基于共价键固定探针的电化学发光适体传感器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电化学发光法兼有电化学和化学发光法的双重优点,具有极低的检测限、极宽的线性范围等优点;相对于荧光法,无光漂白,不需要光源和分光系统等优点;相对于电化学检测,具有检测限低和受电极污染影响小的优点,因此被广泛应用到免疫分析,DNA杂交检测,食品和水的测试,还有生物战争试剂和爆炸材料的检测等。适体是特异结合目标分子的核酸(DNA或RNA)片段。由于它具有高的亲合力、特异性强、目标范围广、分子量小、体外筛选,化学合成简单、稳定性好,可复性等,所以可以作为一类特异性识别分子应用在传感器的构建中。电化学发光适体传感器兼有电化学发光的高灵敏度和适体特异性强的优点,因此,受到研究工作者的极大兴趣。到目前为止,所有电化学发光适体传感器均采用金电极上巯基自组装固定电化学发光探针,因此传感器不可避免的存在稳定性差和保存时间短等缺点。从这个意义上说,如何构建稳定性好、保存时间长的电化学发光适体传感器是一项具有挑战性的工作。
     本论文的研究目的是探索制备稳定性好、保存时间长电化学发光传感器的新方法,进而研制高灵敏、可重复利用的电化学发光适体传感器,为以后进一步研究电化学发光或者电化学传感器提供一些基础研究资料。本论文研究工作是在国家自然科学基金“糖/凝集素电化学发光生物传感器的研究”(No.20975065),“电化学发光适配体生物传感器”(No.20775046)和陕西师范大学研究生创新基金“基于共价键固定探针的电化学发光适配体传感器的研究”(No.2009CXS012)的资助下完成的。本论文研制了两种高灵敏、可重复利用检测小分子物质的电化学发光传感器;研制了四种高灵敏、可重复利用的可卡因、三磷酸腺苷的电化学发光适体传感器。
     本论文由5章组成。第1章为引言。引言部分介绍了电化学发光的基本原理;重点介绍了电化学发光适体传感器的发展、存在的问题及其发展趋势;最后介绍了本论文的目的和意义及其主要研究内容。
     第2章介绍了“双共价键固定化探针的可卡因电化学发光适体传感器的研究”,利用双共价法制备了高灵敏和重复利用的电化学发光化学传感器检测季胺盐类物质和电化学发光适体传感器检测可卡因。电化学发光传感器是将一端带有氨基的钌联吡啶衍生物或者它标记的可卡因适体和对氨基苯磺酸共价修饰的石墨电极相连制备的。本实验分别以三丙胺和胃复安为模型分子来评价电化学发光化学传感器。传感器显示了高的灵敏度稳定性和重复性。检测三丙胺和胃复安的检出限分别是30和2×10-9mol/L,分别对50和200×10-9mol/L的三丙胺和胃复安重复扫描90和45个循环,相对标准偏差分别为2.1%和2.6%。电化学发光适体传感器检测可卡因的检出限为10×10-12mol/L,并且对可卡因、海洛因和咖啡因有很好的分辨能力。电化学发光适体传感器的检出限比基于光学和电化学交流循环伏安法建立的适体可卡因生物传感器低4-6个数量级。此传感器再生7次的相对标准偏差为2.8%,并且有长时间的保存稳定性(21天后电化学发光信号变化为原来的96.8%)。基于厄文·朗缪尔等温线的方法用电化学发光曲线估计可卡因和适体的结合常数为4.6×109mol/L-1。此工作解决了电化学发光传感器稳定性差、保存时间短等问题。
     第3章介绍了“基于目标诱导替换的三磷酸腺苷电化学发光体传感器的研究”,利用一端含有氨基的捕获探针和对氨基苯磺酸修饰的石墨电极共价连接。当没有加入三磷酸腺苷时,标记有钌联吡啶衍生物的三磷酸腺营适体链能够和捕获探针很好的结合,电化学发光信号很强;当加入三磷酸腺苷后,电化学发光探针解离,电化学发光信号降低,此为信号抑制型传感器。而对于信号增强型传感器,当没有加入三磷酸腺苷时,三磷酸腺苷适体链能够和捕获探针很好的结合,电化学发光信号很弱;当加入三磷酸腺苷后,三磷酸腺苷适体链解离,然后加入标记有钌联吡啶衍生物的三磷酸腺苷适体链杂交,电化学发光信号增强。信号抑制型传感器和信号增强型传感器的线性范围分别为1.0×10-10-5.0×10-8 mol/L和1.0×10-12-5.0×10-9 mol/L,检出限为3.0×10-11 mol/L和1.0×10-12 mol/L (S/N=3)。该工作证明了信号增强型传感器的性能要比信号抑制型传感器好,这些结论对以后的研究有一定的促进作用。
     第4章介绍了“三磷酸腺苷夹心式电化学发光适体传感器的研究”,设计了一种基于夹心式检测三磷酸腺苷的电化学发光适体传感器。碱基序列为5'-NH2-(CH2)6-ACC TGG GGG AGTAT-3’捕获探针通过与酰胺氯交联共价键合到修饰了对氨基苯磺酸的石墨电极表面。在没有三磷酸腺苷时,碱基序列为5'-TGC GGA GGA AGG T-(CH2)2-NH2-Rul-3'的电化学发光探针与捕获探针相互作用很弱,电化学发光信号小。当加入三磷酸腺苷后,电化学发光探针与捕获探针间的结合能力增强使得电化学发光信号增加。传感器的线性范围为5.0×10-11-5.0×10-8 mol/L,检出限为1.0×10-11 mol/L (S/N=3),此模型也可以用于血清中溶解细胞中三磷酸腺苷的检测。
     第5章利用离子液体为粘合剂制作碳糊电极,采用高分子聚合法,合成包埋有Ru(bpy)2 (dcbpy)2+的高分子聚合物,将钌聚合物掺杂于离子液体碳糊电极中,制作电化学发光传感器。结果表明该传感器具有很好的电化学电化学发光特性,与石蜡油为粘合剂制作的电化学发光传感器相比,离子液体为粘合剂的电化学发光传感器检测三丙胺的检出限降低1个数量级。海洛因对电化学发光传感器的发光信号有很好的增强作用,基此建立了高灵敏度检测海洛因的电化学发光分析法,海洛因浓度与电化学发光信号在2.0×10-9 mol/L-2.0×10-5 mol/L范围内呈良好的线性关系,检出限为8×10-10 mol/L (S/N=3)。将电化学发光传感器在5.0×10-9 mol/L海洛因溶液中采用线性循环电位连续扫描60圈,相对标准偏差小于5%。该方法用于血清中海洛因的检测,回收率在94-101%之间。
Electrogenerated chemiluminescence (also called electrochemiluminescence, abbreviated as ECL) is the process where species generated at electrodes undergo electron-transfer reactions to form excited states that emit light. ECL method has many distinct advantages over fluorescence method because it does not involve a light source and avoids the attendant problems of scattered light and impurities luminescent. Moreover, the specificity of the ECL reaction associated with the ECL label and the coreactant species decreases problems with side reactions and is characterized by good spatial and temporal resolution. ECL has been widely used in many chemical and biochemical related applications over the past several years, which include immunoassay, DNA hybridization detection, food and water testing, as well as biowarfare agent or explosive material detection. Aptamers are nucleic acid (both DNA and RNA) receptors that bind to specific target molecules. Aptamers exhibit a strong and specific binding affinity towards their targets with a remarkable stability, simply synthesized via cost-effective and readily automated routes and so on. With regard to this, aptamers can be used as new recognition entities for specific sensing of a variety of analyte targets in biosensor. Some ECL aptamer-based biosensor about the combination of high sensitive ECL with aptamer have been attracted much attention in recent years. Up to date, all the ECL aptamer-based biosensor are broadly used thiolated SAMs on Au for the attachment of ruthenium complexes, this approach can only allow for the anodic ECL measurements conducted under potentials not positive than-0.80 V vs Ag/AgCl so that the thiol layer's damage can be avoided. Additionally, because gradual degradation of the SAMs in air or in a phosphate saline buffer (PBS) solution often occurs, the long-term storage stability of the ECL detector or the biosensor is a challenge.
     The aim of this thesis is to design reusable and long storage stability ECL biosensors in order to provide a new strategy in fabricating various ECL or electrochemical chemical sensors or biosensors. The research work in this thesis is financially supported by the National Natural Science Foundation of China (Grant No.20775046, No.20975065) and the innovation Funds for Graduate Programs of Shaanxi Normal University (No.2009CXS012).
     The thesis includes two parts. First part, chapter 1 is general introduction while second part consisting of four chapters, is a research report. In Chapter 1, general introduction to the principle of ECL, ECL aptamer-based biosensors including their principles and research development, and the purpose of this research work were presented.
     In Chapter 2, a double covalent coupling method for the fabrication of highly sensitive and reusable ECL chemical sensor for the detection of tertiary amines and ECL aptamer-based (ECL-AB) biosensor for the detection of cocaine was reported. The ECL sensors were constructed by covalent coupling of Ru(bpy)32+derivatives (Ru1,Ru(bpy)32+=tris(2,2'-bipyridyl)ruthenium(Ⅱ)) or cocaine aptamer-Ru1 to the surface of paraffin-impregnated graphite electrode (PIGE) that had been covalently modified with a monolayer of 4-aminobenzene sulfonic acid via electrochemical oxidations. ECL performance of the newly developed chemical sensors was evaluated using tri-n-propylamine (TPrA) and metoclopramide (MCP) as model analytes. The sensors exhibited excellent sensitivity, stability, and reproducibility with a detection limit of 30 nmol/L for TPrA and 2.0 nmol/L for MCP, and relative standard deviations (RSD) of 2.1% over 90 cyclic potential cycles (0 to 1.50 V vs Ag/AgCl) and 2.6% over 45 cycles (0.60 to+1.30 V vs Ag/AgCl) at 400 mV/s for 50 nmol/L TPrA and 200 nmol/L MCP, respectively. For the ECL-AB biosensor, it showed an extremely low detection limit of 10 pM for cocaine, and offered a good selectivity towards cocaine, heroin, and caffeine. This detection limit was about 4-6 orders of magnitude lower than that reported on the basis of AC voltammetry and optical aptamer-based cocaine biosensors. Additionally, the ECL-AB biosensor was highly reusable (RSD=2.8%, n=7) and possessed long-term storage stability (96.8% initial ECL recovery over 21 days storage). A binding constant of 4.6±0.3×109M-1 between cocaine and its aptamer was estimated using an ECL based Langmuir isotherm approach. Wide applications of the presently reported strategy in fabricating various chemical sensors or biosensors are expected.
     In Chapter 3, ECL-AB biosensors based on target-induced aptamer displacement were developed for the determination of ATP as a model system. "Signal on" and "Signal off" ECL-AB biosensors were fabricated by covalently coupling the partial complementary single strand DNA-ATP binding aptamer to the surface of PIGE modified with 4-ABSA through a cross-linking reaction amine-acyl chloride. In the absence of ATP, the "Signal off" ECL-AB biosensor led to a great ECL signal. In the presence of ATP, target-induced strand release of a 3'-end label Ru(bpy)32+ derivatives tagged aptamer from the aptamer capture DNA duplex bound on an electrode, led to decrease ECL signal. Therefore, this ECL-AB biosensor can be used to detect of ATP. With regard to the "Signal on" ECL-AB biosensor's principle is that the interaction between the target and the aptamer strand may induce the formation and subsequent dissociation of target-aptamer complex from an electrode surface, and consequently, the remaining DNA strand on the electrode surface can hybridize again with a ssDNA containing an ECL probe. The linear of "Signal on" and "Signal off" were in the range from 1.0×10-12 mol/L to 5.0×10-9mol/L and 1.0×10-10mol/L to 5.0×10-8mol/L with a detection limit were 1.0×10-12mol/L,1.0×10-10 mol/L, respectively.
     In Chapter 4, a simple ECL sensing platform for high specificity and sensitive sandwich assay for the detection of small molecule target ATP was demonstrated. A capture probe,5'-NH2-(CH2)6-ACC TGG GGG AGT AT-3'was covalently coupled to the surface of PIGE modified with r-aminobenzene sulfonic acid through a cross-linking reaction amine-acyl chloride. In the absence of ATP, a ECL probe 5'-TGC GGA GGA AGGT-(CH2)2-NH2-Rul-3'was weakly interaction between the capture probe, led to a small ECL signal. In the presence of ATP, ECL probe was strongly interaction between the capture probe, led to a great ECL signal.The ECL intensity is linear with the concentration of ATP in the range from 5.0×10-11mol/L to 5.0×10-8 mol/L and the detection limit is 3×10-11 mol/L (S/N=3).
     In Chapter 5, a sensitive ECL sensor for the determination of heroin was developed by employing ruthenium complex polymer as ECL signal and ionic liquid as binding reagent. ECL sensor was prepared by thoroughly mixing ruthenium complex polymer, graphite powder and ionic liquid, which show good electrochemical and ECL behaviors. The ECL intensity is linear with the concentration of heroin in the range from 2.0×10-9 mol/L to 2.0×10-5 mol/L and the detection limit is 8×10-10 mol/L. The ECL sensor exhibited a long-term stability, fine reproducibility with relative standard deviation less than 5% for 5.0×10-9 mol/L heroin in 60 continuous determinations. The developed method allows the detection of heroin in a serum sample with recovery in 94-101%.
引文
[1]A. A. Lubin, K. W. Plaxco. Folding-based electrochemical biosensors:the case for responsive nucleic acid architectures[J]. Acc. Chem. Res.,2010,43(4):496-505.
    [2]D. R. Thevenot, K. Toth, R. A. Durst, et al. Electrochemical biosensors: recommended definitions and classification[J]. Biosens. Bioelectron.,2001,16: 121-131.
    [3]C Tuerk, L. Gold. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase[J]. Science,1990,249: 505-510.
    [4]A. E. Ellington, J. W. Szostak. In vitro selection of RNA molecules that bind specific ligands[J]. Nature,1990,346:818-822.
    [5]D. L. Robertson, G. F. Joyce. Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA[J]. Nature,1990,344:467-468.
    [6]J. W. Liu, Z. H. Cao, Y. Lu. Functional nucleic acid sensors[J]. Chem. Rev.,2009, 109:1948-1998.
    [7]A. J. Bard, Ed. Electrogenerated chemiluminescence[M]. Marcel Dekker, Inc.: New York,2004.
    [8]A. J. Bard, L. R. Faulkner. Electochemical methods[M]. Wiley:New York,2001 and references therein (pp.39-41).
    [9]J. Wang. Analytical electrochemistry[M]. Wiley:New York,2006 and references therein (pp.29-69).
    [10]F. Scholz. Electroanalytical methods:guide to experiments and applications[M]. Springer-Verlag Berlin Heidelberg,2010.
    [11]V. S. Bagotsky, Fundamentals of electrochemistry[M]. Wiley:New York,2006.
    [12]C. A. Parker. Photoluminescence of solutions[M]. Elsevier:Amsterdam,1968.
    [13]J. B. Birks. Photophysics of aromatic molecules[M]. Wiley-Interscience:New York,1970.
    [14]J. R. Lakowicz. Principles of fluorescence spectroscopy[M]. Springer-Verlag Berlin Heidelberg,2010.
    [15]C. X. Deng, J. H. Chen, N. Zhou, et al. Impedimetric aptasensor with femtomolar sensitivity basedon the enlargement of surface-charged gold nanoparticles[J]. Anal. Chem.,2009,81 (2):739-745.
    [16]Li. Wang, N. Zhou, X. H. Xu, et al. A sensitive, label free electrochemical aptasensor for ATP detection[J]. Talanta,2009,78:954-958.
    [17]D. R. Thevenot, K. Toth, R. A. Durst, et al. Electrochemical biosensors: recommended definitions and classification[J]. Biosens. Bioelectron.,2001,16: 121-131.
    [18]H. L. Qi, Y. G. Peng, Q. Gao, et al. Applications of nanomaterials in electrogenerated chemiluminescence biosensors [J]. Sensors,2009,9:674-695.
    [19]B. Paolo, J. F. Robert. Nanostructured materials for ECL-based detection methods: recent advances and future perspectives [J]. Biosens. Bioelectron.,2009,24: 3191-3200.
    [20]W. J. Miao. Electrogenerated chemiluminescence and its biorelated applications[J]. Chem. Rev.,2008,108 (7):2506-2553.
    [21]S.P.Song, L. H. Wang, J. Li, et al. Aptamer-based biosensors [J]. TrAC Trends Ana. Chem.,2008,27 (2):108-117.
    [22]J. O. Lee, H. M. So, E. K. Jeon, et al. Aptamers as molecular recognition elements for electrical nanobiosensors[J]. Anal. Bioanal. Chem.,2008,390:1023-1032.
    [23]T. Mairal, V. C. Ozalp, P. L. Sanchez, et al. Aptamers:molecular tools for analytical applications [J]. Anal. Bioanal. Chem.,2008,390:989-1007.
    [24]P. Daniela, B. Michael, B. Raymund, et al. Aptamers-basic research, drug development, and clinical applications[J]. Appl. Microbiol. Biotechnol.,2005,69: 367-374.
    [25]M. Famulok, J. S. Hartig, G. Mayer. Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy [J]. Chem. Rev.,2007,107 (9):3715-3743.
    [26]S. Balamurugan, A. Obubuafo, S. A. Soper, et al. Surface immobilization methods for aptamer diagnostic applications [J]. Anal. Bioanal. Chem.,2008,390: 1009-1021.
    [27]Y. L. Li, L. Guo, Z. Y. Zhang, et al. Recent advances of aptamer sensors[J]. Sci. China, Series B.,2008,51(3):193-204.
    [28]S. D. Mendonsa, M. T. Bowser. In vitro selection of high-affinity DNA ligands for human IgE using capillary electrophoresis[J]. Anal. Chem.,2004,76 (18): 5387-5392.
    [29]J. C. Cox, D. Andrew, A. D. Ellington. Automated selection of anti-protein aptamers[J]. Bioorg Med Chem.,2001,9(10):2525-2531.
    [30]J. C. Cox, A. Hayhurst, J. Hesselberth, et al. Automated selection of aptamers against protein targets translated in vitro:from gene to aptamer[J]. Nucleic Acids Res.,2002,30 (20):e108.
    [31]S. C. B. Gopinath. Methods developed for SELEX[J]. Anal. Bioanal. Chem.,2007, 387:171-182.
    [32]Y. Lu, X. C. Li, L. M. Zhang, et al. Aptamer-based electrochemical sensors with aptamer-complementary DNA oligonucleotides as probe[J]. Anal. Chem.,2008, 80 (6):1883-1890.
    [33]Y. Li, H. L. Qi, Y. G. Peng, et al. Electrogenerated chemiluminescence aptamer-based biosensor for the determination of cocaine[J]. Electrochem. Commun,2007,9:2571-2575.
    [34]S. Fields, Proteomics:Proteomics in genomeland[J]. Science,2001,291 (5507): 1221-1224.
    [35]R. F. Service, Searching for recipes forprotein chips[J]. Science,2001,294, (5549): 2080-2082.
    [36]M. B. Murphy, S. T. Fuller, P. M. Richardson, et al. An improved method for the in vitro evolution of aptamers and applications in protein detection and purification[J]. Nucleic Acids Res.,2003,31(18):e110.
    [37]Y. Li, H. L. Qi, Y. G. Peng, et al. Electrogenerated chemiluminescence aptamer-based method for the determination of thrombin incorporating quenching of tris(2,20-bipyridine)ruthenium by ferrocene [J]. Electrochem. Commun,2008, 10:1322-1325.
    [38]X. Y. Wang, W. Yun, J. M. Zhou, et al. Ru(bpy)32+-doped silica nanoparticle aptasensor for detection of thrombin based on electrogenerated chemiluminescence [J]. J. Chin. Chem.,2008,26:315-320.
    [39]L. Y. Fang, Z. Z. Lu, H. Wei, et al. A electrochemiluminescence aptasensor for detection of thrombin incorporating the capture aptamer labeled with gold nanoparticles immobilized onto the thio-silanized ITO electrode[J]. Anal. Chim. Acta.,2008,628:80-86.
    [40]H. P. Huang, G. F. Jie, R. J. Cui, et al. DNA aptamer-based detection of lysozyme by an electrochemiluminescence assay coupled to quantum dots[J]. Electrochem. Commun,2009,11:816-818.
    [41]X. Y. Wang, J. M. Zhou, Y. Wen, et al. Detection of thrombin using electrogenerated chemiluminescence based on Ru(bpy)32+-doped silica nanoparticle aptasensor via target protein-induced strand displacement[J]. Anal. Chim. Acta.,2007,598:242-248.
    [42]J. G. Bai, H. Wei, B. L. Li, et al. [Ru(bpy)2(dcbpy)NHS] Labeling/aptamer-based biosensor for the detection of lysozyme by increasing sensitivity with gold nanoparticle amplification[J]. Chem. Asian. J.,2008,3(11):1935-1941.
    [43]W. W. Guo, J. P. Yuan, B. L. Li, et al. Nanoscale-enhanced Ru(bpy)32+ECL labels and related aptamer-based biosensing system[J]. Analyst,2008,133:1209-1213.
    [44]J. G. Bruno, J. L. Kiel. Use of magnetic beads in selection and detection of biotoxin aptamers by electrochemiluminescence and enzymatic methods[J]. Biosens. Bioelectron.,1999,14:457.
    [45]J. G. Bruno, J. L. Kiel. In vitro selection of DNA aptamers to anthrax spores with electrochemiluminescence detection[J]. Biotechniques,2002,32:178.
    [46]X. B. Yin, Y. Y. Xin, Y. Zhao. Label-free electrochemiluminescent aptasensor with attomolar mass detection limits based on a Ru(phen)32+-double-strand DNA composite film electrode[J]. Anal. Chem.,2009,81:9299-9305.
    [1]C. Liu, A. J. Bard. Electrostatic electrochemistry at insulators [J]. Nat. Mater., 2008,7:505-509.
    [2]A. J. Bard, Ed. Electrogenerated chemiluminescence[M]. Marcel Dekker, Inc.: New York,2004.
    [3]W. Miao. Electrogenerated chemiluminescence and its biorelated applications [J]. Chem. Rev.,2008,108:2506-2553.
    [4]H. L. Qi, Y. Peng, Q. Gao, C. X. Zhang, Applications of nanomaterials in electrogenerated chemiluminescence biosensors[J]. Sensors,2009,9:674-695.
    [5]R. J. Forster, P. Bertoncello, T. E. Keyes. Electrochemiluminescence[J]. Annu. Rev. Anal. Chem.,2009,2:359-385.
    [6]M. M. Richter. Electrochemiluminescence (ECL)[J]. Chem. Rev.,2004,104: 3003-3036.
    [7]H. Wei, E. Wang. Solid-state electrochemiluminescence of tris(2,2'-bipyridyl) ruthenium[J]. Trends Anal. Chem.,2008,27:447-459.
    [8]J. D. Debad, E. N. Glezer, J. K. Leland, G. B. Sigal, J. Wohlsadter. In Electrogener Chemilumin[M]. A. J. Bard, Ed., M. Dekker, Inc.:New York,2004, pp:359-396, Chapter 8.
    [9]T. L. Pittman, W. J. Miao. Examination of electron transfer through DNA using electrogenerated chemiluminescence[J]. Phys. Chem. C,2008,112:16999-17004.
    [10]T. L. Pittman, B. Thomson, W. Miao. Ultrasensitive detection of TNT in soil, water, using enhanced electrogenerated chemiluminescence[J]. Anal. Chim. Acta, 2009,632:197-202.
    [11]J. Zhang, H. L. Qi, Y. Li, J. Yang, Q. Gao. C. X. Zhang. Electrogenerated chemiluminescence DNA biosensor based on hairpin DNA probe labeled with ruthenium complex[J]. Anal. Chem.,2008,80:2888-2894.
    [12]S. Wang, J. Milam, A. C. Ohlin, V. H. Rambaran, E. Clark, W. Ward, L. Seymour, W. H. Casey, A. A. Holde, W. Miao. Electrochemical and electrogenerated chemiluminescent studies of a trinuclear complex, [((phen)2Ru(dpp))2RhCl2]5+, and its interactions with calf thymus DNA[J]. Anal. Chem.,2009,81:4068-4075.
    [13]X. Zhu, Z. Lin, L. Chen, B. Qiu, G. Chen. A sensitive and specific electrochemiluminescent sensor for lead based on DNAzyme[J]. Chem. Commun., 2009:6050-6052.
    [14]Y. Li, H. L. Qi, Y. Peng, Q. Gao, C. X. Zhang, Electrogenerated chemiluminescence aptamer-based methodfor the determination of thrombin incorporating quenching of tris(2,2'-bipyridine)ruthenium by ferrocene[J]. Electrochem. Commun.,2008,10:1322-1325.
    [15]Y. Li, H. L. Qi, Y. Peng, J. Yang, C. X. Zhang, Electrogenerated chemiluminescence aptamer-based biosensor for the determination of cocaine[J]. Electrochem. Commun.,2007,9:2571-2575.
    [16]X.-B. Yin, Y.-Y. Xin, Y. Zhao. Label-free electrochemiluminescent aptasensor with attomolar mass detection limits based on a Ru(phen)32+-double-strand DNA composite film electrode[J]. Anal. Chem.,2009,81:9299-9305.
    [17]X. Wang, P. Dong, W. Yun, Y. Xu, P. He, Y. Fang. A solid-state electrochemiluminescence biosensing switch for detection of thrombin based on ferrocene-labeled molecular beacon aptamer[J]. Biosens. Bioelectron.,2009,24: 3288-3292.
    [18]W. Yao, L. Wang, H. Wang, X. Zhang, L. Li. An aptamer-based electrochemiluminescent biosensor for ATP detection[J]. Biosens. Bioelectron., 2009,24:3269-3274.
    [19]W. Miao, J.-P. Choi, A. J. Bard. Electrogenerated chemiluminescence 69:the tris(2,2'-bipyridine)ruthenium(II), (Ru(bpy)32+)/tri-n-propylamine (TPrA) system revisiteds a new route involving TPrA+cation radicals[J]. J. Am. Chem. Soc., 2002,124:14478-14485.
    [20]N. D. Danielson. In electrogener. chemilumin.[M]. A. J. Bard, Ed., M. Dekker, Inc.:New York,2004:pp 397-444, Chapter 9.
    [21]W. Miao, A. J. Bard. Electrogenerated chemiluminescence.72. determination of immobilized DNA and c-reactive protein on Au(111) electrodes using tris(2,2'-bipyridyl)ruthenium(Ⅱ) labels [J]. Anal. Chem.,2003,75:5825-5834.
    [22]W. Miao, A. J. Bard. Electrogenerated chemiluminescence.77. DNA hybridization detection at high amplification with [Ru(bpy)3]2+-containing microspheres[J]. Anal. Chem.,2004,76:5379-5386.
    [23]W. Miao, A. J. Bard. Electrogenerated chemiluminescence.80. c-reactive protein determination at high amplification with [Ru(bpy)3]2+-containing microspheres [J]. Anal. Chem.,2004,76:7109-7113.
    [24]X.-B. Yin, B. Qi, X. Sun, X. Yang, E. Wang.4-(Dimethylamino)butyric acid labeling for electrochemiluminescence detection of biological substances by increasing sensitivity with gold nanoparticle amplification[J]. Anal. Chem.,2005, 77:3525-3530.
    [25]H. Wang, G. Xu, S. Dong. Electrochemistry and electrochemiluminescence of stable tris(2,2'-bipyridyl)ruthenium(Ⅱ) monolayer assembled on benzene sulfonic acid modified glassy carbon electrode[J]. Talanta,2001,55:61-67.
    [26]J. Li, Y. Xu, H. Wei, T. Huo, E. E. Wang. Electrochemiluminescence sensor based on partial sulfonation of polystyrene with carbon nanotubes[J]. Anal. Chem.,2007, 79:5439.
    [27]L. Shen, X. Li, H. L. Qi, C. X. Zhang. Electrogenerated chemiluminescence of ruthenium complex immobilized in a highly cross-linked polymer and its analytical applications[J]. Luminescence,2008,23:370-375.
    [28]Y. S. Obeng, A. J. Bard. Electrogenerated chemiluminescence.53. Electrochemistry and emission from adsorbed monolayers of a tris(bipyridyl) ruthenium(II)-based surfactant on gold and tin oxide electrodes [J]. Langmuir,1991, 7:195-200.
    [29]Y. Sato, K. Uosaki. Electrochemical and electrogenerated chemiluminescence propertiesof tris(2,2'-bipyridine) ruthenium(Ⅱ)-tridecanethiol derivative on ITO and gold electrode[J]. J. Electroanal. Chem.,1995,384:57-66.
    [30]G. M. Greenway, A. Greenwood, P. Watts, C. Wiles. Solid-supported chemiluminescence and electrogenerated chemiluminescence based on a tris(2,2'-bipyridyl)ruthenium(Ⅱ) derivative[J]. Chem. Commun.,2006:85-87.
    [31]Y. Tao, Z. Lin, X. Chen, X. Huang, M. Oyama. Functionalized multiwall carbon nanotubes combined with bis(2,2'-bipyridine)-5-amino-1,10-phenanthroline ruthenium(II) as an electrochemiluminescence sensor[J]. Sens. Actuators. B,2008, 129:758.
    [32]Y. Zu, A. J. Bard. Electrogenerated chemiluminescence.67. dependence of light emission of the tris(2,2')bipyridylruthenium(Ⅱ)/tripropylamine system on electrode surface hydrophobicity[J]. Anal. Chem.,2001,73:3960-3964.
    [33]D. F. Yang, H. Al-Maznai, M. Morin. Vibrational study of the fast reductive and the slow oxidative desorptions of a nonanethiol self-assembled monolayer from a Au(111) single crystal electrode[J]. J. Phys. Chem. B,1997,101:1158-1166.
    [34]E. Cortes, A. A. Rubert, G. Benitez, P. Carro, M. E. Vela, R. C. Salvarezza. Enhanced stability of thiolate self-assembled monolayers (SAMs) on nanostructured gold substrates [J]. Langmuir,2009,25:5661-5666.
    [35]N. A. Kautz, D. P. Fogarty, S. A. Kandel. Degradation of octanethiol self-assembled monolayers from hydrogen-atom exposure:A molecular-scale study using scanning tunneling microscopy [J]. Surf. Sci.,2007,601:L86-L90.
    [36]J. Liu, L. Cheng, B. Liu, S. Dong. Covalent modification of a glassy carbon Surface by 4-aminobenzoic acid and its application in fabrication of a polyoxometalates-consisting monolayer and multilayer films[J]. Langmuir,2000, 16:7471-7476.
    [37]J. C. Harper, R. Polsky, D. R. Wheeler, S. M. Brozik. Maleimide-activated aryl diazonium salts for electrode surface functionalization with biological and redox-active molecules[J]. Langmuir,2008,24:2206-2211.
    [38]J. C. Harper, R. Polsky, D. R. Wheeler, S. M. Dirk, S. M. Brozik. Selective immobilization of DNA and antibody probes on electrode arrays:simultaneous electrochemical detection of DNA and protein on a single platform[J]. Langmuir, 2007,23:8285-8287.
    [39]J. C. Harper, R. Polsky, D. R. Wheeler, D. M. Lopez, D. C. Arango, S. M. Brozik. A multifunctional thin film Au electrode surface formed by consecutive electrochemical reduction of aryl diazonium salts [J]. Langmuir,2009,25: 3282-3288.
    [40]R. Polsky, J. C. Harper, S. M. Dirk, D. C. Arango, D. R. Wheeler, S. M. Brozik. Diazonium-functionalized horseradish peroxidase immobilized via addressable electrodeposition:direct electron transfer and electrochemical detection[J]. Langmuir,2006,23:364-366.
    [41]G. Liu, T. Boecking, J. J. Gooding. Diazonium salts:stable monolayers on gold electrodes for sensing applications [J]. J. Electroanal. Chem.,2007,600:335-344.
    [42]J. Chen, J. Zhang, K. Wang, X. Lin, L. Huang, G. Chen. Electrochemical biosensor for detection of BCR/ABL fusion gene using locked nucleic acids on 4-aminobenzenesulfonic acid-modified glassy carbon electrode[J]. Anal. Chem., 2008,80:8028-8034.
    [43]T. Shimidzu, T. Iyoda, K. Izaki, Photoelectrochemical properties of bis(2,2'-bipyridlne) (4,4'-dlcarboxy-2,2'-bipyrldlne)ruthenlum(Ⅱ) chloride[J]. J. Phys. Chem.,1985,89:642-645.
    [44]K. Kalyanasundaram, M. K. Nazeeruddin, M. Gratzel, G. Viscardi, P. Savarino, E. Barni. Synthesis and photophysical characterization of highly luminescent complexes of Ru(Ⅱ) containing 4,4'-di-(p-carboxyphenyl)-2,2'-bipyridine[J]. Inorg. Chim. Acta,1992:198-200,831-839.
    [45]Y. Li, H. L. Qi, F. Fang, C. X. Zhang. Ultrasensitive ECL detection of DNA hybridization using carbon-nanotubes loaded with tris(2,2'-bipyridyl) ruthenium derivative tags[J]. Talanta,2007,72:1704-1709.
    [46]H. Wang, C. X. Zhang, Y. Li, H. L. Qi. Electrogenerated chemiluminescence detection for deoxyribonucleic acid hybridization based on gold nanoparticles carrying multiple probes[J]. Anal. Chim. Acta,2006,575:205-211.
    [47]B. R. Baker, R. Y. Lai, M. S. Wood, E. H. Doctor, A. J. Heeger, K. W. Plaxco. An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids[J]. J. Am. Chem. Soc., 2006,128:3138-3139.
    [48]H. L. Qi, Y. Zhang, Y. Peng, C. X. Zhang. Homogenous electrogenerated chemiluminescence immunoassay for human immunoglobulin G using N-(aminobutyl)-N-ethylisoluminol as luminescence label at gold nanoparticles modified paraffin-impregnated graphite electrode[J]. Talanta,2008,75:684-690.
    [49]B. C. F. Chu, G. M. Wahl, L. E. Orgel. Deatizadtion of unprotected polynucleotides [J].Nucleic Acids Res.,1983,11:6513-6529.
    [50]S. S. Ghosh, P. M. Kao, D. Y. Kwoh. Synthesis of 5'-oligonucleotide hydrazide derivatives and their use in preparation of enzyme-nucleic acid hybridization probes[J]. Anal. Biochem.,1989,178:43-51.
    [51]M. Yang, C. Liu, K. Qian, P. He, Y. Fang. Study on the ECL behavior of ABEI and its application in DNA hybridization analysis[J].Analyst,2002,127: 1267-1271.
    [52]X. Li, Y.Wan, C. J. Sun. Covalent modification of a glassy carbon surface by electrochemical oxidation of r-aminobenzene sulfonic acid in aqueous solution[J]. J. Electroanal. Chem.,2004,569:79-87.
    [53]M. Tencer, P. Berini. Toposelective electrochemical desorption of thiol SAMs from neighboring polycrystalline gold surfaces[J]. Langmuir,2008,24: 12097-12101.
    [54]C. A. Widrig, C. Chung, M. D. Porter. The electrochemical desorption of n-alkanethiol monolayers from polycrystalline Au and Ag electrodes [J]. J. Electroanal. Chem.,1991,310:335-359.
    [55]H.-S. Zhuang, J.-L. Huang, G.-N. Chen. Synthesis of a new biacridine and its use as the chemiluminescent probe for immunoassay of carcinoembryonic antigen [J]. Anal. Chim. Acta,2004,512:347-353.
    [56]D. Kim, D. Kang. Molecular recognition and specific interactions for biosensing applications[J]. Sensors,2008,8:6605-6641.
    [57]Y. S. Obeng, M. E. Laing, A. C. Friedli, H. C. Yang, D. Wang, E. W. Thulstrup, A. J. Bard, J. Michl. Self-assembled monolayers of parent and derivatized [n]staffane-3,3(n-1)-dithiols on polycrystalline gold electrodes[J]. J. Am. Chem. Soc.,1992,114:9943-9952.
    [58]Y. T. Kim, R. L. McCarley, A. J. Bard. Scanning tunneling microscopy studies of Au(111) derivatized with organothiols[J]. J. Phys. Chem.,1992,96:7416-7421.
    [59]C. Sun, W. Lu, Y. Gao, J. Li. Electrochemiluminescence from Ru(bpy)32+ immobilized in poly(3,4-ethylenedioxythiophene)/poly (styrenesulfonate)/ poly(vinyl alcohol) composite films[J]. Anal. Chim. Acta,2009,632:163-167.
    [60]S. Wang, M. T. Neshkova, W. Miao. EQCM study of the ECL quenching of the tris(2,2'-bipyridyl)ruthenium(Ⅱ)/tris-n-propylamine system at a Au electrode in the presence of chloride ions[J]. Electrochim. Acta,2008,53:7661-7667.
    [61]Z. Chen, Y. Zu. Electrogenerated chemiluminescence of the tris(2,2'-bipyridine) ruthenium(Ⅱ)/tri-n-propylamine (TPrA) system:crucial role of the long lifetime of TPrA.bul.+cation radicals suggested by electrode surface effects[J]. J. Phys. Chem. C,2008,112:16663-16667.
    [62]H. Zheng, Y. Zu. Emission of tris(2,2'-bipyridine) ruthenium(Ⅱ) by coreactant electrogenerated chemiluminescence:from O2-insensitive to highly O2-sensitive[J]. J. Phys. Chem. B,2005,109:12049-12053.
    [63]I. Langmuir. The Constitution and fundamental properties of solids and liquids.part Ⅰ. solids[J]. J. Am. Chem. Soc.,1916,38:2221-2295.
    [64]I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum [J]. J. Am. Chem. Soc.,1918,40:1361-1402.
    [65]S. M. Nimjee, C. P. Rusconi, B. A. Sullenger. Aptamers:an emerging class of therapeutics [J]. Annu. Rev. Med.,2005,56:555-583.
    [66]E. J. Cho, J.-W. Lee, A. D. Ellington. Annu. Rev. Anal. Chem.,2009,2:241-264.
    [67]C. P. Rusconi, E. Scardino, J. Layzer, G. A. Pitoc, T. L. Ortel, D. Monroe, B. A. Sullenger. RNA aptamers as reversible antagonists of coagulation factor IXa[J]. Nature 2002,419:90-94.
    [68]M. N. Stojanovic, P. de Prada, D. W. Landry. Fluorescent sensors based on aptamer Self-assembly[J]. J. Am. Chem. Soc.,2000,122:11547-11548.
    [69]M. N. Stojanovic, P. de Prada, D. W. Landry. Aptamer-based folding fluorescent sensor for cocaine[J]. J. Am. Chem. Soc.,2001,123:4928-4931.
    [70]B. Shlyahovsky, D. Li, Y. Weizmann, R. Nowarski, M. Kotler, I. Willner. Spotlighting of cocaine by an autonomous aptamer-based machine [J]. J. Am. Chem. Soc.,2007,129:3814-3815.
    [71]J. Liu, Y. Lu. Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles[J]. Angew. Chem. Int. Ed.,2006,45:90-94.
    [72]J. Liu, D. Mazumdar, Y. Lu. A simple and sensitive "dipstick" test in serum based on lateral flow separation of aptamer-linked nano structures [J]. Angew. Chem. Int. Ed.,2006,45:7955-7959.
    [1]H. P. Huang, Y. L. Tan, J. J. Shi, G. X. Liang, J. J. Zhu. DNA aptasensor for the detection of ATP based on quantum dots electrochemiluminescence[J]. Nanoscale, 2010,2(4):606-612.
    [2]X. Y.Wang, P. Dong, P. G. He, Y. Z. Fang. A solid-state ECL sensing platform for detection of adenosine based on ferrocene-labeled structure-switching signaling aptamer[J]. Anal. Chim. Acta,2010,658(2):128-132.
    [3]L. Z. Hu, Z. Bian, H. J. Li, S. Han, Y. L. Yuan, L. X. Gao, G. B. Xu. [Ru(bpy)2dppz]2+ electrochemiluminescence switch and its applications for DNA interaction study and label-free ATP aptasensor[J]. Anal. Chem.,2009,81(23): 9807-9811.
    [4]X. B. Yin, Y. Y. Xin, Y. Zhao. Label-free electrochemiluminescent aptasensor with attomolar mass detection limits based on a Ru(phen)32+-double-strand DNA composite film electrode[J]. Anal. Chem.,2009,81(22):9299-9305.
    [5]X. Y. Wang, P. Dong, W. Yun, Y. Xu, P. G. He, Y. Z. Fang. A solid-state electrochemiluminescence biosensing switch for detection of thrombin based on ferrocene-labeled molecular beacon aptamer[J]. Biosens. Bioelectron.,2009, 24(11):3288-3292.
    [6]W. Yao, L. Wang, H. Y. Wang, X. L. Zhang, L. Li. An aptamer-based ECL biosensor for ATP detection[J]. Biosens. Bioelectron.,2009,24(11):3269-3274.
    [7]L. Y. Fang, Z. Z. Lue, H. Wei, E. K. Wang. A electrochemiluminescence aptasensor for detection of thrombin incorporating the capture aptamer labeled with gold nanoparticles immobilized onto the thio-silanized ITO electrode[J]. Anal. Chim. Acta,2008,628(1):80-86.
    [8]J. G. Bai, H. Wei, B. L. Li, et al. [Ru(bpy)2(dcbpy)NHS] labeling/aptamer-based biosensor for the detection of lysozyme by increasing sensitivity with gold nanoparticle amplification[J]. Chem. Asian. J.,2008,311:1935-1941.
    [9]W. W Guo, J. P. Yuan, B. L. Li, et al. Nanoscale-enhanced Ru(bpy)32+ECL labels and related aptamer-based biosensing system[J]. Analyst,2008,133:1209-1213.
    [10]H. P. Huang, G. F. Jie, R. J. Cui, et al. DNA aptamer-based detection of lysozyme by an electrochemiluminescence assay coupled to quantum dots[J]. Electrochem. Commun.,2009,11:816-818.
    [11]Y. Li, H. L. Qi, Y. Peng, Q. Gao, C. X. Zhang, Electrogenerated chemiluminescence aptamer-based methodfor the determination of thrombin incorporating quenching of tris(2,2'-bipyridine)ruthenium by ferrocene [J]. Electrochem. Commun.,2008,10:1322-1325.
    [12]Y. Li, H. L. Qi, Y. Peng, J. Yang, C. X. Zhang, Electrogenerated chemiluminescence aptamer-based biosensor for the determination of cocaine[J]. Electrochem. Commun.,2007,9:2571-2575.
    [13]X. Y. Wang, W. Yun, J.-M. Zhou, P. Dong, P.-G. He, Y.-Z. Fang. Ru(bpy)32+-doped silica nanoparticle aptasensor for detection of thrombin based on electrogenerated chemiluminescence [J]. Chinese J. Chem.,2008,26(2):315-320.
    [14]X. Y. Wang, J. M. Zhou, W. Yun, S. S. Xiao, Z. Chang, P. G. He, Y. Z. Fang. Detection of thrombin using electrogenerated chemiluminescence based on Ru(bpy)32+-doped silica nanoparticle aptasensor via target protein-induced strand displacement[J]. Anal. Chim. Acta,2007,598(2):242-248.
    [15]J. G. Bruno, J. L. Kiel. In vitro selection of DNA aptamers to anthrax spores with electrochemiluminescence detection[J]. Biosens. Bioelectron.,1999,14(5): 457-464.
    [16]A. Sassolas, B. D. Leca-Bouvier, L. J. Blum. DNA Biosensors and Microarrays [J].Chem. Rev.,2008,108:109-139.
    [17]J. Wang. Towards genoelectronics:electrochemical biosensing of DNA hybridization[J]. Chem.-Eur. J.,1999,5:1681-1685.
    [18]Y. Xiao, X. G. Qu, K. W. Plaxco and A. J. Heeger. Label-free electrochemical detection of DNA in blood serum via target-induced resolution of an electrode-bound DNA pseudoknot[J]. J. Am. Chem. Soc.,2007,129: 11896-11897.
    [19]X. L. Zuo, S. P. Song, J. Zhang, D. Pan, L. H. Wang, C. H. Fan. A target-responsive electrochemical aptamer switch (TREAS) for reagentless detection of nanomolar ATP[J]. J. Am. Chem. Soc.,2007,129 (5):1042-1043.
    [20]C. Zhang, G. Li, L. Zhang, J. F. Jiang, Z. Li, Z. H. Peng, L. Deng. A new method for the detection of ATP using a quantum-dot-tagged aptamer[J]. Anal. Bioan. Chem.,2008,392(6):1185-1188.
    [21]H. Urata, K. Nomura, S. Wada, M. Akagi. Fluorescent-labeled single-strand ATP aptamer DNA:Chemo-and enantio-selectivity in sensing adenosine[J]. Biochem. Biophys. Res. Commun.,2007,360(2):459-463.
    [22]J. Wang, Y. X. Jiang, C. S. Zhou, X. H. Fang. Aptamer-based ATP assay using a luminescent light switching complex[J]. Anal. Chem.,2005,77(11):3542-3546.
    [23]P. L. Sazani, R. Larralde, J. W. Szostak. A small aptamer with strong and specific recognition of the triphosphate of ATP[J]. J. Am. Chem. Soc.,2004,126(27): 8370-8371.
    [24]L. B. Zhang, H. Wei, J. Li, T. Li, D. Li, Y. H. Li, E. K. Wang. A carbon nanotubes based ATP aptamer-sensing platform and its application in cellular assay [J]. Biosens. Bioelectron.,2010,25(8):1897-901.
    [25]C. Zhang, G. Li, L. Zhang, J. F. Jiang, Z. Li, Z. H. Peng, L. Deng. A new method for the detection of ATP using a quantum-dot-tagged aptamer [J]. Anal Bioanal Chem.,2008,392(6):1185-8.
    [26]X. L. Zuo, Y. Xiao, K. W. Plaxco. High specificity, electrochemical sandwich assays based on single aptamer sequences and suitable for the direct detection of small-molecule targets in blood and other complex matrices[J]. J. Am. Chem. Soc., 2009,131(20):6944-6945.
    [27]K. Han, L. Chen, Z. S. Lin, G. X. Li. Target induced dissociation (TID) strategy for the development of electrochemical aptamer-based biosensor[J]. Electrochem. Commun.,2009,11(1):157-160.
    [28]Y. Du, B. Li, H. Wei, Y. L. Wang, E. K. Wang. Multifunctional label-free electrochemical biosensor based on an integrated aptamer[J]. Anal. Chem.,2008, 80(13):5110-5117.
    [29]Y. Lu, X. C. Li, L. M. Zhang, P. Yu, L. Su, L. Q. Mao. Aptamer-based electrochemical sensors with aptamer-complementary DNA oligonucleotides as probe[J]. Anal. Chem.,2008,80(6):1883-1890.
    [30]R. J. White, A. A. Rowe, K. W. Plaxco. Re-engineering aptamers to support reagentless, self-reporting electrochemical sensors[J]. Analyst 2010,135(3): 589-594.
    [1]M. C. Rodriguez, A. N. Kawde, J. Wang. Aptamer biosensor for label-free impedance spectroscopy detection of proteins based on recognition-induced switching of the surface charge[J]. Chem. Commun.,2005,34:4267-4269.
    [2]A. K. H. Cheng, B. X. Ge, H. Z. Yu. Aptamer-based biosensors for label-free voltammetric detection of lysozyme[J]. Anal. Chem.,2007,79:5158-5164.
    [3]B. Chakraborty, Z. Jiang, Y. Li, H.-Z. Yu. Rational design and performance testing of aptamer-based electrochemical biosensors for adenosine[J]. J. Electroanal. Chem.,2009,635:75-82.
    [4]Y. Lu, X. C. Li, L. M. Zhang, P. Yu, L. Su, L. Q. Mao. Aptamer-based electrochemical sensors that are not based on the target binding-induced conformational change of aptamers [J]. Anal. Chem.,2008,80:1883-1890.
    [5]A. K. H. Cheng, D. Sen, H.-Z. Yu. Design and testing of aptamer-based electrochemical biosensors for small molecules and proteins[J]. Bioelectrochemistry,2009,77:1-12.
    [6]Y. Lu, N. N. Zhu, P. Yu, L. Q. Mao. Aptamer-based electrochemical sensors that are not based on the target binding-induced conformational change of aptamers[J]. Analyst,2008,133:1256-1260.
    [7]Y. G. Peng, D. D. Zhang, Y. Li, H. L. Qi, Q. Gao, C. X. Zhang. Label-free and sensitive faradic impedance aptasensor for the determination of lysozyme based on target-induced aptamer displacement[J]. Biosens. Bioelectron.,2009,25:94-99.
    [8]X. X. Li, L. H. Shen, D. D. Zhang, H. L. Qi, Q. Gao, F. Ma, C. X. Zhang. Electrochemical impedance spectroscopy for study of aptamer-thrombin interfacial interactions[J]. Biosens. Bioelectron.,2008,23:1624-1630.
    [9]Y. Li, H. L. Qi, Y. Peng, Q. Gao, C. X. Zhang. Electrogenerated chemiluminescence aptamer-based methodfor the determination of thrombin incorporating quenching of tris(2,2'-bipyridine)ruthenium by ferrocene[J]. Electrochem. Commun.,2008,10:1322-1325.
    [10]Y. Li, H. L. Qi, Y. Peng, J. Yang, C. X. Zhang. Electrogenerated chemiluminescence aptamer-based biosensor for the determination of cocaine[J]. Electrochem. Commun.,2007,9:2571-2575.
    [11]H. P. Huang, G. F. Jie, R. J. Cui, J. J. Zhu. DNA aptasensor for the detection of ATP based on quantum dot selectrochemiluminescence[J]. Electrochem. Commun., 2009,11:816-818.
    [12]H. P. Huang, J. J. Zhu. DNA aptamer-based QDs electrochemiluminescence biosensor for the detection of thrombin[J]. Biosens. Bioelectron.,25 (2009): 927-930.
    [13]J. Liu, Y. Lu. Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles[J]. Angew. Chem. Int. Ed.,2006,45:90-94.
    [14]J. Liu, D. Mazumdar, Y. Lu. A simple and sensitive "dipstick" test in serum based on lateral flow separation of aptamer-linked nanostructures[J]. Angew. Chem. Int. Ed.,2006,45:7955-7959.
    [15]W. Miao. Electrogenerated chemiluminescence and its biorelated applications[J]. Chem. Rev.,2008,108:2506-2553.
    [16]S. Parajuli, W. J. Miao. Sensitive determination of hexamethylene triperoxide diamine explosives, using electrogenerated chemiluminescence enhanced by silver nitrate[J]. Anal. Chem.,2009,81:5267-5272.
    [17]H. L. Qi, Y. Peng, Q. Gao, C. X. Zhang. Applications of nanomaterials in electrogenerated chemiluminescence biosensors[J]. Sensors,2009,9:674-695.
    [18]X. Y. Wang, J. M. Zhou, W. Yun, et al. Detection of thrombin using electrogenerated chemiluminescence based on Ru(bpy)32+-doped silica nanoparticle aptasensor via target protein-induced strand displacement[J]. Anal. Chim. Acta,2007,598:242-248.
    [19]X. Y. Wang, W. Yun, J.-M. Zhou, et al. Ru(bpy)32+-doped silica nanoparticle aptasensor for detection of thrombin based on electrogenerated chemiluminescence [J]. J. Chin. Chem.,2008,26:315-320.
    [20]X. L. Zuo, Y. Xiao, K. W. Plaxco. High secificity, electrochemical sandwich assays based on single aptamer sequences and suitable for the direct detection of small-molecule targets in blood and other complex matrices [J]. J. Am. Chem. Soc., 2009,131:6944-6945.
    [21]Y. Xiao, K. W. Plaxco, In functional nucleic acids for sensing and other analytical applications[M]. Springer. Norwell, MA.,2008:179-198.
    [22]D. S. Wilson, S. Nock. Functional protein microarrays[J]. Curr. Opin. Chem. Biol., 2002,6:81-85.
    [23]D. Leech, Affinity Biosensors[J]. Chem. Soc. Rev.,1994,23:205-213.
    [24]T. Shimdzu, T. Iyoda, K. Izaki. Photoelectrochemical properties of bis(2,2'-bipyridine)(4,4'-dicarboxy-2,2'-bipyridine) ruthenium(Ⅱ) chloride[J]. J. Phys. Chem.,1985,89 (4):642-645.
    [25]W. J. Miao, A. J. Bard. Electrogenerated chemiluminescence.72. determination of immobilized DNA and C-reactive protein on Au electrodes using tris (2, 2'-bipyridyl) ruthenium (Ⅱ) labels[J]. Anal. Chem.,2003,75:5825-5834.
    [26]M. Zayats, Y. Huang, R. Gill, C.A. Ma, I. Willner. Label-free and reagentless aptamer-based sensors for small molecules[J]. J. Am. Chem. Soc.,2006,128(42): 13666-13667.
    [27]W. Li, Z. Nie, X. H. Xu, Q. P. Shen, C. Y. Deng, J. H. Chen, S. Z. Yao. A sensitive, label free electrochemical aptasensor for ATP detection[J]. Talanta, 2009,78:954-958.
    [28]Y. Du, B. L. Li, F. Wang, S. J. Dong. Au nanoparticles grafted sandwich platform used amplified small molecule electrochemical aptasensor[J]. Biosens. Bioelectron.,2009,24:1979-1983.
    [29]K. Han, L. Chen, Z. S. Lin, G. X. Li. Target induced dissociation (TID) strategy for the development of electrochemical aptamer-based biosensor [J]. Electrochem. Commun.,2009,11:157-160.
    [30]X. L. Zuo, S. P. Song, J. Zhang, D. Pan, L. H. Wang, C. H. Fan. A target-responsive electrochemical. aptamer switch (TREAS) for reagentless detection of nanomolar ATP[J]. J. Am. Chem. Soc.,2007,129:1042-1043.
    [31]C. Zhang, G. Li, L. Zhang, J. F. Jiang, Z. Li, Z. H. Peng, L. Deng. A new method for the detection of ATP using a quantum-dot-tagged aptamer[J]. Anal. Bioanal. Chem.,2008,392:1185-1188.
    [1]W. J. Miao. Electrogenerated chemiluminescence and its biorelated applications[J]. Chem. Rev.,2008,108(7):2506-2553.
    [2]P. Wang, Y. Yuan, G. Y. Zhu, M. L. Zhang. Progress in Electrochemilulnmescent Analysis[J]. Chinese J. Anal. Chem.,1999,27(10):1219-1225.
    [3]G. B. Xu, S. J. Dong. Electrochemiluminescence and its application[J]. Chinese J. Anal. Chem.,2001,29(1):103-108.
    [4]H. Wei, E. K. Wang. Solid-state electrochemiluminescence of tris(2,2'-bipyridyl) ruthenium[J]. Trends Anal. Chem.,2008,27:447-459.
    [5]X. Zhang, A. J. Bard. Eiectrogenerated chemiluminescent emission from an organized (L-B) monolayer of a ru(bpy)23+-based surfactant on semiconductor and metal electrodes [J]. J. Phys. Chem.,1988,92 (20):5566-5569.
    [6]L. Dennany, R. J. Forster, J. F. Rusling. Simultaneous direct ECL and catalytic voltammetry detection of DNA in ultrathin films[J]. J. Am. Chem. Soc.,2003,125: 5213-5218.
    [7]Z. H. Guo, Y. Shen, M. K. Wang, F. Zhao, S. J. Dong. Electrochemistry and electrogenerated chemiluminescence of SiO2 nanoparticles/tris(2,2'-bipyridyl) ruthenium multilayer films on indium tin oxide electrodes [J]. Anal. Chem.,2004, 76:184-191.
    [8]L. Armelao, R. Bertoncello, S. Gross, D. Badocco, P. Pastore. Construction and characterization of Ru(Ⅱ)tris(bipyridine)-based silica thin film ECL sensors[J]. Electroanalysis,2003,15:803-811.
    [9]A. N. Khramov, M. M. Collinson. electrogenerated chemiluminescence of tris(2,2'-bipyridyl)ruthenium(Ⅱ) ion-exchanged in nafion-silica composite films[J]. Anal. Chem.,2000,72:2943-2948.
    [10]H. Y. Wang, G. B. Xu, S. J. Dong. Electrochemiluminescence sensor using tris(2,2'-bipyridyl) ruthenium(Ⅱ) immobilized in Eastman-AQ55D-silica composite thin-films [J]. Anal. Chim. Acta,2003,480:285-290.
    [11]H. Y. Wang, G. B. Xu, S. J. Dong. Electrochemiluminescence of tri s(2,2'-bipyridine) ruthenium(Ⅱ) immobilized in poly(p-styrenesulfonate)-silica-Triton X-100 composite thin-films[J]. Analyst, 2001,126:1095-1099.
    [12]L. H. Shi, X. Q. Liu, H. J. Li, G. B. Xu. Electrochemiluminescent detection based on solid-phase extraction at tris(2,2'-bipyridyl) ruthenium(Ⅱ)-modified ceramic carbon electrode [J]. Anal. Chem.,2006,78:7330-7334.
    [13]L. H. Shen, X. X. Li, H. L. Qi, C. X. Zhang. Electrogenerated chemiluminescence of ruthenium complex immobilized in a highly cross-linked polymer and its analytical applications [J]. Luminescence,2008,23:370-375.
    [14]Y. H. Xu, Y. Gao, T. Li, Y. Du, J. Li, E. K. Wang. Highly efficient ECL of functionalized tris(2,2'-bipyridyl)ruthenium(Ⅱ) and selective concentration enrichment of its co-reactants[J]. Adv. Funct. Mater.,2007,17:1003-1009.
    [15]J. Li, M. H. Huang, X. Q. Liu, H. Wei, Y. H. Xu, G. B. Xu, E. K. Wang. Enhanced electrochemiluminescence sensor from tris(2,2'-bipyridyl) ruthenium(Ⅱ) incorporated into MCM-41 and an ionic liquid-based carbon paste electrode[J]. Analyst,2007,132:687-691.
    [16]Y. W. Chi, L. C. Chen, L. Y. Zheng, L. Zhang, G. N. Chen. Design and fabrication of a micro-electrochemiluminescent cell for the study of ionic liquid-mediated electrochemiluminescence [J]. Electrochem. Commun.,2008,10:1665-1668.
    [17]H. Dai, Y. M. Wang, X. P. Wu, L. Zhang, G.-N. Chen. An electrochemiluminescent sensor for methamphetamine hydrochloride based on multiwall carbon nanotube/ionic liquid composite electrode[J]. Biosens. Bioelectron.,2009,24:1230-1234.
    [18]J. B. Noffsinger, N. D. Danielson. Generation of chemiluminescence upon reaction of aliphatic amines with tris (2,2'-bipyridine) ruthenium(Ⅲ)[J]. Anal. Chem., 1987,59:865-868.
    [19]X. Chen, M. J. Li, Z. Li, C.-Q. Yi, X. R. Wang, B. Wang. Study of the Electrochemiluminescence Based on Tris(2,2'-bipyridyl) ruthenium and Some Nervous Amine Compounds Using Flow Injection Analysis [J]. Chinese J. Anal. Chem.,2002,30(5):513-517.
    [20]G. B. Xu, S. J. Dong. Electrochemiluminescent detection of chlorpromazine by selective preconcentration at a lauric acid-modified carbon paste electrode using tris (2,2'-bipyridine)ruthenium(Ⅱ)[J]. Anal. Chem.,2000,72:5308-5312.
    [21]X. Q. Liu, L. H. Shi, W. X. Niu, H. J. Li, G. B. Xu. Environmentally friendly and highly sensitive Ruthenium(Ⅱ) tris(2,2'-bipyridyl) electrochemiluminescent system using 2-(dibutylamino)ethanol as co-reactant[J]. Angew. Chem. Int. Ed., 2007,46:421-424.
    [22]L. A. Hilla, C. E. Lenehan, P. S. Francis, J. L. Adcocka, M. E. Gangea, F. M. Pfeffera, N. W. Barnetta. A screening test for heroin based on sequential injection analysis with dual-reagent chemiluminescence detection[J].Talanta,2008,76: 674-679.
    [23]Y. H. Xua, Y. Gao, H. Wei, Y. Dua, E. K. Wang. Field-amplified sample stacking capillary electrophoresis with electrochemiluminescence applied to the determination of illicit drugs on banknotes[J]. J. Chromagra. A,2006,1115 (1-2): 260-266.
    [24]Y. F. Zhuang, D. M. Zhang, H. X. Ju. Sensitive determination of heroin based on ECL of tris(2,2'-bipyridyl)ruthenium(Ⅱ) immobilized in zeolite Y modified carbon paste electrode[J]. Analyst,2005,130,534-540.
    [25]G. M. Greenway, A. W. Knight, P. J. Knight. ECL determination of codeine and related alkaloids and pharmaceuticals with tris(2,2'-bipyridine) ruthenium(II)[J]. Analyst,1995,120,2549-2552.
    [26]J. Zhang, H. L. Qi, Y. Li, J. Yang, Q. Gao, C. X. Zhang. Electrogenerated chemiluminescence DNA biosensor based on hairpin DNA probe labeled with ruthenium complex[J]. Anal. Chem.,2008,80(8):2888-2894.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700