基于核酸适配体的生物传感器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质是生物体内含量最高,功能最重要的生物大分子。常规的蛋白质检测方法一般是基于传统的抗原-抗体之间的免疫反应进行的,由于抗原和抗体之间的特异性反应,免疫传感器具有很好的专一性和选择性。然而,近年来以适配体作为识别元件的蛋白质检测技术越来越受到人们的关注。适配体(aptamer)一词来源于拉丁语aptus,即to fit,适合的意思。核酸适配体是一类通过SELEX技术体外筛选而获得的,对蛋白质有很好的识别能力,核酸适配体对蛋白质的亲和力和特异性可与蛋白质的抗体相媲美,解离常数通常在纳摩尔到皮摩尔之间,且与抗体相比具有许多优越性.如核酸适配体是体外人工化学合成,合成简单,稳定性、重现性好,容易修饰,可以按需要对序列中的核苷酸定点标记各种官能团和报告基团,如荧光基团,各种酶,电活性物质等。便于核酸适配体的固定化和信号的检测,检测目标广泛等。本文基于核酸适配体的上述优点,在传统的免疫传感器的基础上,构建了一系列适配体生物传感器。具体内容如下:
     (1)在第二章中报道了一种无标记电化学方法来检测凝血酶。在这个工作中,我们引进了一种新的夹心电化学方法,采用抗体作为捕获探针,适配体作为检测探针,亚甲基兰作为电活性物质嵌入适配体中来获取电信号,不需要对探针进行任何修饰,传感器对凝血酶的线性响应范围是1-60nM,检测下限是0.5nM。(2)在第二部分的夹心模式的基础上,在第三章中,报道了一种基于适配体的酶放大方法来检测免疫球蛋白E(IgE)。生物素化抗IgE适配体作为检测探针,亲和素标记的碱性磷酸酯酶与电极表面的适配体上的生物素相连,碱性磷酸酯酶催化抗坏血酸磷酸酯水解成强还原剂抗坏血酸,将溶液中的银离子还原成银单质,沉积到电极表面。沉积的银的量与电极表面固定的IgE成正比,用溶出伏安法来定量。(3)在第四章中报道了一种基于目标物诱导适配体置换技术的无标记电化学检测方法,用来检测腺苷。利用适配体与目标物的强亲和力,将电极表面与捕获探针杂交的互补链置换下来,使嵌入在双链中的电活性物质亚甲基兰量减少,从而使得电信号发生变化。(4)在第五章里,我们用一种简单的荧光方法来检测IgE,通过荧光基团标记的适配体与目标物先反应一段时间,再将淬灭基团标记的适配体的互补链(QDNA)与之反应,检测反应前后的荧光强度,通过强度的减弱程度来对IgE定量。此方法检测蛋白质的线性范围宽,下限低。
Protein is the most abundant and important macromolecule in our body. Conventional methods for detecting protein are based on traditional immunoassay. Because the reactions of antigen-antibody are highly specific, immunosensors possess great sensitivity and selectivity. However, recent decades have seen the increasing interest in developing the method of detecting protein based on aptamer. The word, aptamer, comes from Latin aptus, to fit. Aptamers are selected from SELEX (systematic evolution of ligands by exponential enrichment) and have good recognition ability to proteins. The affinity and specificity between aptamers and protein is as well as those between antibodies and antigens. The dissociation constant of these is 10-9~10-12. Comparing to antibodies, aptamers own great advantages, including easy synthesis, good stability, ease modification and so on. It is facile to label the nucleic acid with different kinds of functional and report groups, such as fluorescence and electroactive groups. Therefore, it facilitates the immobilization of nucleic aptamer. In this article, we created a series of biosensors based on aptamers. The details are as following:
     (1) In the second chapter, we report a label-free electrochemical method to detect thrombin. In this work, we introduced a new kind of sandwich method to detect protein, utilizing antibody as the capturing probe, aptamer as the detecting probe and methylene blue as the electroactive substance intercalating in the nucleic acid, avoiding previous labeling. The sensor shows the linear response for thrombin in the range of 1-60nM with a detection limit of 0.5nM.
     (2) Based on the principle of antibody-aptamer sandwich in the second part, we reported a new kind of electrochemical sensor, utilizing the enzyme linked aptamer assay to detect immunoglobulin E (IgE). In this method, the biotinlynated anti-IgE aptamer is used as the detection probe. The specific interaction of streptavidin-conjugated alkaline phosphatase to the surface-bound biotinlynated detection probe mediates a catalytic reaction of ascorbic acid 2-phosphate substrate to produce a reducing agent ascorbic acid. Then, silver ions in the solution can be reduced, leading to the deposition of metallic silver on the electrode surface. The amount of deposited silver, which is determined by the amount of IgE target bound on the electrode surface, can be quantified using the stripping voltammetry.
     (3) A label-free electrochemical sensor based on target-induced displacement is reported with adenosine as the model analyte. Owing to the high affinity of aptamer binding to target, aptamer can displace the DNA which has bound to the capturing probe on the surface of the electrode, leading to the decreasing signal of the electroactive MB.
     (4) We have designed a novel and simple fluorescence method to detect IgE. We labeled the aptamer with a fluorescence reporter group and its complementary DNA with a quencher (QDNA). After the aptamer reacting with IgE and QDNA, we measured the fluorescence intensity each step.
引文
[1]Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 1990, 249(4968): 505 - 510
    [2] Vant H B, Payano B A, Davis R H, et al. The mathematics of SELEX against complex targets. Journal of molecular biology, 1998, 278(3): 579-597
    [3] Brody E N, Gold L. Aptamers as therapeutic and diagnostic agents. Reviews in Molecular Biotechnology, 2000, 74(1): 5-13
    [4] Osborne S E, Ellington A D. Nucleic acid selection and the challenge of combinatorial chemistry. Chemical Reviews, 1997, 97(2): 349-370
    [5] Famulok M, Mayer G, Blind M. Nucleic acid aptamers-from selection in vitro to applications in vivo. Accounts of Chemical Research, 2000, 33(9): 591-599
    [6] Forst C V. Molecular evolution: a theory approaches experiments. Journal of Biotechnology, 1998, 64(1):101-118
    [7] Mendonsa S D, Bowser M T. In vitro selection of high-affinity DNA ligands for human IgE using capillary electrophoresis. Analytical Chemistry, 2004, 76(18): 5387-5392
    [8] Mosing R K, Mendonsa S D, Bowser M T. Capillary electrophoresis-SELEX selection of aptamers with affinity for HIV-1 reverse transcriptase.Analytical Chemistry, 2005, 77(19):6107-6112
    [9] Jiang Y, Fang X, Bai C. Signaling aptamer/protein binding by a molecular light switch complex. Analytical Chemistry, 2004, 76(17): 5230-5235
    [10] Wang J, Jiang Y, Zhou C, et al. Aptamer-based ATP assay using a luminescent light switching complex. Analytical Chemistry, 2005, 77(11):3542-3546
    [11]Li N, Ho C M. Aptamer-based optical probes with separated molecular recognition and signal transduction modules. Journal of the American Chemical Society, 2008,130(8):2380-2381
    [12] Zhou L, Ou L, Chu X, et al. Aptamer-based rolling circle amplification: a platform for electrochemical detection of protein. Analytical Chemistry, 2007, 79 (19): 7492 -7500
    [13] Baker B R, Lai R Y, Wood M S, et al. An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids. Journal of the American Chemical Society, 2006,128(10): 3138-3139
    [14] Li B, Wang Y, Wei H, et al. Amplified electrochemical aptasensor taking AuNPs based sandwich sensing platform as a model. Biosensors and Bioelectronics, 2008, 23(7): 965-970
    [15] Liss M, Petersen B, Wolf H, et al. An aptamer-based quartz crystal protein biosensor. Analytical Chemistry, 2002, 74(17): 4488-4495
    [16] Barletta J M, Edelman D C, Constantine N T. Lowering the detection limits of HIV-1 viral load using real time immuno-PCR for HIV-1 p24 antigen. American Journal of Clinical Pathology, 2004, 122 (1): 20-27
    [17] Centi S, Messina G, Tombelli S, et al. Different approaches for the detection of thrombin by an electrochemical aptamer-based assay coupled to magnetic beads. Biosensors and Bioelectronics, 2008, 23(11):1602-1609
    [18] Kirby R, Cho E J, Gehrke B, et al. Aptamer-based sensor arrays for the detection and quantitation of proteins. Analytical Chemistry, 2004, 76(14): 4066-4075
    [19] Bang G S, Cho S, Kim B G. A novel electrochemical detection method for aptamer biosensors. Biosensors and Bioelectronics, 2005, 21 (6): 863–870
    [20] Stadtherr K, Wolf H, Lindner P. An aptamer-based protein biochip. Analytical Chemistry, 2005, 77(11): 3437-3443
    [21] Ellington A D, Szostak J W, In vitro selection of RNA molecules that bind specific ligands, Nature, 1990, 346(6287): 818-822
    [22]Drolet D W, Moon-McDermott L, Romig TS. An enzymelinked oligonucleotide assay. Nature Biotechnology, 1996, 14(8): 1021 - 1025
    [23] Kotia R B, Li L, McGown L B. Separation of nontarget compounds by DNA aptamers. Analytical Chemistry, 2000, 72(4): 827-831
    [24] Pavlov V, Shlyahovsky B, Willner I. Fluorescence detection of DNA by the catalytic activation of an aptamer/thrombin complex. Journal of the American Chemical Society, 2005, 127(18): 6522-6523
    [25] Heyduk E, Heyduk T. Nucleic acid-based fluorescence sensors for detecting proteins. Analytical Chemistry, 2005, 77(4): 1147-1156
    [26] Lin C X, Katilius E, Liu Y, et al. Self-assembled signaling aptamer DNA arrays for protein detection. Angewandte Chemie International Edition, 2006, 45(32): 5296-5301
    [27] Ho H A, Leclerc M, Optical sensors based on hybrid aptamer/conjugated polymer complexes. Journal of the American Chemical Society, 2004, 126(5): 1384-1387
    [28] Wang X L, Li F, Su Y H, et al. Ultrasensitive detection of protein using anaptamer-based exonuclease protection assay. Analytical Chemistry, 2004, 76(19): 5605-5610
    [29] Li J W, Fang X H, Tan W H. Molecular aptamer beacons for real-time protein recognition. Biochemical and Biophysical Research Communications, 2002, 292(1): 31-40
    [30] Heckel A, Mayer G. Light regulation of aptamer activity: an anti-thrombin aptamer with caged thymidine nucleobases. Journal of the American Chemical Society, 2005, 127(3): 822-823
    [31] Pavlov V, Xiao Y, Shlyahovsky B, et al. Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin. Journal of the American Chemical Society, 2004, 126(38): 11768-11769
    [32] Evans-Nguyen K M, Fuierer R R , Fitchett B D, et al. Changes in adsorbed fibrinogen upon conversion to fibrin. Langmuir, 2006, 22(11): 5115-5121
    [33] Bang G S, Cho S, Kim BG. A novel electrochemical detection method for aptamer biosensors. Biosensors and Bioelectronics, 2005, 21(6): 863-870
    [34] Floch F L, Ho H A, Leclerc M. Label-free electrochemical detection of protein based on a ferrocene-bearing cationic polythiophene and aptamer. Analytical Chemistry, 2006, 78(13): 4727-4731
    [35] Lai RY, Plaxco KW, Heeger A J. Aptamer-based electrochemical detection of picomolar platelet-derived growth factor directly in blood serum. Analytical Chemistry, 2007, 79(1): 229-233
    [36] Radi A E, Sa′nchez J L A, Baldrich E, et al. Reagentless, reusable, ultrasensitive electrochemical molecular beacon aptasensor. Journal of the American Chemical Society, 2006, 128(1): 117-124
    [37] Sa′nchez J L A, Baldrich E, Radi A E G, et al.Electronic off-on molecular switch for rapid detection of thrombin, Electroanalysis,2006, 18(19-20): 1957-1962
    [38] Xiao Y, Lubin A A, Heeger A J, et al. Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor. Angewandte Chemie, 2005, 117(34): 5592 –5595
    [39] Zhang Y L, Huang Y, Jiang J H, et al. Electrochemical aptasensor based on proximity-dependent surface hybridization assay for single-step, reusable, sensitive protein detection. Journal of the American Chemical Society, 2007, 129(50):15448-15449
    [40] Ikebukuro K, Kiyohara C, Sode K. Novel electrochemical sensor system for protein using the aptamers in sandwich manner. Biosensors and Bioelectronics,2005, 20(10): 2168-2172
    [41] Wang H, Yang X B, Bowick G C, et al. Identification of proteins bound to a thioaptamer probe on a proteomics array. Biochemical and Biophysical Research Communications, 2006, 347(3): 586-593
    [42] Baldrich E, Restrepo A, O¢Sullivan C K. Aptasensor development: elucidation of critical parameters for optimal aptamer performance. Analytical Chemistry, 2004, 76 (23): 7053-7063
    [43] Wang P, Li Y X, Huang X, et al. Fabrication of layer-by-layer modified multilayer films containing choline and gold nanoparticles and its sensing application for electrochemical determination of dopamine and uric acid. Talanta, 2007, 73(3):431-437
    [45] Mao X, Jiang J H, Luo Y, et al. Copper-enhanced gold nanoparticle tags for electrochemical stripping detection of human IgG. Talanta, 2007, 73(3): 420-424
    [46] Zhang S, Huang F, Liu B H, et al. A sensitive impedance immunosensor based on functionalized gold nanoparticle–protein composite films for probing apolipoprotein A-I. Talanta, 2007, 71(2): 874-881
    [47] Du Y, Luo X L, Xu J J, et al. A simple method to fabricate a chitosan-gold nanoparticles film and its application in glucose biosensor. Bioelectrochemistry 2007, 70(2): 342-347
    [48] Luo X L, Xu J J, Zhang Q, et al.Electrochemically deposited chitosan hydrogel for horseradish peroxidase immobilization through gold nanoparticles self-assembly. Biosensors and Bioelectronics, 2005, 21(1):190-196
    [49] Xue M H, Xu Q, Zhou M, et al. In situ immobilization of glucose oxidase in chitosan–gold nanoparticle hybrid film on prussian blue modified electrode for high-sensitivity glucose detection. Electrochemistry Communications, 2006, 8(9): 1468-1474
    [50] Zhang S B, Wu Z S, Guo M M, et al. A novel immunoassay strategy based on combination of chitosan and a gold nanoparticle label.Talanta, 2007, 71(4): 1530-1535
    [51] Li XY, Jin L J, Mcallister T A. Chitosan-alginate microcapsules for oral delivery of egg yolk immunoglobulin (IgY). Journal of Agriculture and Food Chemistry, 2007, 55(8): 2911-2917
    [52] Kankia B I, Marky L A. Folding of the thrombin aptamer into a G-quadruplex with Sr2+: stability, heat, and hydration. Journal of the American Chemical Society, 2001, 123(44): 10799-10804
    [53] Hianik T, Ostatná V, Sonlajtnerova M, et al. Influence of ionic strength, pH and aptamer configuration for binding affinity to thrombin. Bioelectrochemistry, 2007, 70(1):127-133
    [54] Hamaguchi N, Ellington A, Stanton M. Aptamer beacons for the direct detection of proteins. Analytical Biochemistry, 2001, 294(2): 126-131
    [55] Vairamani M, Gross M L. G-Quadruplex formation of thrombin-binding aptamer detected by electrospray ionization mass spectrometry. Journal of the American Chemical Society, 2003, 125(1): 42-43
    [56] Bock L C, Griffin L C, Latham J A, et al. Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature, 1992, 355(6360): 564-566
    [57] Tuite E, Norden B. Sequence-specific interactions of methylene blue with polynucleotides and DNA: A spectroscopic study. Journal of the American Chemical Society, 1994, 116(17): 7548-7556
    [58]Tuite E, Kelly J M. The interaction of methylene blue, azure B, and thionine with DNA: formation of complexes with polynucleotides and mononucleotides as model systems. Biopolymers, 1995, 35(5): 419-433
    [59] Kara P, Kerman K, Ozkan D, et al. Electrochemical genosensor for the detection of interaction between methylene blue and DNA. Electrochemistry Communications, 2002, 4(9): 705-709
    [60] Lin X H, Wu P, Chen W, et al. Electrochemical DNA biosensor for the detection of short DNA species of Chronic Myelogenous Leukemia by using methylene blue. Talanta, 2007, 72(2): 468-471
    [61] Rohs R, Sklenar H, Lavery R. Methylene blue binding to DNA with alternating GC base sequence: a modeling study. Journal of the American Chemical Society, 2000, 122(12): 2860-2866
    [62] Meric B, Kerman K, Ozkan D, et al. Electrochemical DNA biosensor for the detection of TT and Hepatitis B virus from PCR amplified real samples by using methylene blue. Talanta, 2002, 56(5): 837-846
    [63] Qi Z M, Matsuda N, Takatsu A, et al. In situ investigation of coadsorption of myoglobin and methylene blue to hydrophilic glass by broad and time-resolved optical waveguide spectroscopy. Langmuir, 2004, 20(3): 778-784
    [64] Nakane P K, Pierce G B. Enzyme-labeled antibodies: preparation and localization of antigens. Journal of Histochemistry Cytochemistry, 1966, 14 (12): 929-931
    [65] Avrameas S, Uriel J, Method for labeling antigents and antibodys with enzymes and their application in immunodiffusion 24G5. Paris Compt Rend Acad Sci,1966,262 (24): 2543-2545
    [66]Katz E, Alfonta L, Willner I. Chronopentiometry and faradaic impedance spectroscopy as methods for signal transduction in immunosensor. Sensors and Actuators B, 2001, 76(1-3): 134-141
    [67]Crew A, Alford C, Cowell D C C, et al. Development of a novel electrochemical immuno-assay using a screen printed electrode for the determination of secretory immunoglobulin A in human sweat. Electrochimica Acta, 2007, 52 (16): 5232-5237.
    [68] Jayasena S. Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clinical Chemistry, 1999, 45(9):1628-1650
    [69] Patel D, Suri A. Structure, recognition and discrimination in RNA aptamer complexes with cofactors, amino acids, drugs and aminoglycoside antibiotics. Reviews in Molecular Biotechnology, 2000, 74(1):39-60
    [70] Clark S L, Remcho V T. Aptamers as analytical reagents. Electrophoresis, 2002, 23(9):1335-1340
    [71] Luzi E, Minunni M, Tombelli S, et al. New trends in affinity sensing - aptamers for ligand binding. TrAC Trends in Analytical Chemistry, 2003, 22(11):810-818
    [72] Kyung M Y, Sang H L, Aesul I, et al. Aptamers as functional nucleic acids: in vitro selection and biotechnological applications. Biotechnology and Bioprocess Engineering, 2003, 8 (2):64-75
    [73] Joyce G F. Amplification, mutation and selection of catalytic RNA. Gene, 1989 82(1):83-87
    [74] Robertson D L, Joyce G F. Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 1990, 344(6265):467-468
    [75] Hamula C, Guthrie J, Zhang H, et al. Selection and analytical applications of aptamers. TrAC Trends in Analytical Chemistry, 2006, 25(7):681-691
    [76]M Mir, M Vreeke, I Katakis. Different strategies to develop an electrochemical thrombin aptasensor. Electrochemistry Communications, 2006, 8(3):505-511
    [77]Radi A, Sanchez J A, Baldrich E, et al. Reusable impedimetric aptasensor. Analytical Chemistry, 2005, 77(19): 6320-6323
    [78]Drolet D, Moon-McDermott L, Romig T. An enzyme-linked oligonucleotide assay. Nature Biotechnology, 1996, 14(8):1021-1025
    [79]Rye P, Nustad K. Immunomagnetic DNA aptamer assay. BioTechniques, 2001, 30(2):290-295
    [80]Yang X, Li X, Prow T, et al. Immunofluorescence assay and flow-cytometry selection of bead-bound aptamers. Nucleic Acids Research, 2003, 31(10): 54-61
    [81]Centi S, Tombelli S, Minunni M, et al. Aptamer-based detection of plasma proteins by an electrochemical assay coupled to magnetic beads. Analytical Chemistry, 2007, 79(4):1466-1473
    [82]Polsky R, Gill R, Kaganovsky L, et al. Nucleic acid-functionalized Pt nanoparticles: catalytic labels for the amplified electrochemical detection of biomolecules. Analytical Chemistry, 2006, 78(7):2268-2271
    [83]Chen Z P, Peng Z F, Jiang J H, et al. An electrochemical amplification immunoassay using biocatalytic metal deposition coupled with anodic stripping voltammetric detection. Sensors and Actuators B, 2007, 129(1):146-151
    [84]Kokado A, Arakawa H, Maeda M. New electrochemical assay of alkaline phosphatase using ascorbic acid 2-phosphate and its application to enzyme immunoassay. Analytica Chimica Acta, 2000, 407(1-2): 119-125
    [85]Fang X, Cao Z, Beck T, et al. Molecular aptamer for real-time oncoprotein platelet-derived growth factor monitoring by fluorescence anisotropy. Analytical Chemistry, 2001, 73(23): 5752-5757
    [86]Jiang Y, Zhu C, Ling L, et al. Specific aptamer-protein interaction studied by atomic force microscopy. Analytical Chemistry, 2003, 75(9): 2112-2116
    [87]Xu D, Xu D W, Yu X B, et al. Label-free electrochemical detection for aptamer-based array electrodes. Analytical Chemistry, 2005, 77(12): 5107-5113.
    [88]Herr J K, Smith J E, Medley C D, et al. Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells. Analytical Chemistry, 2006, 78(9): 2918-2924
    [89]Hermann T, Patel D J. Adaptive recognition by nucleic acid aptamers. Science 2000,287 (5454): 820-825
    [90]Yang L, Fung C W, Cho E J, et al. Real-time rolling circle amplification for protein detection. Analytical Chemistry, 2007, 79(9): 3320-3329
    [91] Nutiu R., Li Y. Structure-switching signaling aptamers. Journal of the American Chemical Society, 2003, 125(16): 4771-4778
    [92] Xiao Y, Piorek B D, Plaxco K W, et al. A reagentless signal-on architecture for electronic, aptamer-based sensors via target-induced strand displacement. Journal of the American Chemical Society, 2005, 127(51): 17990-17991
    [93] Wu Z S, Guo M M, Zhang S B, et al. Reusable electrochemical sensing platform for highly sensitive detection of small molecules based on structure-switching signaling aptamers. Analytical Chemistry, 2007, 79(7): 2933-2939
    [94] Zayats M, Huang Y, Gill R, et al. Label-free and reagentless aptamer-basedsensors for small molecules. Journal of the American Chemical Society, 2006, 128(42): 13666-13667
    [95] Kawde A N, Rodriguez M C, Lee T M H, et al. Label-free bioelectronic detection of aptamer–protein interactions. Electrochemistry Communications, 2005, 7(5): 537-540
    [96] Zhang J H, Belardinelli L, Jacobson K A, et al. Persistent activation by and receptor reserve for an irreversible A1-adenosine receptor agonist in DDT1 MF-2 cells and in guinea pig heart. Molecular Pharmacology, 1997, 52(3): 491-498
    [97]Kloor D, Yao K, Delabar U, et al. Simple and sensitive binding assay for measurement of adenosine using reduced S-adenosylhomocysteine hydrolase. Clinical Chemistry, 2000, 46(4): 537-542
    [98]Kerman K, Ozkan D, Kara P, et al. Voltammetric determination of DNA hybridization using methylene blue and self-assembled alkanethiol monolayer on gold electrodes. Analytica Chimica Acta, 2002, 462(1): 39-47
    [99] Erdem A, Kerman K, Meric B, et al. Novel hybridization indicator methylene blue for the electrochemical detection of short DNA sequences related to the hepatitis B virus. Analytica Chimica Acta, 2000, 422(2): 139-149
    [100]Erdem A, Kerman K, Meric B, et al. Methylene blue as a novel electrochemical hybridization indicator. Electroanalysis, 2001, 13(3): 219-223
    [101]P?nke O, Kirbs A, Lisdat F. Voltammetric detection of single base-pair mismatches and quantification of label-free target ssDNA using a competitive binding assay. Biosensors and Bioelectronics, 2007, 22(11): 2656-2662
    [102]Jin Y, Yao X, Liu Q, et al. Hairpin DNA probe based electrochemical biosensor using methylene blue as hybridization indicator. Biosensors and Bioelectronics, 2007, 22(6): 1126-1130
    [103]Hianik T, Ostatná V, Zajacová Z, et al. Detection of aptamer–protein interactions using QCM and electrochemical indicator methods. Bioorganic & Medicinal Chemistry Letters, 2005, 15(2): 291-295
    [104]Huang M F, Kuo Y C, Huang C C, et al. Separation of long double-stranded DNA by nanoparticle-filled capillary electrophoresis. Analytical Chemistry, 2004, 76(1): 192-196
    [105]Colvin V L, Goldstein A N, Alivisatos A P. Semiconductor nanocrystals covalently bound to metal surfaces with self-assembled monolayers. Journal of the American Chemical Society, 1992, 114(13): 5221-5230
    [106]Bagalkot V, Zhang L, Levy-Nissenbaum E, et al.Quantum dot-aptamer conjugatesfor synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Letters, 2007, 7(10): 3065-3070
    [107] Babendure J R, Adams S R, Tsien R Y. Aptamers switch on fluorescence of triphenylmethane dyes.Journal of the American Chemical Society, 2003,125(48): 14716-14717
    [108]Li Y, Geyer R, Sen D. Recognition of anionic porphyrins by DNA aptamers. Biochemistry, 1996, 35(21): 6911-6922.
    [109]Merino E J, Weeks K M. Fluorogenic resolution of ligand binding by a nucleic acid aptamer. Journal of the American Chemical Society, 2003, 125(41): 12370-12371
    [110]Jhaveri S D, Kirby R, Conrad R, et al. Designed signaling aptamers that transduce molecular recognition to changes in fluorescence intensity. Journal of the American Chemical Society, 2000, 122(11): 2469-2473
    [111]Zuo X, Song S, Zhang J, et al. A Target-responsive electrochemical aptamer switch (TREAS) for reagentless detection of nanomolar ATP. Journal of the American Chemical Society, 2007, 129(5): 1042-1043
    [112]Lu Y, Li X, Zhang L, et al. Aptamer-based electrochemical sensors with aptamer-complementary DNA oligonucleotides as probe. Analytical Chemistry, 2008, 80(6): 1883-1890
    [113] Ferapontova E E, Olsen E M, Gothelf K V. An RNA aptamer-based electrochemical biosensor for detection of theophylline in serum. Journal of the American Chemical Society, 2008, 130(13): 4256-4258
    [114] Yamamoto R, Baba T, Kumar P K, Molecular beacon aptamer fluoresces in the presence of Tat protein of HIV-1. Genes to Cells, 2000, 5 (5): 389-396
    [115] Stojanovic M N, de Prada P, Landry D W. Aptamer-based folding fluorescent sensor for cocaine. Journal of the American Chemical Society, 2001, 123 (21): 4928-4931
    [116] Jhaveri S, Rajendran M, Ellington A D. In vitro selection of signaling aptamers. Nature Biotechnology, 2000, 18(12): 1293-1297
    [117] Choi J H, Chen K H, Strano M S. Aptamer-capped nanocrystal quantum dots: A new method for label-free protein detection. Journal of the American Chemical Society, 2006, 128(49): 15584-15585
    [118] Huang Y F, Chang H T, Tan W. Cancer cell targeting using multiple aptamers conjugated on nanorods. Analytical Chemistry, 2008; 80(3): 567-572
    [119] Gokulrangan G, Unruh J R, Holub D F, et al. DNA aptamer-based bioanalysis ofIgE by fluorescence anisotropy. Analytical Chemistry, 2005, 77(7): 1963-1970
    [120] Huang C C, Chiang C K, Lin Z H, et al. Bioconjugated gold nanodots and nanoparticles for protein assays based on photoluminescence quenching. Analytical Chemistry, 2008, 80(5): 1497-1504

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700