基于DNA适配体芯片上电致化学发光生物传感器的制备及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
适配体是经过SELEX技术筛选合成出来的单链DNA或者RNA短链。山于适配体具有制备方便、稳定性好、亲和力强,且能高效、特异性的结合各种生物目标分子,使其越来越受研究工作者的关注。近年来,DNA适配体已经成为临床、药物、食品、卫生及环境检测等领域的研究热点。
     量子点具有独特的小尺寸效应和荧光特性以及良好的生物兼容性,已被广泛的应用到各个领域。电致化学发光分析法(ECL)因不需要光源、背景干扰小、较高的灵敏度、较宽的线性范围以及良好的重现性和选择性,使其逐渐成为分析检测中的重要手段。这些技术的有效结合使得高灵敏度、高选择性,甚至在线、实时、活体检测等成为可能。本论文在上述基础上开展了以下研究工作:
     设计了一种新型、灵敏、简单、仅用一条适配体构建的ATP三明治夹心型电致化学发光生物传感器。首先在ITO电极上原位还原低表面密度的纳米金,然后再组装上适配体的一段断链。利用适配体两条断链天然构型之间的吸引来完成对目标分子的识别。体系的ECL信号随着ATP的浓度增加而增大。依此建立的方法的线性范围为0.2~100 nmol/L。检出限为0.02 nmol/L。方法具有高选择性和高灵敏度,适用于其它生物小分子。
     基于量子点芯片电致化学发光,构建了一种新型的DNA适配体生物传感器用于检测凝血酶。首先刻蚀芯片电极,然后在ITO电极上原位合成纳米金。然后通过巯基连接上凝血酶适配体,再通过温育固定上凝血酶目标物。而没有结合凝血酶的DNA适配体与5′-生物素标记的互补DNA低聚核苷酸(cDNA)杂交形成双链DNA低聚核苷酸结构,再结合亲和素标记的量子点。此传感器的电化学信号与凝血酶浓度成反比,依此建立了凝血酶的分析方法。方法具有选择性好、稳定性高和灵敏度高等特点。
Aptamers are single stranded DNA molecules or RNA that produced by SELEX technology. Aptamers have received widely attention because of its merits, such as simple synthesis, good stability, high affinity and specificity to many biologic targets. Recently, aptamers have been fleetly developed and used in many fields such as clinical pharmacy, food hygiene, environmental supervision, etc.
     Quantum dots (QDs) have received tremendous attention for their possible luminescent applications in aqueous solution. With size tunable narrow emission spectra and broad excitation spectra, they have been widely used as multicolored luminescent probes, biological labels and bioimaging. Electrogenerated chemiluminescence (ECL) has many advantages such as needless special light, low background, higher sensitivity, wide calibration ranges and better selectivity, so it has great application potentials in analytical chemistry. The method based above techniques is highly sensitive and selective, can be used in real-time, on-line and in-vivo analysis. The main content is listed as follows: A novel electrogenerated chemiluminescence (ECL) sandwich assay for the determination of small molecule is designed employing a single aptamer sequence as molecular recognition element for ATP as a model analyte and quantum dots served as an ECL label. This sandwich-type sensor is fabricated on an indium tin oxide chip covered with a low surface coverage of gold nanoparticles. A single ATP aptamer, split into two fragments, is used to recognize the target and construct the sandwich-type ECL biosensors. An enhanced ECL signal is generated upon recognition of the target ATP, attributed to a change in the conformation of the ECL probe from random coil-like configuration on the probe-modified film, in close proximity to the sensor interface. The integrated ECL intensity versus the concentration of ATP was linear in the range from 0.2 to 100 nM. The detection limit was 0.02 nM. This work demonstrates that the combination of a highly binding aptamer to analyte with a highly sensitive ECL technique to design The DNA aptamber biosensor is a great promising approach for the determination of small molecule drugs. A novel electrogenerated chemiluminescent biosensor based on DNA aptamer was constructed for the detection of thrombin. A low surface coverage of gold nanoparticles was firstly reduced on an ITO electrode on a chip. Thrombin was inclubated with probes inmobilized on gold nanoparticles. The no-label probes were hybridized with the 5'-biotin modified cDNA oligonucleotides and then coupled to Avidin-QDs. The ECL signal of the biosensor decreased with the increase of target protein. The analytical method was developed based on this. The biosensor has good stability, high sensitivity and specificity.
引文
[1]Ellington A. D., Szostak J. In vitro selection of RNA molecules that bind specific ligands[J]. Nature,1990,346:818-822.
    [2]Jiang Y.X. Zhu C.Z., Ling L.S. Specific apamter-protein interaction studied by atomic force microscopy [J]. Anal. Chem.,2003,75:2112-2116.
    [3]Tuerk C., Gold L.Sytematic evolution of ligands by exponential enrichment:RNA ligands to bacteriophage[J].Science,1990,249:505-510.
    [4]Stoltenburg R., Reinemann C., Strehlitz B.SELEX-A (r)evolutionary method to generate hign affinity nucleic acid ligands[J].Anal.Chem.,2007,24:381-403.
    [5]Nicolini C., Erokhin V., Facc P.,et al. Biosens.Quartz balance DNA sensor[J]. Bioelectron,1997, 12(7):613-618.
    [6]Sastry M., Ramakrishnan V., Pattarkine M., et al. Hybridization of DNA by Sequential Immobilization of Oligonucleotides at the Air-Water Interface[J].Langmuir,2000,16: 9142-9146.
    [7]Sheng H., Ye B.C.Different Strategies of Covalent Attachment of Oligonucleotide Probe onto Glass Beads and the Hybridization Properties [J].Appl. Biochem. Biotech.,2009,152:54-56.
    [8]Hashomoto K., Ito K., Ishimori Y. Sequence-Specific Gene Detection with a Gold Electrode Modified with DNA Probes and an Electrochemically Active Dye [J].Anal Chem,1994,66: 3830-3833.
    [9]Ki H. A., Kim M. J., Pal S.,et al. Oligonucleotide chip assay for quantification of gamma ray-induced single strand breaks [J].J. Pharm. Biomed. Anal.,2009,49:562-566.
    [10]Xi C.Z., Li Q.H., Li S.F.Y. Microgravimetric DNA sensor based on quartz crystal microbalance:comparison of oligonucleotide immobilization methods and the application in genetic siagnosis [J].Biosens. Bioeletron.,2001,16:85-95.
    [11]Panatano P., Morton T. H., Kunr W. G. Enzyme-modified carbon-fiber microelectrodes with millisecond response times [J].J. Am. Chem. Soc.,1991,113:1832-1833.
    [12]Liu J.W., Lee J.H., Lu Y.Quantum dot encoding of aptamer-linked nanostructures for one-pot simultaneous detection of multiple analytes[J].Anal.Chem.,2007,79:4120-4125.
    [13]Levy M., Cater S.F., Ellington A.D.Quantum-Dot Aptamer Beacons for the Detection of Proteins [J]. Chem.Bio.Chem.,2005,6:2163-2166.
    [14]Balamurugan S., Obubuafo A., Soper S.A.,et al.Designing highly specific biosensing surfaces using aptamer monolayers on gold[J].Langmuir,2006,22:6446-6453.
    [15]Li Y, Qi H. L., Peng Y.G., Yang J., et al. Electrogenerated chemiluminescence aptamer-based biosensor for the determination of cocaine[J].Electrochem.Commun.,2007,10:2571-2575.
    [16]Huang H.P., Jie G.F., Cui R.J., Zhu J.J.DNA aptamer-based detection of lysozyme by an electrochemiluminescence assay coupled to quantum dots[J]. Electrochem.Commun,2009,11:816-818.
    [17]Deng C.Y., Chen J.H., Nie L.H.,et al.Impedimetric aptasensor with femtomolar sensitivity based on the enlargement of surface-charged gold nanoparticles[J].Anal.Chem.,2009,81:739-745.
    [18]Wang X.., Zhou J., Yun, W.et al.Deteetion of thrombin using electrogenerated chemiluminescence based on Ru(bpy)32+-dopedsilica nanoparticle aptasensor via target protein-induced strand displacement Anal.Chim.Acta.,2007,589:242-248.
    [19]Ferapontova E.E., Olsen E.M., Gothelf K.V.An RNA aptamer-based electrochemical biosensor for deteetion of theophyllie in serum[J]. J.Am.Chem.Soc.2008,130:4256-4258.
    [20]Katakis I., Mir M. Aptamers as elements of bioelectronic devices [J]. Mol.BioSyst., 2007,3:620-622.
    [21]Alan.K. Cheng H.,. Ge, Bixia,et al. Aptamer based biosensor for label-free voltammetric detection of lysozyme[J]. Anal.Chem.,2007,79:5158-5164.
    [22]Bini A., Minunni M., Tombelli S.,et al. Analytical Performances of Aptamer-Based Sensing for Thrombin Detection[J]. Anal. Chem.,2007,79:3016-3019.
    [23]Schlenson M.D.,Gronewold T.M.A.,Tewes M.,et al. A Love-wave biosensor using nucleic acids as ligands [J].Sens.Actuat.B,2004,101:308-315.
    [24]Richter M. M.Electrochemiluminescence (ECL) Chem. Rev.2004,104 (6):3003-3036.
    [25]Harvey N.Luminescence during Electrolysis[J].J. Phys. Chem.,1929,33:1456-1459.
    [26]Rubinstein I., Bard A. J. Electrogenerated chemiluminescence.37. Aqueous ecl systems based on tris(2,2'-bipyridine)ruthenium(2+) and oxalate or organic acids [J].J. Am. Chem. Soc.,1981, 103:512-516.
    [27]White H., Bard A.J.Electrogenerated chemiluminescence.41. Electrogenerated chemiluminescence and chemiluminescence of the Ru(2,2'-bpy)32+-S2O82- system in acetonitrile-water solutions [J].J. Am. Chem. Soc.,1982,104:,6891-6895.
    [28]章竹君.能量转移发光分析[J].分析实验室,1993,12(1):25-29.
    [29]Miao W. Electrogenerated Chemiluminescence and Its Biorelated Applications [J].Chem.Rev.,2008:108,2506-2553.
    [30]Warren C. Chan W., Nie S.M.Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection[J]. Science,1998,281:2016-2018.
    [31]Caroline S. Quantum Dots Get Wet [J].Science,2003,300:80-81.
    [32]Chen Y. F., Rosenzweig V.Luminescent CdS Quantum Dots as Selective lon Probes[J]. Anal. Chem.,2002,74:5132-5138.
    [33]Dubach J. M Harjes., D. I., Clark H. A.Ion-Selective Nano-optodes Incorporating Quantum Dots[J]. J. Am. Chem. Soc.,2007,129:8418-8419.
    [34]Ghazani A.A., Lee J.A., Klostranec J.,et al. High throughput quantification of protein expression of cancer antigens in tissue microarray using quantum dot nanocrystals[J].Nano. Lett.,2006,6: 2881-2886.
    [35]Cui R.J., Pan H.C., Zhu J.J.,et al. Versatile immunosensor using CdTe quantum dots as electrochemical and fluorescent labels[J]. Anal. Chem.,2007,79:8494-8501.
    [36]Jie G.F., Li L. L., Chen C., et al. Enhanced electrochemiluminescence of CdSe quantum dots composited with CNTs and PDDA for sensitive immunoassay[J].Biosens. Bioelectron.,2009,24: 3352-3358.
    [37]Jaiswal J. K., Mattoussix H., Mauro J. M. Long-term Multiple Color Imaging of Live Cells using Quantum Dot Bioconjugates[J].Nat. Biotechnol.,2003,21:47251-47258.
    [38]Manzoor K., Johny S., Nair S.,et al. Bio-conjugated luminescent quantum dots of doped ZnS:a cyto-friendly system for targeted cancer imaging [J].Nanotechnology 2009,20:065102 (13pp)
    [39]Dubertret B., Skourides P., Norris D.J.,et al. In Vivo Imaging of Quantum Dots Encapsulated in Phospholipid Micelles[J]. Science,2002,298:1759-1762.
    [40]Chan P. M., Yuen T., Ruf F.,et al. Method for multiplex cellular detection of mRNAs using quantum dot fluorescent in situ hybridization [J]. Nucleic Acids Res.,2005,33(18):e161.
    [41]Algar W. R, Krull U. J. Toward A Multiplexed Solid-Phase Nucleic Acid Hybridization Assay Using Quantum Dots as Donors in Fluorescence Resonance Energy Transfer [J].Anal. Chem., 2009,81:4113-4120.
    [42].Zhang S.S, Zhong H., Ding C. F.Ultrasensitive Flow Injection Chemiluminescence Detection of DNA Hybridization Using Signal DNA Probe Modified with Au and CuS Nanoparticles[J]. Anal. Chem.,2008,80:7206-7212.
    [43]Wang H.,.Tessmer I,.Croteau D. L, et al.Functional characterization and atomic force microscopy of a DNA repair protein conjugated to a quantum dot[J]. Nano Lett.,2008,8:1631-1637.
    [44]Chen H. H.,, Ho Y.P., Jiang X.., et al. Simultaneous non-invasive analysis of DNA condensation and stability by two-step QD-FRET[J]. Nano Today,2009,4:125-134.
    [45]Ding Z.,Quinn B.M.,Haram S.K.,et al.Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots[J].Science,2002,296:1293-1297.
    [46]Ding Z.,Myung N.,Bard A.J. Electrogenerated Chemiluminescence of CdSe Nanocrystals[J].Nano Lett.,2002,2:1315-1319.
    [47]Poznyak S. K., Talapin D. V., Shevchenko E. V., et al. Quantum Dot ChemiluminescenceNano Lett.,004,4:693-698.
    [48]Ren T., Xu J. Z., Tu Y. F.,et al. Electrogenerated chemiluminescence of CdS spherical assemblies[J]. Electrochem. Commun.,2005,7:5-9.
    [49]Miao J. J, Ren T., Dong L.,et al. Double-template synthesis of US nanotubes with strong electrogenerated chemiluminescence[J].Small,2005,1:802-805.
    [50]Jie G. F., Liu B., Miao J. J., Zhu J. J.Electrogenerated chemiluminescence from CdS nanotubes and its sensing application in aqueous solution[J].Talanta,2007,71:1476-1480.
    [51]Ding S. N., X, J. J., Chen H. Y. Enhanced solid-state electrochemiluminescence of CdS nanocrystals doped with carbon nanotubes in H2O2 solution[J]. Chem. Commun.,2006, 3631-3633.
    [52]Zou, G. Z., Ju, H. X. Electrogenerated chemiluminsecence from a CdSe nanocrystal film and its sensing application in aqueous solution[J]. Anal. Chem.,2004,76,6871-6876.
    [53]Jiang H., Ju H.X. Enzyme-quantum dots architecture for highly sensitive electrochemiluminescence biosensing of oxidase substrates[J].Chem. Commun.,2007:404.-406.
    [54]Blackburn, G. F. et al. Electrochemiluminescence detection for development of immunoassays and DNA probe assays for clinical diagnostics [J]. Clin. Chem.,1991,37 (9),1534-1539.
    [55]Zhu N. N., Zhang A. P., He P. G, et al. Cadmium sulfide nanocluster-based electrochemical stripping detection of DNA hybridization[J].Analyst,2003,128,260-264.
    [56]Shan Y.,Xu J.J.,Chen H.Y. Distance-dependent quenching and enhancing of electrochemiluminescence from a CdS:Mn nanocrystal film by Au nanoparticles for highly sensitive detection of DNA[J].Chem.Commun.,2009,905-907.
    [57]方肇伦,方群.微流控芯片发展与展望[J]..现代科学仪器分析,2001,4:3-6.
    [58]王立凯,冯喜增.微流控芯片技术在生命科学研究中的应用[J].化学进展,2005,17(3):482-497.
    [59]Fan Z.H.,Harrison D.J. Micromachining of capillary electrophoresis injectors and separators on glass chips and evaluation of flow at capillary intersections[J].Anal.Chem.,1994,66:177-184.
    [60]Reichmuth D.S.,Chirica G.S.,Kirby B.J.,et al. Increasing the performance of high-pressure, high-efficiency electrokinetic micropumps using zwitterionic solute additives[J].Sens.Actuators B,2003,92:37-43.
    [61]Hong C.C.,Murugensan S.,Kim S.,et al. A functional on-chip pressure generator using solid chemical propellant for disposable lab-on-a-chip[J].Lab on a Chip,2003,:281-286.
    [62]Bodas D., Malek C. K. Formation of more stable hydrophilic surfaces of PDMS by plasma and chemical treatments [J]. Microelectron Eng.,2006,83:1277-1279.
    [63]Bodas D., Malek C. K. Hydrophilization and hydrophobic recovery of PDMS by oxygen plasma and chemical treatment—An SEM investigation [J].Sens. Actuators B:Chem.,2007, 123:368-373.
    [64]Olah A., Hillborg H., Vancso GJ.Hydrophobic recovery of UV/ozone treated poly(dimethylsiloxane):adhesion studies by contact mechanics and mechanism of surface modification[J]. Appl. Surf. Sci.,2005,239:410-423.
    [65]Khorasani M. Mirzadeh T. H., Sammes P. G. Laser Surface Modifcation of Polymers to Improve Biocmpatibility; HEMA Graffed PDMS,in vitro Assay-Ⅲ[J].Radiat. Phys. Chem.,1999,55: 685-689.
    [66]蔡绍皙,郭志钢.微流控芯片分析技术在生化研究中的应用进展[J].生物技术通报,2010,11:68-71.
    [67]Balagad F. K. D., You L., Hansen C. L, et al. Long-Term Monitoring of Bacteria Undergoing Programmed Population Control in a Microchemostat[J]. Science,2005,309:137-140.
    [68]Weibel D. B., et al. Torque-Actuated Valves for Microfluidics[J]. Anal. Chem.,2005, 77:4726-4733.
    [69]Zhao L., Cheng P., Li J.X.,et al. Analysis of Nonadherent Apoptotic Cells by a Quantum Dots Probe in a Microfluidic Device for Drug Screening [J].Anal. Chem.,2009,81:7075-7080.
    [70]Zhang Q., Xu J. J., Liu Y., et al.In-situ synthesis of poly(dimethylsiloxane)-gold nanoparticles composite films and its application in microfluidic systems[J]. Lab on a Chip,2008,8:352-357.
    [71]李延.电致化学发光DNA和适体生物传感器的研究[D]:[博士学位论文].陕西:陕西师范大学,2008.
    [72]徒永华,程圭芳,;林莉等.基于核酸适配体的新型荧光纳米生物传感器用于凝血酶的测定[J].高等学校化学学报,2006,27:2266-2270.
    [73]Zuo X., Song S., Zhang J., et al.Target-Responsive Electrochemical Aptamer Switch (TREAS) for Reagentless Detection of Nanomolar ATP[J].J. Am. Chem. Soc.,2007,129:1042-1043.
    [74]Baker B.R., Lai R.Y., Wood M.S., et al. An Electronic, Aptamer-Based Small-Molecule Sensor for the Rapid, Label-Free Detection of Cocaine in Adulterated Samples and Biological Fluids[J]. J. Am. Chem. Soc.,2006,128:3138-3139.
    [75]Li H. X., Rothberg L. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles [J].Proc. Natl. Acad. Sci. USA,2004,101:14036-14039.
    [76]Liu Y.,Tuleouva N.,Ramanculov E.,Revzin A. Aptamer-Based Electrochemical Biosensor for Interferon Gamma Detection[J]. Anal. Chem.,2010,82:8131-8136.
    [77]Castaneda M. T., Alegret S., Mekoci A. Electrochemical sensing of DNA using gold nanoparticles [J].Electroanallysis,2007,19:743-754.
    [78]Fang X., Cao Z., Beck T., Tan W. Molecular Aptamer for Real-Time Oncoprotein Platelet-Derived Growth Factor Monitoring by Fluorescence Anisotropy[J]. Anal. Chem., 2001,73:5752-5757.
    [79]Stojanovic M.N., Landr D.W. Aptamer-Based Colorimetric Probe for Cocaine[J]. J. Am. Chem. Soc.,2002,124:9678-9679.
    [80]Liu J., Lu Y. Adenosine-Dependent Assembly of Aptazyme-Functionalized Gold Nanoparticles and Its Application as a Colorimetric Biosensor [J].Anal. Chem.,2004,76,1627-1632.
    [81]Liu J., Lu Y. Fast Colorimetric Sensing of Adenosine and Cocaine Based on a General Sensor Design Involving Aptamers and Nanoparticles [J]. Angew. Chem.,2005,45,90-94.
    [82]Heyduk E., Heyduk T. Nucleic Acid-Based Fluorescence Sensors for Detecting Proteins[J]. Anal. Chem.,2005 77,1147-1156.
    [83]Shen L., Chen Z.,Li Y., et al. A chronocoulometric aptamer sensor for adenosine monophosphate[J]. Chem. Commun.,2007:2169-2171.
    [84]La R.Y., Plaxco K.W., Heeger A.J. Aptamer-Based Electrochemical Detection of Picomolar Platelet-Derived Growth Factor Directly in Blood Serum[J]. Anal. Chem.,2007,79:229-233.
    [85]Lu Y., Li X.C., Zhang L.M., et al. Aptamer-Based Electrochemical Sensors with Aptamer-Complementary DNA Oligonucleotides as Probe [J].Anal. Chem., 2008.,80:1883-1890.
    [86]Kang Y., FengK.J., ChenJ.W.,et al.Electrochemical detection of thrombin of thrombin by sandwich approach using antibody and aptamer [J].Bioelectrochemistry,2008.,73,76-81
    [87]Feng K.J., Sun C.H., Kang Y., et al. Label-free electrochemical detection of nanomolar adenosine based on target-induced aptamer displacement[J]..Electrochem. Commun.,2008,10: 531-535.
    [88]Feng K.J., Kang Y., Zhao J.J., et al. Electrochemical immunosensor with aptamer-based enzymatic amplification. Analytical Biochemistry [J].Anal. Biochem.,2008,378:38-42.
    [89]Hu L.Z.,Bian Z., Li H.J., et al. [Ru(bpy)2dppz]2+ Electrochemiluminescence Switch and Its Applications for DNA Interaction Study and Label-free ATP Aptasensor [J].Anal. Chem. 2009,81:9807-9811.
    [90]Li Y., Qi H.L., Peng Y.G., Gao, Q., Zhang, C.X. Electrogenerated chemiluminescence aptamer-based method for the determination of thrombin incorporating quenching of tris(2,2'-bipyridyl)ruthenium by ferrocene[J]. Electrochem. Commun.,2008,10:1322-1325.
    [91]Fang L.Y., Lu Z.Z.,Wei H.,Wang E.K. A electrochemiluminescence aptasensor for detection of thrombin incorporating the capture aptamer labeled with gold nanoparticles immobilized onto the thio-silanized ITO electrode[J]. Anal. Chim. Acta,2008,628:80-86.
    [92]Yao W.,Wang L.,Wang,H.Y.,Zang,X.L.,Li,L. An aptamer-based electrochemiluminescent biosensor for ATP detection [J]. Biosens. Bioelectron,2009,24:3269-3274.
    [93].Wang X., Lou X.H.,Guo Q.C.,et al.QDs-DNA nanosensor for the detection of hepatitis B virus DNA and the single-base mutants[J]. Biosens. Bioelectron.,2010,25:1934-1940.
    [94]Zhang H.,Lu H.,Hu N. Fabrication of Electroactive Layer-by-Layer Films of Myoglobin with Gold Nanoparticles of Different Sizes [J].J. Phys. Chem. B,2006,110:2171-2179..
    [95]Guo S.,Wang E. Synthesis and electrochemical applications of gold nanoparticles Anal. Chim. Acta,2007,598:181-192.
    [96]Wang Y.,Qian W.P.,Tan Y.,et al. Direct electrochemistry and electroanalysis of hemoglobin adsorbed in self-assembled films of gold nanoshells [J].Talanta,2007,72:1134-1140.
    [97]Ballarin B.,Cassani M.C.,Scavetta E.,Tonell D. Self-assembled gold nanoparticles modified ITO electrodes:The monolayer binder molecule effect Electrochimica Acta,2008,53:8034-8044.
    [98]Aziz M. A., Park S., Jon S., Yang H. Amperometric immunosensing using an indium tin oxide electrode modified with multi-walled carbon nanotube and poly(ethylene glycol)-silane copolymer[J]. Chem. Commun.,2007:2610-2612
    [99]Aziz M.A.,Patra S.,Yang H. A facile method of achieving low surface coverage of Au nanoparticles on an indium tin oxide electrode and its application to protein detection [J].Chem. Commun.,2008,4607-4609.
    [100]Zhang X.A.,Wang J.F.,Wu W.J.,Qian.S.W.Man Immobilization and electrochemistry of cytochrome c on amino-functionalized mesoporous silica thin films [J].Electrochemidtry Commun.,2007,9:2098-2104
    [101]Medintz, I.L., Uyeda, H.T., Goldman E.R., Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing[J]. Nat. Mater.,2005,4:435-446.
    [102]Zhelev Z., Bakalova R., Ohb H., et al. Uncoated, Broad Fluorescent, and Size-Homogeneous CdSe Quantum Dots for Bioanalyses [J].Anal. Chem.,2006,78:321-330.
    [103]Jin T., F Fujii, Yamada E., et al. M. Control of the Optical Properties of Quantum Dots by Surface Coating with Calix[n]arene Carboxylic Acids[J]. J. Am. Chem. Soc.,2006,128: 9288-9289.
    [104]Gill R., Freeman R., Xu J.P., Willner I.,et al.Probing Biocatalytic Transformations with CdSe-ZnS QDs[J]. J. Am. Chem. Soc.,2006,128:15376-15377.
    [105]Myung N., Lu X., Johnsto K.P., Bard A.J. Electrogenerated Chemiluminescence of Ge Nanocrystals [J].Nano Lett.,2004,4:183-185.
    [106]Choi J.H., Chen K.H., Strano M.S. Aptamer-Capped Nanocrystal Quantum Dots:A New Method for Label-Free Protein Detection[J].J. Am. Chem. Soc.,2006,128,15584-15585.
    [107]Feng C.L., Zhong X.H., Steinhart M., Caminade, A.M., Majoral, J.P., Knoll, W. Graded Band-Gap Quantum Dots Modified Nanotubes:A Sensitive Biosensor for Enhanced Detection of DNA Hybridization [J].Adv. Mater.,2007,19:1933-1936.
    [108]Jie G.F., Liu B., Pan H.C., et al.CdS Nanocrystal-Based Electrochemiluminescence Biosensor for the Detection of Low-Density Lipoprotein by Increasing Sensitivity with Gold Nanoparticle Amplification [J].Anal. Chem.,2007,79:5574-5581.
    [109]Jie G.F., Huang, H.P., SunX..L., Zhu J.J. Electrochemiluminescence of CdSe quantum dots for immunosensing of human prealbumin[J]. Biosens. Bioelectron.,2008,23:1896-1899.
    [110]Huang H.P.,Zhu J.J. DNA aptamer-based QDs electrochemiluminescence biosensor for the detection of thrombin[J]. Biosens. Bioelectron.,2009,25:927-930.
    [111]Zuo X..L.,Xiao Y.,Plaxco K.W. High Specificity, Electrochemical Sandwich Assays Based on Single Aptamer Sequences and Suitable for the Direct Detection of Small-Molecule Targets in Blood and Other Complex Matrices J. Am. Chem. Soc.,2009,131:6944-6945.
    [112]Huizenga D. E., Szostak J. W. A DNA Aptamer That Binds Adenosine and ATP[J]. Biochemistry,1995,34:656-665
    [113]Cui R.J.,Huang H.P.,Yin Z.Z.,et al. Horseradish peroxidase-functionalized gold nanoparticle label for amplified immunoanalysis based on gold nanoparticles/carbon nanotubes hybrids modified biosensor Biosensors and Bioelectronics 2008,23:1666-1673.
    [114]Tasset D. M., Kubik M. F., Steiner, W. Oligonucleotide Inhibitors of Human Thrombin that Bind Distinct Epitopes[J]. J Mol Biol.,1997,272:688-698.
    [115]a 张莹,魏文宁.凝血酶活性的检测及临床意义[J].微循环学杂志,2005,15:70-72.bHerman R.P.ThrombHaemost[J].1979,41:544-547.
    [116]Miehele B., Martin R., Brocardo M.G.,et al. Specific oligobodies against ERK-2 that recognize both the native and the denatured state of the protein[J]. J.Immunol.Methods,2001,252:191-197.
    [117]Murphy M.B., Fuller S.T., Richardson P.M., Doyle S.A. An improved method for the in vitro evolution of aptamers and applications in protein detection and purification [J].Nucleic Acids Research,2003,31:e110
    [118]Jayasena S. D. Aptamers:An Emerging Class of Molecules That Rival Antibodies in Diagnostics[J]. Clin. Chem.,1999,45:1628-1650.
    [119]Wang J., Jiang Y.X., Zhou C.S., Fang X.H.. Aptamer-Based ATP Assay Using a Luminescent Light Switching Complex[J]. Anal. Chem.,2005,77:3542-3546.
    [120]Michaud M., Jourdan E., Villet A., et al. A DNA Aptamer as a New Target-Specific Chiral Selector for HPLC[J]. J. Am. Chem. Soc.,2003,125:8672-8679.
    [121]Liss M., Petersen B., Wolf H., Prohaska. E. An Aptamer-Based Quartz Crystal Protein Biosensor Anal. Chem.,2002,74:4488-4495.
    [122]Stojanovic M. N., Prada P., Landry D. W. Aptamer-Based Folding Fluorescent Sensor for Cocaine[J]. J. Am. Chem. Soc.,2001,123:4928-4931.
    [123]Li N., Ho C.M.. Aptamer-Based Optical Probes with Separated Molecular Recognition and Signal Transduction Modules[J]. J. Am. Chem. Soc.,2008,130:2380-2381.
    [124]Li Y.,Qi H.L.,Gao Q.,et al.Nanomaterial-amplified "signal off/on" electrogenerated chemiluminescence aptasensors for the detection of thrombin[J]. Biosens. Bioelectron.,2010,26:754-759.
    [125]Gokulrangan G, Unruh J. R., Holub D.F., et al.DNA Aptamer-Based Bioanalysis of IgE by Fluorescence Anisotropy [J].Anal. Chem.,2005,77:1963-1970.
    [126]Burda C., Chen X. B., Narayanan R., et al. Chemistry and Properties of Nanocrystals of Different Shapes [J].Chem. Rev.,2005,105:1025-1102.
    [127]Yin Y. D., Alivisatos A. P. Colloidal nanocrystal synthesis and the organic-inorganic interface Nature [J].2005,437:664-670.
    [128]Li L. L.,Liu H.Y.,Shen Y.Y.Zhu J.J. Electrogenerated Chemiluminescence of Au Nanoclusters for the Detection of Dopamine[J]. Anal. Chem.,2011,83 (3):661-665.
    [129]Bae Y, Myung N., Bard A. J. Electrochemistry and Electrogenerated Chemiluminescence of CdTe Nanoparticles [J].Nano. Lett.,2004,4:1153-1161
    [130]Wang D.,.Rogach A. L, Caruso F. Semiconductor Quantum Dot-Labeled Microsphere Bioconjugates Prepared by Stepwise Self-Assembly[J]. Nano Lett.,2002,2:857-861.
    [131]Ding S. Y, Jones M., Tucke M. P.R., et al. Quantum Dot Molecules Assembled with Genetically Engineered Proteins[J]. Nano Lett.,2003,3:1581-1585.
    [132]Zorn D, Dave S.R,Gao X H. Method for Determining the Elemental Composition and Distribution in Semiconductor Core-Shell Quantum Dots[J]. Anal. Chem.,2011,83 (3):866-873.
    [133]Wei H., Li B., Li J.,et al. Organocatalytic enantioselective conjugate addition of aldehydes to maleimides[J].Chemical.Comm.,2007,36:734-735.
    [134]Wang, W. Chen C., Qian M., Zhao X.S. Aptamer biosensor for protein detection using gold nanoparticles[J].Anal.Biochem.,2008,373:213-219.
    [135]Cho M., Kim Y, Han S.Y.,et al. Detection for folding of the thrombin binding aptamer using label-free electrochemical methods [J].BMB.Rep.,2008,41:126-131.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700