulation of the Universal Soil Loss Equation forerosion risk assessment in a tropical watershed. Geoderma124(3-4),235-252.
    Costa-Cabral M C, Burges S J,1994. Digital elevation model networks (DEMON): A model of flow overhillslopes for computation of contributing and dispersal areas. Water Resources Research30(6),1681-1692.
    De Jong S M, Paracchini M L, Bertolo F, Folving S, Megier J, De Roo A P J,1999. Regional assessment of soilerosion using the distributed model SEMMED and remotely sensed data. Catena37(34),291-308.
    De Roo A P J, Hazelhoff L, Burrough P A,1989. Soil Erosion Modeooing Using 'ANSWERS' and GeographicalInformation System. Earth Surface Processes and Landforms14(6),517-532.
    De Roo A P J, Wesseling C G, Jetten V G, Ritsema C J,1996. LISEM: a physically-based hydrological and soilerosion model incorporated in a GIS. Application of geographic information systems in hydrology andwater resources management. Proc. HydroGIS'96conference, Vienna,1996,395-403.
    Deka R, Pachauri A K, Bhushan B,2007. Spatial recognition of a rock fall velocity model developed in C++using Geographic Information Sciences (GIS). Disaster Prevention and Management16(5),771-784.
    Desmet P J J, Govers G,1996. A GIS procedure for the automated calculation of the USLE LS factor ontopographically complex landscape units. Journal of Soil and Water Conservation (51),427-433.
    Di Stefano C, Ferro V, Palazzolo E, Panno M,2000a. Sediment delivery processes and agricultural non-pointpollution in a Sicilian basin. Journal of Agricultural Engineering Research77(1),103-112.
    Di Stefano C, Ferro V, Porto P,2000b. Length slope factors for applying the Revised Universal Soil LossEquation at basin scale in southern Italy. Journal of Agricultural Engineering Research75(4),349-364.
    Di Stefano C, Ferro V, Porto P, Tusa G,2000c. Slope curvature influence on soil erosion and deposition processes.Water Resources Research36(2),607-617.
    Dunn M, Hickey R,1998. The Effect of Slope Algorithms on Slope Estimates within a GIS. Cartography andGeographic Information Science27(1),9-15.
    Ellison W D,1947. Soil erosion studies--Part I. Agricultural Engineering28(4),145-146.
    Foster G R,1994. Comment on "Length-slope factors for the Revised Universal Soil Loss Equation:Simplifiedmethod of estimation". Journal of Soil and Water Conservation49(2),171-173.
    Foster G R, Wischmeier W H,1974. Evaluating irregular slopes for soil loss prediction. Transactions of theASAE17(2),305-309.
    Freeman T G,1991. Calculating catchment area with divergent flow based on a regular grid. Computers&Geosciences17(3),413-422.
    Fu B J, Zhao W W, Chen L D, Zhang Q J, Lü Y H, Gulinck H, Poesen J,2005. Assessment of soil erosion atlarge watershed scale using RUSLE and GIS: A case study in the Loess Plateau of China Land Degradation&Development16(1),73-85.
    Gallant J C,2001. Terrain Scaling for Continental Scale Soil Erosion Modelling, pp.10-13.
    Gallant J C, Hutchinson M F,2011. A differential equation for specific catchment area. Water ResourcesResearch47(5).
    Garbrecht J,1994. Grid size dependency of parameters extracted from digital elevation models. Computers andGeosciences20(85-87.
    Gertner G,2000. Uncertainty Propagation and Partitioning in Spatial Prediction of Topographical Factor forRUSLE. DTIC Document.
    Gertner G, Wang G, Fang S, Anderson A B,2002. Effect and uncertainty of digital elevation model spatialresolutions on predicting the topographical factor for soil loss estimation. Journal of Soil and WaterConservation57(3),164-174.
    Golubev G,1982. Soil erosion and agriculture in the world: an assessment and hydrological implications.Publication, pp.261–268.
    Goodchild M F,2006. Geographic information systems. Encyclopedia of Social Measurement,107-113.
    Goodchild M F, Yuan M, Cova T J,2007. Towards a general theory of geographic representation in GIS.International Journal of Geographical Information Science21(3),239-260.
    Griffin M L, Beasley D B, Fletcher J J, Foster G R,1988. Estimating soil loss on topographically nonuniformfield and farm units. Journal of Soil&Water Conservation43(4),326-331.
    Gutiérrez á G, Schnabel S, Contador F L,2009. Gully erosion, land use and topographical thresholds during thelast60years in a small rangeland catchment in SW Spain. Land Degradation&Development20(5),535-550.
    Haan C T, Barfield B J, Hayes J,1994. Design hydrology and sedimentology for small catchments. Academic Pr
    Hammad, A.A.,2009. Watershed erosion risk assessment and management utilizing revised universal soil lossequation-geographic information systems in the Mediterranean environments. Water and EnvironmentJournal2009),1-14.
    Hammer R D, Young F J, Wollenhaupt N C, Barney T L, Haithcoate T W,1995. Slope class maps from soilsurvey and digital elevation models. Soil Science Society of America Journal (59),509–519.
    Hebeler F, Purves R S,2009. The influence of elevation uncertainty on derivation of topographic indices.Geomorphology111(1),4-16.
    Hickey R,2000. Slope Angle and Slope Length Solutions for GIS. Cartography29(1),1-8.
    Hickey R, Smith A, Jankowski P,1994. Slope Length Calculations from a DEM within ARC/INFO GRID.Computers, Environment and Urban Systems18(5),365-380.
    Holmgren P,1994. Multiple flow direction algorithms for runoff modelling in grid based elevation models: anempirical evaluation. HYDROLOGICAL PROCESSES8(4),327-334.
    Horton R E,1945. Erosional development of streams and their drainage basins: Hydrophysical approach toquantitative morphology, Geological Society of America Bulletin, pp.275-370.
    Hutchinson M F,2004. ANUSPLIN Version4.3User Guide,The Australian National University, Centre forResource and Environmental Studies,Canberra..
    Hutchinson M F, Dowling T I,1991. A continental hydrological assessment of a new grid‐based digitalelevation model of Australia. HYDROLOGICAL PROCESSES5(1),45-58.
    Jabbar M,2003. Application of GIS to estimate soil erosion using RUSLE. Geo-Spatial Information Science6(1),34-37.
    Jenson S K, Domingue J O,1988. Extracting Topographic Structure from Digital Elevation Data for GeographicInformation System Analysis. Photogrammetric Engineering and Remote Sensing54(11),1593-1600.
    Kemp K K,2008. Encyclopedia of geographic information science. Sage Publications, Inc
    Kienzle S,2004. The Effect of DEM Raster Resolution on First Order, Second Order and Compound TerrainDerivatives. Transactions in GIS8(1),83-111.
    King L C,1957. The uniformitarian nature of hillslopes. Transactions of the Edinburgh Geological Society17(81-102.
    Kinnell P I A,2007. Runoff dependent erosivity and slope length factors suitable for modelling annual erosionusing the Universal Soil Loss Equation. HYDROLOGICAL PROCESSES21(20),2681-2689.
    Klinkenberg B, Goodchild M,1992. The fractal properties of topography: a comparison of methods. EarthSurface Processes and Landforms17(3),217-234.
    Lea N,1992. An aspect driven kinematic routing algorithm. Overland flow: hydraulics and erosion mechanics,393-407.
    Liu B Y, Near M A, Risse L M,1994. Slope gradient effects on soil loss for steep slopes. Transactions of theASAE37(6),1835-1840.
    Liu B Y, Nearing M A, Shi P J, Jia Z W,2000. Slope length effects on soil loss for steep slopes. Soil ScienceSociety of America Journal64(5),1759-1763.
    Liu B Y, Zhang K L, Xie Y,2002. An Empirical Soil Loss Equation, Proc. of12th ISCO. Tsinghua Press, Beijing,pp.143-149.
    Liu H, Kiesel J, H rmann G, Fohrer N,2011. Effects of DEM horizontal resolution and methods on calculatingthe slope length factor in gently rolling landscapes. Catena87(3),368-375.
    Lu H, Gallant J, Prosser I P, Moran C, Priestley G,2001. Prediction of Sheet and Rill Erosion Over theAustralian Continent,Incorporating Monthly Soil Loss Distribution. CSIRO Land and Water, Canberra
    Lu H, Prosser I P, Moran C J, Gallant J C, Priestley G, Stevenson J G,2003. Predicting sheetwash and rill erosionover the Australian continent. Australian Journal of Soil Research41(6),1037-1062.
    Mark D M,1984. Automated detection of drainage networks from digital elevation models. Cartographica21(2-3),168-178.
    McCool D K, Brown L C, Foster G R, Mutchler C K, Meyer L D,1987a. Revised Slope Steepness Factor for theUniversal Soil Loss Equation. Transactions of the American Society of Agricultural Engineers30(5),1387-1396.
    McCool D K, Foster G R, Mutchler C K, Meyer L D,1987b. Revised slope length factor for the universal soilloss equation, Trans. Am. Soc. Agricultural Engineers, pp.1571-1576.
    McCool D K, Foster G R, Mutchler C K, Meyer L D,1989. Revised slope length factor for the universal soil lossequation. Transactions of the American Society of Agricultural Engineers32(5),1571-1576.
    McCool D K, Foster G R, Weesies G A,1997. Slope length and Steepness Factors (LS). United StatesDepartment of Agriculture, Agricultural Research Service (USDA-ARS) Handbook703(
    McCool D K, George G O, Freckleton M, Douglas Jr C L, Papendick R I,1993. Topographic effect on erosionfrom cropland in the Northwestern Wheat Region. Transactions-American Society of AgriculturalEngineers36(4),1067-1071.
    McCool D K, Qiu H, Anderson T R,2007. Simulating accumulation and melt of snow for RUSLE2databases,2007ASABE Annual International Meeting, Technical Papers, Minneapolis, MN.
    McVicar T R, Li, L.T.,Van Niel, T.G.,Zhang, L.,Li, R.,Yang, Q.K.,Zhang, X.P.,Mu, X.M.,Wen, Z.M.,Liu,W.Z.,Zhao,Y,A.,Liu, Z.H., Gao,P.,2007. eveloping a decision support tool for China's re-vegetationprogram: Simulating regional impacts of afforestation on average annual streamflow in the Loess Plateau.Forest Ecology and Management251(1-2),65-81.
    Mellerowicz K T, Rees, H.W.,Chow, T.L., Ghanem. I.,1994. Soil conservation planning at the watershed levelusing the Universal Soil Loss Equation with GIS and micorocomputer technologies: A case study Journal ofSoil and Water Conservation49(2),194-200.
    Meyer L D, Wischmeier W H,1969. Mathematical Simulation of the Process of Soil Erosion by WaterTransactions of the ASAE (12),754-759,762.
    Mitasova H,1996. Modelling topographic potential for erosion and deposition using GIS. International Journalof Geographical Information Sciences10(5),629-641.
    Mitasova H, Hofierka J, Zlocha M, Iverson L,1997. Reply to comment by Desmet and Govers. InternationalJournal of Geographical Information Science11(6),611-618.
    Mitasova H, Hofierka J, Zlocha M, Iverson L R,1996. Modelling topographic potential for erosion anddeposition using GIS. International Journal of Geographical Information Systems10(5),629-641.
    Moore I D, Burch G J,1986a. Modelling Erosion and Deposition: Topographic Effects. Transactions of theAmerican Society of Agricultural Engineers29(6),1624-1630.
    Moore I D, Burch G J,1986b. Physical basis of the length-slope factor in the universal soil loss equation. SoilScience Society of America Journal50(5),1294-1298.
    Moore I D, Burch G J, Mackenzie D H,1988. TOPOGRAPHIC EFFECTS ON THE DISTRIBUTION OFSURFACE SOIL WATER AND THE LOCATION OF EPHEMERAL GULLIES. Transactions of theAmerican Society of Agricultural Engineers31(4),1098-1107.
    Moore I D, Grayson R B, Ladson A R,1991. Digital terrain modelling: a review of hydrological,geomorphological, and biological applications. HYDROLOGICAL PROCESSES5(1),3-30.
    Moore I D, Nieber J L,1989. Landscape Assessment of Soil Erosion and Nonpoint Source Pollution. Journal ofthe Minnesota Academy of Science55(1),18-25.
    Moore I D, Wilson J P,1992. Length-slope factors for the revised universal soil loss equation: simplified methodof estimation. Journal of Soil&Water Conservation47(5),423-428.
    Moore I D, Wilson J P,1994. Reply to comments by Foster. Journal of Soil and Water Conservation49(174-180.
    Morisawa M E,1962. Quantitative geomorphology of some watersheds in the Appalachian Plateau. GeologicalSociety of America Bulletin73(9),1025-1046.
    Nearing M A, Nichols M H, Stone J J, Renard K G, Simanton J R,2007. Sediment yields from unit-sourcesemiarid watersheds at Walnut Gulch. Water Resources Research43(6).
    O'Callaghan J F, Mark D M,1984. The extraction of drainage networks from digital elevation data. ComputerVision, Graphics, andImage Processing (28),323-344.
    Paz A R, Collischonn W,2007. River reach length and slope estimates for large-scale hydrological models basedon a relatively high-resolution digital elevation model. Journal of Hydrology343(3-4),127-139.
    Quinn P, Beven K, Chevallier P, Planchon O,1991. The prediction of hillslope flow paths for distributedhydrological modelling using digital terrain models. HYDROLOGICAL PROCESSES5(1),59-79.
    Quinn P F, Beven K J, Lamb R,1995. The ln(a/tanβ) index: how to calculate it and how to use it within theTOPMODEL framework. HYDROLOGICAL PROCESSES9(2),161-182.
    Raaflaub L D, Collins M J,2006. The effect of error in gridded digital elevation models on the estimation oftopographic parameters. Environmental Modelling&Software21(5),710-732.
    Renard K G, Ferreira V A,1993. RUSLE model description and database sensitivity. Journal of environmentalquality22(3),458-466.
    Renard K G, Foster G R, Weeies G A,1997. Predicting soil erosion by water: A guide to conservation planningwith the revised universal soil loss equation(RUSLE). Agriculture Handbook,703, Washington D. C.: U.S.Department of AgricuIture
    Renard K G, Foster G R, Weesies G A, Porter J P,1991. RUSLE: revised universal soil loss equation.. Journal ofSoil and Water Conservation46(1),30-33.
    Rodriguez J L G, Suarez M C,2010. Estimation of Slope Length Value of RUSLE Factor L Using GIS. Journalof Hydrologic Engineering15(9),714-717.
    Schumm S A,1956a. Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey.Bulletin of the Geological Society of America67(5),597.
    Schumm S A,1956b. The role of creep and rainwash on the retreat of badland slopes [South Dakota]. AmericanJournal of Science254(11),693.
    Shi Z H, Cai, C. F., Ding, S. W., Wang,T. W., Chow,T. L.,2004. Soil conservation planning at the smallwatershed level using RUSLE with GIS: a case study in the Three Gorge Area of China. Catena55(1),33-48.
    Shreve R L,1966. Statistical law of stream numbers. The Journal of Geology,17-37.
    Skidmore A K,2007. Evolution of Methods for Estimating Slope Gradient and Aspect from Digital ElevationModels, in, Fisher, P.(eds), Classics from IJGIS: twenty years of the International journal of geographicalinformation science and systems. Taylor and Fracis Group: boca Raton, London, New York, pp.111-118.
    Smith D D, Wischmeier W H,1957. Factors affecting sheet and rill erosion, Transactions of the AmericanGeophysical Union, pp.889-896.
    Srinivasan R, Engel B A,1991. Effect of slope prediction method on slope and erosion estimates. AppliedEngineering in Agriculture7(6),779-783.
    Strahler A N,1957. Quantitative analysis of watershed geomorphology. order1(1),1.
    Tarboton D G,1997. A new method for the determination of flow directions and upslope areas in grid digitalelevation models. Water Resources Research33(2),309-319.
    Tarboton D G, Bras R L, Rodriguez–Iturbe I,1991. On the Extraction of Channel Networks from DigitalElevation Data. HYDROLOGICAL PROCESSES (5),81–100.
    Thieken A H, Lücke A, Diekkrüger B, Richter O,1999. Scaling input data by GIS for hydrological modelling.HYDROLOGICAL PROCESSES13(4),611-630.
    USDA Soil Conservation Service,1993. Soil survey manual. USDA Handbook18
    Van Remortel R D, Hamilton M E, Hickey R J,2001. Estimating the LS factor for RUSLE through iterativeslope length processing of digital elevation data. Cartography30(1),27-35.
    Van Remortel R D, Maichle R W, Hickey R J,2004. Computing the LS factor for the Revised Universal SoilLoss Equation through array-based slope processing of digital elevation data using a C++executable.Computers&Geosciences30(9-10),1043-1053.
    Vandekerckhove L, Poesen J, Oostwoud Wijdenes D, De Figueiredo T,1998. Topographical thresholds forephemeral gully initiation in intensively cultivated areas of the Mediterranean. Catena33(3-4),271-292.
    Walling D,1983. The sediment delivery problem. Journal of Hydrology65(1-3),209-237.
    Walling D,1988. Erosion and sediment yield research--Some recent perspectives. Journal of Hydrology100(1-3),113-141.
    Wang G, Fang S, Shinkareva S, Gertner G, Anderson A,2002. Spatial uncertainty in prediction of thetopographical factor for the revised universal soil loss equation (RUSLE). Transactions of the ASAE45(1),109-118.
    Wang G, Gertner G, Parysow P, Anderson A,2000. Spatial prediction and uncertainty analysis of topographicfactors for the revised universal soil loss equation (RUSLE). Journal of Soil and Water Conservation55(3),374-384.
    Wang G, Gertner G, Parysow P, Anderson A B,2001. Spatial prediction and uncertainty assessment oftopographic factor for revised universal soil loss equation using digital elevation models. ISPRS journal ofphotogrammetry and remote sensing56(1),65-80.
    Wang G, Gertner G Z, Fang S, Anderson A,2005. A methodology for spatial uncertainty analysis of remotesensing and GIS products. Photogrammetric Engineering and Remote Sensing71(12),1423.
    Wechsler S P,2007. Uncertainties associated with digital elevation models for hydrologic applications: A review.Hydrology and Earth System Sciences11(4),1481-1500.
    Williams J R, Berndt H D,1997. Determining the universal soil loss equation's length-slope factor forwatersheds, In: Foster G R (Ed.), Soil Erosion: Prediction and Control. Soil Conservation Society ofAmerican, Iowa, pp.217-225.
    Wilson J P,1986. Estimating the topographic factor in the universal soil loss equation for watersheds. Journal ofSoil and Water Conservation (41),179-184.
    Wilson J P, Gallant J C,2000. Digital terrain analysis. John Wiley&Sons, New York,1-27.
    Wilson J P, Lam C S, Deng Y,2007. Comparison of the performance of flow-routing algorithms used inGIS-based hydrologic analysis. HYDROLOGICAL PROCESSES21(8),1026-1044.
    Winchell M F, Jackson S H, Wadley A M, Srinivasan R,2008. Extension and validation of a geographicinformation system-based method for calculating the revised universal soil loss equation length-slop factorfor erosion risk assessments in large watersheds. Journal of Soil and Water Conservation63(3),105-111.
    Wischmeier W H, Smith D D,1978. Predicting rainfall erosion losses: A guide to conservation planning withUniversal Soil Loss Equation (USLE) Agriculture Handbook. Washington,D C: Department of agriculture,No703.
    Wolock D M, McCabe G J,2000. Differences in topographic characteristics computed from100‐and1000‐mresolution digital elevation model data. HYDROLOGICAL PROCESSES14(6),987-1002.
    Wolock D M, McCabe Jr G J,1995. Comparison of single and multiple flow direction algorithms for computingtopographic parameters in TOPMODEL. Water Resources Research31(5),1315-1324.
    Wood J D,1996. The Geomorphological Characterisation of Digital Elevation Models. University of Leicester,UK.
    Wu Y, Cheng H,2005. Monitoring of gully erosion on the Loess Plateau of China using a global positioningsystem. Catena63(2-3),154-166.
    Yang D, Kanae S, Oki T, Koike K, Musiake,2003. Global potential soil erosion with reference to land use andclimate changes. HYDROLOGICAL PROCESSES17(2913-2928.
    Yang Q K, McVicar T R, Van Niel T G, Hutchinsond M F, LingTao L, XiaoPing Z,2007a. Improving terrainrepresentation of a digital elevation model by reducing source data errors and optimising interpolationalgorithm parameters: an example in the Loess Plateau, China International Journal of Applied EartObservation and Geoinformation (JAG)9(3),235-246.
    Yang Q K, Tim McVicar R, Van Niel T G, al e,2007b. Improving a digital elevation model by reducing sourcedata errors and optimising interpolation algorithm parameters: An example in the Loess Plateau, China.International Journal of Applied Earth Observation and Geoinformation (JAG)9(3),235-246.
    Young R A, Mutchler C K,1969a. Effect of slope shape on erosion and runoff. Transactions of the ASAE,231-233.
    Young R A, Mutchler C K,1969b. Soil movement on irregular slopes. Water Resources Research5(5),1084-1089.
    Zachar D,1982. Soil erosion. Elsevier Science Ltd, Czechoslovakia,281-300.
    Zevenbergen L W, Thorne C R,1987. Quantitative analysis of land surface topography.. Earth Surface Processesand Landforms12(1),47-56.
    Zhao X G, Wu F Q, Liu B Z,1999. Analysis of runoff and soil loss on the gentle fallow slope land in gullyregion of loess plateau, Proceedings of International Symposium of Floods and Droughts, Nanjing.
    Zingg A W,1940. Degree and length of land slope as it affects soil loss in runoff, Agricultural Engineering, pp.59-64.
    卜兆宏,唐万龙,潘贤章,1994.土壤流失量遥感监测中GIS像元地形因子算法的研究.土壤学报31(3),322-329.
    万刚,朱长青,1999.多进制小波及其在DEM数据有损压缩中的应用.测绘学报28(1),36-40.
    王万忠,焦菊英,1996.中国的土壤侵蚀因子定量评价研究.水土保持通报16(5),1-20.
    王家耀,1993.普通地图制图综合原理.测绘出版社,北京
    史文中,2005.空间数据与空间分析不确定性原理.科学出版社,北京,3-11.
    甘枝茂,1989.黄土高原地貌与土壤侵蚀研究.陕西人民出版社,陕西
    朱显谟,1956.黄土区土壤侵蚀的分类.土壤学报5(6).
    朱显谟,1981.黄土高原水蚀的主要类型及其有关因素(2地貌与地质因素).水土保持通报(4),13-18.
    朱红春,汤国安,张友顺,易红伟,李明,2003.基于DEM提取黄土丘陵区沟沿线.水土保持通报23(5),43-45,61.
    江忠善,王志强,刘志,1996.黄土丘陵区小流域土壤侵蚀空间变化定量研究土壤侵蚀与水土保持学报2(1),1-9.
    江忠善,李秀英,1988.黄土高原土壤流失预报方程中降雨侵蚀力和地形因子的研究.中国科学院水土保持研究所集刊(7),40-45.
    江忠善,贾志伟,刘志,1992.降雨和地形因素与坡地水土流失关系的研究.黄土高原小流域综合治理与发展.科学技术文献出版社,北京
    江忠善,郑粉莉,武敏,2004.坡面水蚀预报模型研究水土保持学报18(1),66-69.
    江忠善,郑粉莉,武敏,2005.中国坡面水蚀预报模型研究.泥沙研究(4),1-6.
    牟金泽,孟庆枚,1983.降雨侵蚀土壤流失预报方程的初步研究.中国水土保持(6),23-27.
    李俊,2007.基于DEM的黄土高原坡长的自动提取和分析城市与资源学系.西北大学,陕西西安.
    李斌兵,郑粉莉,张鹏,2008.黄土高原丘陵沟壑区小流域浅沟和切沟侵蚀区的界定.水土保持通报28(5),16-20.
    李锐,2008.中国水土流失基础研究的机遇与挑战.自然杂志30(001),6-11.
    李锐,2011.中国主要水蚀区土壤侵蚀过程与调控研究.水土保持通报31(5),1-6.
    李锐,上官同平,刘宝元,郑粉莉,杨勤科,2009.近60年我国土壤侵蚀科学研究进展.中国水土保持科学7(5),1-6.
    汪邦稳,杨勤科,刘志红,赵心畅,2007.基于DEM和GIS的修正通用土壤流失方程地形因子值的提取.中国水土保持科学5(2),18-23.
    肖晨超,2007.基于DEM的黄土地貌沟沿线特征研究.南京师范大学,南京.
    肖晨超,汤国安,2007.黄土地貌沟沿线类型划分.干旱区地理30(5),646-653.
    周启明,刘学军,2006.数字地形分析.科学出版社,北京,106.
    承继成,江美球,1984.流域地貌数学模型.科学出版社,北京
    林素兰,黄毅,聂振刚,孙景华,1997.辽北低山丘陵区坡耕地土壤流失方程的建立.土壤通报28(6),251-253.
    祁延年,王志超,1959.关中平原与陕北高原南部的地貌及新地质构造运动.地理学报25(4),286-298.
    金争平,史培军,1992.黄河皇甫川流域土壤侵蚀系统模型和治理模式.海洋出版社,北京
    施成熙,1959.陆地水文学.科学出版社,北京,78-81.
    施成熙,梁瑞驹,1964.陆地水文学原理.中国工业出版社,北京,78-81.
    胡刚,伍永秋,2005.发生沟蚀(切沟)的地貌临界研究综述.山地学报23(5),565-570.
    胡鹏,吴艳兰,胡海,2003.数字高程模型精度评定的基本理论.地球信息科学3(64-70.
    胡鹏,杨传勇,吴艳兰,2007.新数字高程模型:理论、方法、标准和应用.测绘出版社,北京
    唐克丽,2004.中国水土保持.科学出版社,北京
    唐克丽,张科利,雷阿林,1998.黄土丘陵区退耕上限坡度的研究论证.科学通报43(2),200-203.
    晏实江,汤国安,李发源,董有福,2011.利用DEM边缘检测进行黄土地貌沟沿线自动提取.武汉大学学报(信息科学版)36(3),363-367.
    曹龙熹,符素华,2007.基于DEM的坡长计算方法比较分析.水土保持通报27(5),58-62.
    曹龙熹,符素华,2007.基于DEM的坡长计算方法比较分析.水土保持通报27(5),58-62.
    符素华,刘宝元,2002.土壤侵蚀量预报模型研究进展.地球科学进展17(1),78-84.
    郭伟玲,杨勤科,程琳,李俊,胡洁,2010.区域土壤侵蚀定量评价中的坡长因子尺度变换方法.中国水土保持科学4(73-78.
    景可,1986.黄土高原沟谷侵蚀研究.地理科学6(4),340-347.
    程琳,杨勤科,谢红霞,王春梅,郭伟玲,2009.基于GIS和CSLE的陕西省土壤侵蚀定量评价研究.水土保持学报23(5),61-67.
    雷阿林,唐克丽,2000.土壤侵蚀链概念的科学意义及其特征.水土保持学报14(003),79-83.
    刘元保,朱显谟,周佩华,唐克丽,1998.黄土高原坡面沟蚀的类型及其发生发展规律.中国科学院水土保持研究所集刊7(9-18.
    刘善建,1953.天水水土流失测验的初步分析.科学通报(12),59~65,54.
    刘学军,卞璐,卢华兴,朱莹,2008.顾及DEM误差自相关的坡度计算模型精度分析.测绘学报37(2),200-206.
    刘学军,卢华兴,卞璐,任政,2006.基于DEM的河网提取算法的比较.水利学报37(9),1134-1141.
    刘学军,龚健雅,周启鸣,汤国安,2004a.基于DEM坡度坡向算法精度的分析研究.测绘学报33(3),258-263.
    刘学军,龚健雅,汤国安,2004b.基于DEM坡度坡向算法精度的分析研究.测绘学报33(3),258-263.
    刘鹏举,朱清科,吴东亮,朱金兆,唐小明,2006.基于栅格DEM与水流路径的黄土区沟缘线自动提取技术研究.北京林业大学学报28(4),72-76.
    吴伯甫,陈明荣,陈宗兴,1991.中国的黄土高原.陕西人民出版社,陕西
    吴东亮,刘鹏举,唐小明,朱清科,朱金兆,2001.基于GIS的栅格化坡面径流路径模拟与LS值计算.北京林业大学学报23(5),10-14.
    师维娟,2007.基于DEM和GIS的坡度变换方法研究,资源与环境学院.西北农林科技大学,陕西杨凌.
    张宏鸣,杨勤科,刘晴蕊,郭伟玲,王春梅,2010.基于GIS的区域坡度坡长因子提取算法.计算机工程36(9),246-248.
    张科利,1991.浅沟发育对土壤侵蚀作用的研究.中国水土保持1(17-19.
    张科利,唐克丽,王斌科,1991.黄土高原坡面浅沟侵蚀特征值的研究.水土保持学报5(2),8-13.
    张照录,崔继红,2006.基于栅格GIS土壤侵蚀地形因子的提取算法.计算机工程32(5),226-228.
    张宪奎,许清华,卢秀琴,高德武,1992.黑龙江省土壤流失方程的研究.水土保持通报12(4),1-3.
    晋蓓,刘学军,甄艳,李灏书,2010.ArcGIS环境下DEM的坡长计算与误差分析.地球信息科学学报12(5),700-706.
    杨子生,1999.滇东北山区坡耕地土壤流失方程研究水土保持通报19(1),1-9.
    杨昕,汤国安,刘学军,李发源,祝士杰,2009.数字地形分析的理论,方法与应用.地理学报64(9),1058-1070.
    杨勤科,张彩霞,李领涛, Vicar T R M, Nie T G V,2006.基于信息含量分析法确定DEM分辨率的方法研究长江科学院院报23(5),21-23,28.
    杨艳生,1988.论土壤侵蚀区域性地形因子值的求取.水土保持学报2(2),89-96.
    汤国安,刘学军,闾国年,2005.数字高程模型及地学分析的原理和方法.科学出版社,北京,224.
    汤国安,赵牡丹,李天文,刘咏梅,谢元礼,2003. DEM提取黄土高原地面坡度的不确定性.地理学报58(6).
    汤国安,陈正江,赵牡丹,刘万青,刘咏梅,2004. ARCVIEW地理信息系统空间分析方法.科学出版社,北京,174-175.
    汤国安,龚健雅,陈正江,成燕辉,王占宏,2001.数字高程模型地形描述精度量化模拟研究.测绘学报30(4),361-365.
    罗来兴,1956.划分晋西_陕北_陇东黄土区域沟间地与沟谷的地貌类型.地理学报22(3).
    罗来兴,祁延年,1953.黄土邱陵区沟壑发育与侵蚀量计算的实例-陕北绥德韮园沟流域.地理学报19(2).
    罗红,马友鑫,刘文俊,李红梅,2010.采用最大溯源径流路径法估算RUSLE模型中地形因子探讨.应用生态学报21(5),1185-1189.
    蒋定生,1997.黄土高原水土流失与治理模式.中国水利水电出版社,北京
    谢红霞,2008.延河流域土壤侵蚀时空变化及水土保持环境效应评价研究[D].陕西师范大学,西安.
    谢红霞,李锐,杨勤科,李静,梁伟,2009.退耕还林(草)和降雨变化对延河流域土壤侵蚀影响.中国农业科学42(2),569-576.
    郑粉莉,唐克丽,周佩华,1987.坡耕地细沟侵蚀的发生,发展和防治途径的探讨.水土保持学报1(1),36-48.
    闾国年,钱亚东,陈钟明,1998a.基于栅格数字高程模型自动提取黄土地貌沟沿线技术研究.地理科学18(6),567-572.
    闾国年,钱亚东,陈钟明,1998b.基于栅格数字高程模型提取特征地貌技术研究.地理学报53(6).
    闾国年,钱亚东,陈钟明,1998c.黄土丘陵沟壑区沟谷网络自动制图技术研究.测绘学报27(2),131-137.
    陆中臣,贾绍凤,黄克新,袁宝引,1991.流域地貌系统.大连出版社,大连
    陈永宗,1976.黄河中游黄土丘陵地区坡地的侵蚀发育.地理集刊.地貌10:(10),35-51.
    陈永宗,1984.黄河中游黄土丘陵区的沟谷类型.地理科学4(4),321-327.
    陈楠,王钦敏,汤国安,赵元伟,2006.基于BP神经网络自动提取沟谷研究.中国水土保持科学4(5),30-34.
    陈传康,1956.陇东东南部黄土地形类型及其发育规律.地理学报22(3),223-231.
    黄炎和,卢程隆,付勤,施悦忠,许建金,1993.闽东南土壤流失预报研究.水土保持学报7(4),13-18.
    黄秉维,1953.陕甘地区土壤侵蚀的因素和方式.地理学报19(2),163-186.
    龙毅,周侗,汤国安,刘学军,2007.典型黄土地貌类型区的地形复杂度分形研究.山地学报25(4),385-392.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700