近30年河龙区间侵蚀产沙时空变化及驱动因子研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究针对近30年来黄土高原水土流失治理以及退耕还林(草)工程实施引起的下垫面变化,以黄河流域河龙区间(河口镇-龙门)为典型研究区,采用野外调查、RS/GIS分析模拟,结合水文统计等方法,分析了该区降雨、植被等环境因子变化,探讨了该区侵蚀、产沙时空变化特征,分析了影响区间侵蚀产沙的驱动因素,主要结论如下:
     1、近30年侵蚀产沙环境演变特征
     1)降雨及降雨侵蚀力:1981~2010年区间降雨在年际尺度上呈不显著的减小趋势。其中,降雨减少的面积占区间总面积的81.80%。四个典型流域均呈现出减少趋势。年际尺度上降雨侵蚀力呈不显著的减少趋势,区间降雨侵蚀力呈减小趋势的面积为7.72万km~2。四个典型流域中,延河和仕望川降雨侵蚀力呈减少趋势,窟野河和皇甫川减少的面积分别占26.62%和57.13%。
     2)土壤可蚀性:土壤可蚀性总体上呈减小的趋势,减小的面积占总面积的79.80%。窟野河和皇甫川总体呈减少趋势,延河和仕望川减少的面积分别为58.65%和14.03%。
     3)植被覆盖:2000~2010年生长季节区间植被覆盖增长趋势极显著,植被增加的区域占98.7%。其中,7月、8月和9月植被覆盖变化对总体植被增加的贡献最大。四个典型流域中,延河的植被改善情况最好。
     4)水土保持措施:水土保持措施总面积由1979年的1.26万km~2增加至3.43万km~2,增加了1.73倍,其主要是由于造林和种草面积增加。水土保持措施绝对面积变化最大的为窟野河,其次为延河。面积相对变化上,增加最大的为清涧河,其次为昕水河、延河和窟野河。
     2、近30年河龙区间侵蚀产沙时空演变过程
     1)土壤侵蚀演变:该区2011年土壤侵蚀模数为2205.4t/km~2·a。水土流失面积5.26万km~2,占总面积的46.72%。其中,中度土壤侵蚀面积最大,占15.08%。四个典型流域中,皇甫川土壤侵蚀模数为1033.5t/km~2·a,窟野河为1487.2t/km~2·a,延河2986.7t/km~2·a,仕望川1026.2t/km~2·a。延河的土壤侵蚀面积比例最大,其次为窟野河。
     2000年至2011年区间总体土壤侵蚀面积减少明显、强度降低,剧烈侵蚀变化最大,土壤侵蚀面积减少了30.22%。不同下垫面各典型流域极强烈和剧烈侵蚀减少剧烈,轻度侵蚀增加明显,其中,仕望川土壤侵蚀面积变化幅度最大。
     2)河流输沙时空变化:1980~2010年,区间多年平均输沙量为31044.8万吨,2000年至2010年年均输沙量为16020万吨。区间多年均输沙模数为2747.3t/km~2·a,2000~2010年为1417.7t/km~2·a。皇甫川多年平均输沙模数和2000~2010年的年输沙模数均最大。区间和各典型流域跃变时间均在1998年左右。
     该区和各流域输沙量随时间均表现出减少趋势,尤其是在1998~2010年的时间段内,输沙量减少更为剧烈零输沙的天数明显有增多的趋势。区间在丰水期退耕还林前后变化为-50.2%,枯水期变化为-47.6%。侵蚀产沙最为强烈的窟野河和皇甫川地区侵蚀产沙变化极为剧烈。
     3、河龙区间自然及人类活动对侵蚀产沙的驱动性分析
     1)降雨与植被覆盖关系:植被指数与降雨正相关的地区占区间总面积的73.3%,其中正相关显著的面积占22.14%。皇甫川和窟野河总体植被与降雨呈正相关关系;延河和仕望川呈负相关面积较多,在降雨减少的背景下,人类活动起到了主要作用。
     2)降雨与输沙关系:该区降雨的跃变时间不显著。区间和四个典型流域降雨与输沙的波动状态有一定的相似性,但是总体降雨变化不大,而输沙量在1998年以后年值较低且表现为减少趋势。区间和四个典型流域单位降雨产沙系数在1998年前后变化剧烈,且相关系数显著性极低,在1998年以后产沙量变化主要受人类活动的影响。
     3)人类活动驱动下的土地利用变化:退耕还林还草工程取得了较好的生态效益,林地面积显著增加,沙地、农地向草地、林地流转,土地利用变化方式剧烈。整个区间的斑块个数增加剧烈,平均斑块面积增加明显,区间土地利用格局由破碎化、高异质性趋于集中化。在退耕还林的政策驱动下,人类活动逐渐退耕而有效的增加了林地面积。
     四个典型流域和区间变化趋势类似,总体表现出草地、林地增加,农地减少的趋势。其中,仕望川流域各地类变化幅度最小。
     4)、水土保持措施对土壤侵蚀影响:水土保持措施可平均减少土壤侵蚀模数471.9t/km~2·a,减少水土流失面积14.52%,可有效地减少极强烈和强烈侵蚀。其中,土壤侵蚀面积减少程度最高的为皇甫川减少了55.22%。
In view of the underlying surface change for the implement of soil erosioncontrol and the Grain for Green Programme on the Loess Plateau, the paper took theHe-Long Region as typical study area, utilized the field survey, RS/GIS analysissimulation, and the hydrological statistics methods to analyse the spatiotemporaltrends of environment including precipitation, vegetation, etc., discuss the erosion andsediment yield variation characteristicon, and analyse the driving factors. The resultsof this research are as follows:
     (1) Spatial and temporal evolution of soil erosion and sediment yieldenvironment
     1) Precipitation and rainfall erosivity: Precipitation was not significantly reducedfrom1981to2010at interannual scales. Areas of showing decreasing trend ofprecipitation took81.80%of the whole region. Rainfall erosivity was not significantlyreduced at interannual scales. Areas of rainfall erosivity showing decreasing trend was7.72×104km~2. Overall, rainfall erosivity at Yanhe and Shiwangchuan reduced. Areasof rainfall erosivity decreased took26.62%and57.13%of the corresponding basinrespectively at Kuyehe and Huangfuchuan.
     2) Soil erodibility: Areas of soil erodibility decreased occupied79.80%of thewhloe region from the late1970s to2010. Soil erodibility reduced in Kuyuhe andHuangfuchuan. Areas of soil erodibility decreased constituted58.65%and14.03%ofthe Yanhe and Shiwangchuan areas.
     3) Vegetation cover: Vegetation cover increased highly significantly in thegrowing season from2000to2010. And vegetation cover increased the most significantly in July, August and September. The improve situation of vegetation wasbest in Yanhe.
     4) Soil and water conservation measures: The total area of soil and waterconservation measures increased from12600km~2to34300km~2during1979and2011,which was mainly for the increase of afforestation and grass. The largest change ofarea was in Kuyehe, followed by Yanhe. The relative change of areas was largest inQingjianhe, and followed by Xinshuihe, Yanhe, and Kuyehe.
     (2) Spatial and temporal variation of erosion and sediment load
     1) Soil erosion: The soil erosion modulus was2205.4t/km~2·a at2011on theHe-Long Region. Area of suffering soil erosion was5.26×104km~2which occupied46.72%of the whole area. Among of that, area of suffering moderate soil erosion waslargest with1.70×104km~2which takes15.08%of the whole area. The soil erosionmodulus was1033.5t/km~2·a in Hufuchuan,1487.2t/km~2·a in Kuyehe,2986.7t/km~2·ain Yanhe,1026.2t/km~2·a in Shiwangchuan. The proportion of soil erosion area in thebasin area of the He-Long Region is largest inYanhe.
     The soil erosion area reduced significantly with22783.6km~2and a decrease of30.22%, the erosion intensity descended, and the severe erosion changed the mostdramatic on the He-Long Region from2000to2011. The the very strong and violenterosion area reduced very severely at typical basins of different underlying surfaceand the mild erosion increased significantly. And the erosion area variation degreewas largest in Shiwangchuan.
     2) Sediment load: The multi-year average sediment load is31044.8×104tonsfrom1980to2010, and16020×104tons from2000to2010. The annual averagesediment transport modulus is2747.3t/km~2·a from1980to2010, and is1417.7t/km~2·a from2000to2010. Transition time is around1998on the He-Long Regionand typical watersheds.
     The sediment showed a decreasing trend over time on the He-Long Region andeach typical basin, especially on the time period during1998and2010, the the degreeof reduction is more dramatic and the zero sediment discharge days showed aobviously growing trend. The sediment load reduced50.2%after the Grain for GreenProgramme compare with that before the programme at wet period, and the change value was-47.6%at dry period. The change of erosion and sediment yield is verydramatic in Kuyehe and Huangfuchuan where the erosion and sediment yield is mostserious.
     (3) Erosion and sediment yield driving factors as environment and humanactivities.
     1) Effect of precipitation to vegetation: Areas of NDVI being positivelycorrelated with precipitation constituted73.3%of the whole region, among of which,areas of showing significantly positive correlation occupied22.14%.
     Vegetation is positively correlated with precipitation on Huangfuchuan andKuyehe. On the contrary, the correlate relation is mainly negative on Yanhe andShiwangchuan where the precipitation is reduced, which illustrates that humanactivities play an effective role.
     2) Effect of precipitation to sediment load: Transition time of annualprecipitation was not significant. The fluctuating state of preicpitation is similar tothat of sediment load at the He-Long Region and the four typical basins, however thechange degree is small overall. The annual sediment load is small and shows areducing trend after1998.
     The sediment yield coefficient of precipitation changed dramatically on thewhole region and the four typical basins, and the significant of correlation coefficientis very low after1998which illustrates that the sediment load is mainly influnced byhuman activities
     3) Land use change driving by human activities: The Grain for GreenProgramme achieved good ecological benefits for the forestland increasedsignificantly, the sandland and farmland changed to grassland and forestland, and thelanduse types changed violently. Number of Patches increased severely, mean patchareas increased significantly. The Land use structure are by beginning tocentralization from fragmentation and heterogeneity. The human activities increasethe forestland effectively on the He-Long Region.
     The case of landuse change at the four basins is similar to the whole regionwhere the farmland reduced and grassland and forestland increased. Among of that,the change degree is least in Shiwangchuan.
     4) Effect of conservation measures to soil erosion: Conservation measuresaveragely reduce the soil erosion modulus by471.9t/km~2·a, and the soil erosion areaby14.52%. The conservation measures can reduce the extremely strong and strongsoil erosion area effectively. Soil erosion area reduced by55.22%in Huangfuchuanwhose change degree is largest.
引文
1.王根绪,程国栋,徐中民.中国西北干旱区水资源利用及其生态环境问题[J].自然资源学报,1999.14(2): p.109-115.
    2.欧阳志云,王效科,苗鸿.中国生态环境敏感性及其区域差异规律研究[J].生态学报,2000.20(1): p.9-12.
    3. S Hanna, C Folke, KG Maler. Rights to nature: ecological, economic, cultural, andpolitical principles of institutions for the environment[M]. Washington: Island Press,1996.
    4. D Pimentel, C Harvey, P Resosudarmo, et al. Environmental and economic costs of soilerosion and conservation benefits[J]. SCIENCE,1995.267(5201): p.1117-1123.
    5.王占礼.中国水土流失的成因,威胁及其防治途径[J].世界科技研究与发展,2000.22(3): p.78-83.
    6.杨爱民,庞有祝,李铁铮,等.水土流失经济损失计量研究评述[J].中国水土保持科学,2003.1(1): p.108-110.
    7.水利部,中国科学院,中国工程院.中国水土流失防治与生态安全[M].北京:科学出版社,2010.
    8.景可,卢金发,梁季阳,等.黄河中游侵蚀环境特征和变化趋势[M].郑州:黄河水利出版社,1999.
    9.胡春宏,陈绪坚,陈建国.黄河水沙空间分布及其变化过程研究[J].水利学报,2008.39(5): p.518-527.
    10.徐建华,吕光圻,张胜利.黄河中游多沙粗沙区区域界定及产沙输沙规律研究[M].郑州:黄河水利出版社,2000.
    11.张晓华,张敏,张学成.河龙区间水沙变化特点及减水减沙量分析[J].中国水土保持,2008.(011): p.32-35.
    12.霍庭秀,罗虹,李欣庆,等.黄河中游河龙区间水沙特性分析[J].水利技术监督,2009.(005): p.13-15.
    13.穆兴民,巴桑赤烈,Zhang Lu,等.黄河河口镇至龙门区间来水来沙变化及其对水利水保措施的响应[J].泥沙研究,2007:36-41.
    14.李锐,杨文治,李壁成.中国黄土高原研究与展望[M].北京:科学出版社,2008.
    15.李秀彬.全球环境变化研究的核心领域——土地利用/土地覆被变化的国际研究动向[J].地理学报,1996.51(006): p.553-558.
    16.尹国康.黄河中游重蚀区不同下垫面的水沙效应[J].地理学报,1998.53: p.116-123.
    17.康玲玲,王昌高,张永兰,等.近50年黄河中游降水变化及其对径流的影响[J].人民黄河,2004.26(8): p.26-28.
    18.信忠保,许炯心,余新晓.近50年黄土高原水土流失的时空变化[J].生态学报,2009.29(3):p.1129-1139.
    19.景可.黄河中游侵蚀环境特征和变化趋势[M].郑州:黄河水利出版社,1997.
    20.冉大川.黄河中游河口镇至龙门区间水土保持与水沙变化[M].郑州:黄河水利出版社,2000.
    21.朱金兆,周心澄,胡建忠.黄土高原植被建设中几个方向性问题的探讨[J].北京林业大学学报:社会科学版,2004.2(3): p.1-4.
    22. M Branca, M Voltaggio. Erosion rate in badlands of central Italy: Estimation byradiocaesium isotope ratio from Chernobyl nuclear accident [J]. Applied geochemistry,1993.8(5): p.437-445.
    23. L Baver. Ewald Wollny—A Pioneer in Soil and Water Conservation Research1[J]. SoilScience Society ofAmerica Journal,1938.3(C): p.330.
    24. H H Bennett, V C Finch. Soil conservation McGraw-Hill NewYork[J].1939.
    25. W Wischmeier. Punched cards record runoff and soil-loss data[J]. AgriculturalEngineering,1955.36(10): p.664-666.
    26. W Wishmeier, D D Smith. Predicting rainfall erosion losses from cropland East of theRocky Mountains[J]. US Department ofAgriculture,1965.
    27. K G Renard, G R Foster, G A Weesies, et al. Predicting soil erosion by water. A guide toconservation planning with the revised universal soil loss equation (RUSLE)[M].Washington: Agriculture Handbook,1997.
    28. W G Knisel. CREAMS: a field scale model for Chemicals, Runoff, and Erosion fromAgricultural Management Systems[M]. United States. Dept. of Agriculture. Conservationresearch report,1980.
    29. D B Beasley, L F Huggins. ANSWERS, areal nonpoint source watershed environmentresponse simulation: user's manual[M]. U.S. Environmental Protection Agency, Region V,Great Lakes National Program Office, Chicago, I11,1981.
    30. A N Sharpley, J Williams. EPIC, Erosion/Productivity Impact Calculator[J]. TechnicalBulletin,1990.
    31. J M Laflen, L J Lane, G R Foster. WEPP: A new generation of erosion predictiontechnology. Journal of Soil and Water Conservation[J]. Journal of soil and waterconservation,1991.46(1): p.34-38.
    32. Wang L, Wu J Q, Elliot W J, et al. Implementation of channel-routing routines in theWater Erosion Prediction Project (WEPP) model[J]. in Proc. SIAM Conference onMathematics for Industry.2010. p:120-127.
    33. Li Z., Liu W Z, Zheng F L, et al. Assessing the site-specific impacts of climate change onhydrology, soil erosion and crop yields in the Loess Plateau of China[J]. Climatic change,2011.105(1-2): p.223-242.
    34. J G Arnold, J R Williams, R Srinivasan, et al. SWAT: Soil water assessment tool. USDepartment of Agriculture, Agricultural Research Service, Grassland, Soil and WaterResearch Laboratory, Temple, TX,1994.
    35. C W Rose, K J Coughlan, A A Ciesiolka, et al. Program GUEST (Griffith UniversityErosion System Template). A new soil conservation methodology and application tocropping systems in tropical steeplands[J].ACI Technical Report,1997, No.40: p.34-38.
    36. RPC Morgan, J N Quinton, R E Smith, et al. The European Soil Erosion Model(EUROSEM): a dynamic approach for predicting sediment transport from fields andsmall catchments[J]. Earth Surface Processes and Landforms,1998,23(6): p.527-544.
    37. APJ De Roo, C G Wesseling, V G Jetten, et al. LISEM: A physically-based hydrologicaland soil erosion model incorporated in a GIS[J]. Proc. on HygroGIS-96, Vienna,1996: p.395-403.
    38. A De Roo, C Wesseling, C Ritsema. LISEM: A SINGLE‐EVENT PHYSICALLYBASED HYDROLOGICAL AND SOILEROSION MODELFOR DRAINAGE BASINS.I: THEORY, INPUT AND OUTPUT[J]. Hydrological processes,1996.10(8): p.1107-1117.
    39.刘善建.天水水土流失测验的初步分析[J].科学通报,1953.12: p.59-65.
    40.李建牢,刘世德.罗玉沟流域坡面土壤侵蚀量的测算[J].中国水土保持,1989.(003):p.28-31.
    41.孙立达,孙保平,陈禹.西吉县黄土丘陵沟壑区小流域土壤流失量预报方程[J].自然资源学报,1988.3(2): p.141-153.
    42.张宪奎,许靖华,卢秀琴.黑龙江省土壤流失方程的研究[J].水土保持通报,1992.12(4): p.1-9.
    43.林素兰,黄毅,聂振刚.辽北低山丘陵区坡耕地土壤流失方程的建立[J].土壤通报,1997.28(6): p.251-253.
    44.陈法扬,王志明.通用土壤流失方程在小良水土保持试验站的应用[J].水土保持通报,1992.12(1): p.23-41.
    45.杨子生.滇东北山区坡耕地土壤流失方程研究[J].水土保持通报,1999.19(001): p.1-9.
    46.杨艳生,史德明.长江三峡区的坡面土壤流失量和入江泥沙量研究[J].水土保持学报,1991.5(003): p.22-28.
    47.周伏建,黄炎和.福建省土壤流失预防研究[J].水土保持学报,1995.9(001): p.25-30.
    48.杨武德,王兆骞.红壤坡地不同利用方式土壤侵蚀模型研究[J].土壤侵蚀与水土保持学报,1999.5(001): p.52-58.
    49.江忠善,宋文经.黄河中游黄土丘陵沟壑区小流域产沙量计算[J].第一次河流泥沙国际学术讨论会论文集,1980: p.63-72.
    50.范瑞瑜.黄河中游地区小流域土壤流失量计算方程的研究[J].中国水土保持,1985.2:p.12-18.
    51.金争平,赵焕勋,和泰,等.皇甫川区小流域土壤侵蚀量预报方程研究[J].水土保持学报,1991.5(001): p.8-18.
    52.付炜.黄土丘陵沟壑区土壤侵蚀预测模型建立方法的研究[J].水土保持学报,1992.6(3): p.6-13.
    53.李钜章,景可,李凤新.黄土高原多沙粗沙区侵蚀模型探讨[J].地理科学进展,1999.18(1): p.46-53.
    54. Liu BY, Zhang K L, XieY. An empirical soil loss equation[J]. Process of soil erosion andits environment effect, volume Ⅱ,12th ISCO,2002.
    55.陈永宗.黄土高原现代侵蚀与治理[M].北京:科学出版社,1988.
    56.景可,陈永宗,李风新.黄河泥沙与环境[M].北京:科学出版社,1993.
    57.张学成,王玲,高贵成.黄河泥沙动态分析[J].泥沙研究,2002.1: p.43-52.
    58.王万忠,焦菊英.黄土高原降雨侵蚀产沙与黄河输沙[M].北京:科学出版社,1996.
    59.王万忠,焦菊英.黄土高原侵蚀产沙强度的时空变化特征[J].地理学报,2002.57(002): p.210-217.
    60.高鹏.黄河中游水沙变化及其对人类活动的响应[D].中国科学院研究生院(教育部水土保持与生态环境研究中心),2010.
    61. Fu B J, Liu Y, Lv Y H, et al. Assessing the soil erosion control service of ecosystemschange in the Loess Plateau of China[J]. Ecological Complexity,2011.8(4): p.284-293.
    62.郭索彦,李智广.我国水土保持监测的发展历程与成就[J].中国水土保持科学,2009.7(5): p.19-24.
    63.尹国康.黄河中游多沙粗沙区水沙变化原因分析[J].地理学报,1998.53(2): p.174-183.
    64.许炯心.黄河中游多沙粗沙区水土保持减沙的近期趋势及其成因[J].泥沙研究,2004.2: p.5-10.
    65.张胜利,李倬,赵文林,等.黄河中游多沙粗沙区水沙变化原因及发展趋势[M].郑州:黄河水利出版社,1998.
    66.国务院第一次全国水利普查领导小组办公室.第一次全国水利普查培训教材之6:水土保持情况普查[M].北京:中国水利水电出版社,2010.
    67.杨勤科,李锐,徐涛,等.区域水土流失过程及其定量描述的初步研究[J].亚热带水土保持,2006.18(002): p.20-23.
    68.杨勤科,李锐.中国水土流失和水土保持定量研究进展[J].水土保持通报,1998.18(5): p.13-18.
    69.李勉,李占斌.中国土壤侵蚀定量研究进展[J].水土保持研究,2002.9(3): p.243-248.
    70.武文波,姬翠翠,李晓松,等.影响土壤水蚀的环境因子分析[J].中国水土保持,2010(005): p.36-38.
    71.万龙,马芹,张建军,等.黄土高原降雨量空间插值精度比较——KRIGING与TPS法[J].中国水土保持科学,2011.9(3): p.79-87.
    72.章文波,付金生.不同类型雨量资料估算降雨侵蚀力[J].资源科学,2003.25(1): p.35-41.
    73.朱显谟.黄土高原植被因素对水土流失的影响[J].土壤学报,1960.8(2): p.121-134.
    74.张科利,彭文英,杨红丽.中国土壤可蚀性值及其估算[J].土壤学报,2007.44(1): p.7-13.
    75.井光花,于兴修,李振炜.土壤可蚀性研究进展综述[J].中国水土保持,2011(10): p.44-47.
    76.周佩华,武春龙.黄土高原土壤抗冲性的试验研究方法探讨[J].水土保持学报,1993.7(1): p.29-34.
    77.金争平,史培军,侯福昌.黄河皇甫川流域土壤侵蚀系统模型和治理模式[M].北京:海洋出版社,1992.
    78.张科利,蔡永明,刘宝元,等.土壤可蚀性动态变化规律研究[J].地理学报,2001.56(6): p.673-681.
    79. W H Wischmeier, C B Johnson, B V Cross. Soil erodibility nomograph for farmland andconstruction sites[J]. Soil&Water Conservation J,1971.26(5): p.189-193.
    80.刘宝元,谢云,张科利.土壤侵蚀预报模型[M].北京:中国科学技术出版社,2001.
    81. Long H L, Heilig G K, Wang J, et al. Land use and soil erosion in the upper reaches of theYangtze River: some socio‐economic considerations on China's Grain‐for‐GreenProgramme[J]. Land Degradation&Development,2006.17(6): p.589-603.
    82. Zhou H, A Van Rompaey, J Wang. Detecting the impact of the “Grain for Green” programon the mean annual vegetation cover in the Shaanxi province, China using SPOT-VGTNDVI data[J]. Land Use Policy,2009.26(4): p.954-960.
    83. IM Caldwell, VW Maclaren, JM Chen, et al., An integrated assessment model of carbonsequestration benefits: A case study of Liping county, China[J]. Journal of environmentalmanagement,2007.85(3): p.757-773.
    84. Peng H, Cheng G, Xu Z, et al. Social, economic, and ecological impacts of the" Grain forGreen" project in China: A preliminary case in Zhangye, Northwest China[J]. Journal ofenvironmental management,2007.85(3): p.774-784.
    85. A Huete, C Justice, W Van Leeuwen. MODIS vegetation index (MOD13) algorithmtheoretical basis document. Link: http://modis. gsfc. nasa. gov/data/atbd/atbd_mod13. pdf,1999.
    86. C Tucker,W Newcomb, H Dregne. AVHRR data sets for determination of desert spatialextent[J]. International Journal of Remote Sensing,1994.15(17): p.3547-3565.
    87.王毅荣.黄土高原植被生长期旱涝对全球气候变化响应[J].干旱区地理,2005.28(002): p.161-166.
    88. Chen C C, Xie G D, Lin Z, et al. Analysis on Jinghe watershed vegetation dynamics andevaluation on its relation with precipitation[J]. Acta Ecologica Sinica,2008.28(3): p.925-938.
    89. SongY, Ma M. Study on vegetation cover change in Northwest China based on SPOTVEGETATION data[J]. Journal of Desert Research,2007.27(1): p.89-93.
    90.张晓萍.黄河中游河龙区间土地利用/覆被变化对河川径流影响研究[D].中国科学院教育部水土保持与生态环境研究中心,2007.
    91.曾大林,李智广.第二次全国土壤侵蚀遥感调查工作的做法与思考[J].中国水土保持,2000.1: p.28-31.
    92.许峰,郭索彦,张增祥.20世纪末中国土壤侵蚀的空间分布特征[J].地理学报,2003.58(1): p.139-146.
    93.中华人民共和国水利部.全国水土流失公告[D].2002.
    94. T N Carlson, D ARipley. On the relation between NDVI, fractional vegetation cover, andleaf area index[J]. Remote sensing of Environment,1997.62(3): p.241-252.
    95.扶卿华,喻丰华,余顺超,等.基于MODIS植被指数的广西区植被覆盖度动态分析[J].数字技术与应用,2010(007): p.171-172.
    96.王春香,张涤非,任万辉. MODIS数据植被覆盖度提取算法比较[J].大气与环境光学学报,2010.(006): p.457-462.
    97.江忠善,王志强,刘志.黄土丘陵区小流域土壤侵蚀空间变化定量研究[J].土壤侵蚀与水土保持学报,1996.2(1): p.1-9.
    98. Wischmeier W H, Smith D D. Predicting rainfall erosion losses: A guide to conservationplanning [M]. Agriculture H andbook, No.537. USDA,1978.
    99.戴志行,张树岭.抗旱丰产沟犁及其应用推广前景[J].农机试验与推广,1990.4: p.27-29.
    100.孔永东.泾川县三合沟流域土谷坊群建设评析[J].甘肃水利水电技术,1997.4: p.66-67.
    101.山西省水土保持科学研究所.1955~1981年山西省水土保持科学研究所径流测验资料[Z].1982: p.157-159.
    102.田杏芳,贾泽祥,刘斌等.黄土高原丘陵沟壑区典型小流域水土流失规律及水土保持治理效益分析研究[Z].2008.
    103.王宏,柳荣先,马勇.河龙区间南片水土保持措施减洪减沙效益分析[J].人民黄河,1999.21(9): p.14-16.
    104.高永,邱国玉,丁国栋等.沙柳沙障的防风固沙效益研究[J].中国沙漠,2004.24(3): p.365-370.
    105.中华人民共和国水利部.土壤侵蚀分类分级标准[S],2008.
    106.陈江南,王云璋,徐建华.黄土高原水土保持对水资源和泥沙影响评价方法研究[M].郑州:黄河水利出版社,2004.
    107.胡春宏.黄河水沙过程变异及河道的复杂响应[M].北京:科学出版社,2005.
    108. H B Mann. Non-parametric tests again trend[J]. Econometrica.1945.13: p.245-259.
    109. AN Pettitt. Anon-parametric approach to the change-point problem[J]. Applied statistics,1979.28(2): p.126-135.
    110. H AFoster. Duration curves. Transactions of the American Society of Civil Engineers[J].1934.99(1): p.1213-1235.
    111. JL Dupouey, E Dambrine, JD Laffite, et al. Irreversible impact of past land use on forestsoils and biodiversity[J]. Ecology,2002.83(11): p.2978-2984.
    112. E Matthews. Global vegetation and land use: New high-resolution data bases for climatestudies[J]. Journal ofApplied Meteorology,1983.22: p.474-487.
    113. Chen X, Li S,Guo Z. Analysis on the Harmonious Degree between Land Use andEcological Environment in Yanbian Korean Autonomous Prefecture, Jilin Province [J].China Land Science,2009.23(7): p.66-70.
    114. B Turner, W B Meyer, D L Skole. Global land-use/land-cover change: towards anintegrated study [J]. Ambio,1994.23(1):p.91-95.
    115. B Turner II, R Ross. Relating land use and global land cover change [J]. Global ChangeThe IGBPSeries,1993.
    116.张华,佟文嘉,王南,等.基于退耕还草背景的科尔沁沙地土地利用景观格局分析[J].干旱区资源与环境,2012.26(006): p.96-101.
    117.李晓兵,史培军,江源.土地利用/覆盖变化与生态安全响应机制[M].北京:科学出版社,2004.
    118. W Buermann, B Anderson, CJ Tucker, et al. Interannual covariability in NorthernHemisphere air temperatures and greenness associated with El Nino-Southern Oscillationand theArctic Oscillation[J]. J. Geophys. Res,2003.108(11): p.1-11.
    119.邓集贤.概率论及数理统计[M].北京:高等教育出版社,2009.
    120.梁伟,杨勤科.区域土地利用变化的遥感动态分析[D].中国科学院研究生院,2004.
    121.刘建飞,杨勤科,梁伟,等.近30年来陕北黄土高原土地利用动态变化分析[J].水土保持研究,2009.16(2).
    122. Du H S, E Hasi, Yang Y, et al. Landscape p attern change and driving force of blowoutdistribution in the Hulun Buir Sandy Grassland[J]. Sciences in Cold and Arid Regions,2012.4(5): p0413-0438.
    123陈彩虹,毛旭鹏,余济云等.宁远河流域森林景观格局分析[J].中国农学通报,2012.28(07): p32-37.
    124梁友嘉,钟方雷,徐中民.基于RS和GIS的张掖市土地利用景观格局变化及驱动力[J].兰州大学学报(自然科学版),2010.46(5): p24-30.
    125.李楠,韩海荣,张学霞.陕西吴起县植被盖度变化及其影响因素研究[J].干旱区资源与环境,2009.23(6): p.114-119.
    126.信忠保,许炯心,郑伟.气候变化和人类活动对黄土高原植被覆盖变化的影响[J].中国科学: D辑,2007.37(11): p.1504-1514.
    127.刘志红,郭伟玲,杨勤科等.近20年黄土高原不同地貌类型区植被覆盖变化及原因分析[J].中国水土保持科学,2011.9(1): p.16-23.
    128. ZL Gao, YL Fu, YH Li, et al. Trends of streamflow, sediment load and their dynamicrelation for the catchments in the middle reaches of the Yellow River over the past fivedecades[J]. Hydrology and Earth System Sciences,2012.
    129.徐建华,吴发启.黄土高原产流产沙机制及水土保持措施对水资源和泥沙影响的机理研究[M].郑州:黄河水利出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700