基于Ru(bpy)_3~(2+)-SiO_2 NPs标记DNA探针构建电致化学发光生物传感器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脱氧核糖核酸(DNA)被称为生命体的遗传物质,研究发现人类的许多疾病都与DNA分子中碱基序列的变异有关。遗传物质通过翻译成蛋白质直接影响生命体。蛋白质是生命的基础,它参与生命体每一步反应和活动,承载着生命体中各种重要功能。蛋白质的表达异常是许多疾病的重要临床表现。因此,DNA特定序列的分析、DNA碱基突变的检测以及各类疾病表达蛋白(特别是低丰度蛋白)的分析对基因筛选、疾病的早期诊断和治疗都具有十分深远的意义。
     虽然现有的DNA分析技术以及蛋白检测技术已经在很多方面得以应用,但是还是存在各种各样不尽如人意的地方。放射性同位素标记法存在着放射性污染等弊端,而非放射性标记法如荧光、化学发光和生物素标记法要么检测的灵敏度较低,要么标记过程繁琐复杂难以实现自动化或仪器价格昂贵。随着人类基因组学和蛋白质组学计划的发展,大量的分析迫切需要建立更加灵敏、准确、简便、快速并将之集于一身的检测方法。
     电致化学发光(ECL)是由电化学反应而引发的一种化学发光(CL)现象,兼备电化学、化学发光的优点。如重现性好、选择性好、检测快速方便、仪器价格便宜等等,但其中最突出的优点为灵敏度高、检出限低。在生物传感器领域,想要利用好ECL技术,关键在于寻找优良的ECL标记物或标记方法。以核壳式纳米颗粒对生物分子进行标记作为一种新型的标记形式被广泛应用于生物分析中。由于包裹多个内容物分子而具有放大效应,可为分析带来了更高的灵敏度。
     本论文根据DNA的碱基互补配对原则、核酸适配体对蛋白质的特异性识别能力,采用核壳式纳米颗粒作为标记物设计了电致化学发光生物传感器,将ECL方法、纳米颗粒带来的高灵敏度与生物识别的高选择性进行了有机的结合。
     主要内容如下:
     第一章绪论
     简单的介绍了ECL的原理和特点,重点介绍了ECL两大发光体系的反应机理及其在分析中的应用。介绍了DNA生物传感器与核酸适配体生物传感器的构造、原理、特点以及分析应用,并总结了DNA分子在电极上的各种固定方法。介绍了SiO_2核壳式纳米颗粒作为标记物的优点以及在生物传感器中的应用。最后阐述了本论文的目的和意义,指出论文的创新之处以及主要研究内容。
     第二章基于Ru(bpy)_3~(2+)-SiO_2 NPs标记DNA探针对DNA杂交进行电致化学发光检测
     纳米颗粒的放大效应可为分析带来更高的灵敏度。本文以反相微乳法合成了SiO_2包裹的Ru(bpy)_3~(2+)纳米颗粒,将其标记在DNA上制备成探针,让探针与固定在PPy修饰的Pt电极表面的目标ssDNA进行杂交,在草酸体系中测定ECL杂交信号,实现对目标ssDNA的序列识别及含量的灵敏测定。实验表明,本方法能很好的区分与探针完全互补、三碱基错配、完全不互补的ssDNA序列,对完全互补的ssDNA其检测下限可达到1.0×10~(-13)mol/L(s/n=3)。
     第三章基于Ru(bpy)_3~(2+)-SiO_2 NPs标记DNA探针构建核酸适配体传感器通过目标诱导替换实现凝血酶的电致化学发光特异性检测
     本文利用目标诱导替换法检测凝血酶。在金电极上组装一段巯基修饰的凝血酶核酸适配体,将其与标记有Ru(bpy)_3~(2+)-SiO_2 NPs并与核酸适配体部分序列完全互补ssDNA探针进行杂交,测得I_(ECL1)。然后将此电极置于凝血酶溶液中进行培育。实验结果表明,凝血酶与核酸适配体之间的结合力强于核酸适配体与短链互补DNA之间的结合力,凝血酶可与适配体结合,将探针DNA替换下来,此时测得I_(ECL2)。利用替换前后的△I_(ECL)信号来定量反映目标蛋白——凝血酶的含量。此方法具有优异的特异性以及高灵敏度,对凝血酶检测限达1.0×10~(-15)mol/L(s/n=3),并运用于实际样品的检测。
     第四章基于Ru(bpy)_3~(2+)-SiO_2 NPs标记核酸适配体探针构建凝血酶电致化学发光生物传感器的研究
     本文利用凝血酶的两段核酸适配体(aptamerⅠ以及aptamerⅡ)与凝血酶的高亲和识别作用结合电致化学发光技术设计了一种具有高灵敏度和高选择性的蛋白质传感器:将aptamerⅠ自组装到金电极表面,特异性“捕捉”凝血酶,进而结合另一段标记有Ru(bpy)_3~(2+)-SiO_2 NPs的aptamerⅡ探针构建三明治传感结构。在TPA体系中检测Ru(bpy)_3~(2+)的ECL信号对凝血酶进行定量检测。实验证明,此传感器同样具有优异的特异性,并拥有更高的灵敏度,对凝血酶检测限可达1.0×10~(-15)mol/L(s/n=3)。
Deoxyribonucleic Acid (DNA) is known as inherited substance in life body. With the increasing knowledge about human diseases it is found that the mutations of DNA base sequence are responsible for numerous inherited human diseases. Inherited substance directly impact on living things through being translated into protein. Proteins are involved in every life process and life activities, which play important roles in all kinds of life functions. Abnormal expression of the protein always suggest many clinical diseases. In order to select genes or make early diagnosis and cure for disease, much effort is needed to detect the specific DNA sequences, DNA mutation and the proteins (especially low-abundance protein) related to diseases.
    Many detection techniques of DNA sequence and protein have been developed in recent years, but there is still a lot of dissatisfaction. The radioactive labels present many problems such as a potential hazard to analyst and environment. Non-radioactive labels such as fluorescent, chemiluminescent and biotin-avidin label probes also present many shortcomings such as low sensitivity or complex equipment or others. So it is necessary to develop another method for the more sensitive, easy-to-use, fast, inexpensive detection of specific DNA sequences and proteins to adapt to wide-scale genetic and protein testing requires.
    Electrogenerated chemiluminescence (ECL) is a technique that combines chemiluminescence (CL) and electrochemistry (EC). ECL introduces both the merits of CL and EC, such as high sensitivity and selectivity, rapid and convenient operation and relatively simple instrumentation system. The most important issue for making good use of ECL technology in biosensor field is to find better ECL labels or label methods. The lumiophore-doped SiO_2 nanoparticles will be a good ECL labels for their high sensitivity in analysis.
    This dissertation combines the principle of base-complementary, and the specific recognition of certain protein to design ECL biosensors based on SiO_2 NPs DNA probe with high sensitivity and unique selectivity. The dissertation is composed of four chapters as foliowings:
    Chapter 1: Introduced the ECL method, pay attention to the two most primary type of ECL reaction and their application in analytical chemistry field. Review the DNA biosensor and the aptamer biosensor, including their principles, characteristics and
    summarized the methods for the immobilization of ssDNA onto electrode surface. Introduced the advantages ;and the application of the SiO_2 nanoparticles which are used as tag. At last pointed out the purpose of the dissertation. Chapter 2: Ru(bpy)_3~(2+)-SiO_2 nanoparticles were prepared by water-in-oil(W/O) microemulsion method. A great deal of Ru(bpy)_3~(2+) was immobilized inside the nanoparticle, which could greatly enhance the ECL response and result in the increased sensitivity. Ru(bpy)_3~(2+)-SiO_2 NPs labled DNA probe was hybridized with target DNA immobilized on the surface of PPy modified Pt electrode. The hybridization events were evaluated by ECL measurements in oxalic acid solution and only the complementary sequence could give strong ECL signals. A three-base mismatch sequence and a non-complementary sequence had almost negligible responses. The assay allows detection at levels as low as 1.0×10~(-13)mol/L of the target DNA.
    Chapter 3: Sensitive and .selective detection of thrombin via target protein-induced strand displacement of the ssDNA probe by △I_(ecl) is described. The hybridization between the ssDNA probe labeled by Ru(bpy)_3~(2+)-doped SNPs and the aptamer self-assembled on a microfebricated thin film gold electrode was evaluated by ECL measurements. Then, the eleetarode incubated with the thrombin analyte, and the binding event between the throflabin analyte and the aptamer was monitored by ECL measurements again. The △I_(ecl) of the two events can be used to quantify the thrombin. The assay has excellent selectivity because the aptamer could bind thrombin with high specificity. The assay allows detection at levels as low as 1.0 fM of the thrombin due to a. large number of Ru(bpy)_3~(2+) molecules inside SNPs labeled on DNA probe.
    Chapter 4: Novel ECL protein biosensor in sandwich manner using the aptamers was developed. Two different aptamers (aptamer I and aptamer II), which recognize different positions of thrombin, were chosen to construct sandwich type sensing system for protein. Aptamer I was immobilized onto the gold electrode for capturing thrombin onto the electrode and aptamer II labled with Ru(bpy)_3~(2+)- SiO_2 NPs was used for detection. The increase of the ECL signal generated by Ru(bpy)_3~(2+)- SiO_2 NPs was observed in dependent manner of the concentration of thrombin added. The assay also has excellent selectivity and further more it has the better sensitivity. It could detect as low as 1.0 fM of the thrombin.
引文
1 (a) Marcus R. A., J. Chem. Phys., 1965, 43, 2654; (b) Feldburg S. W., J. Am. Chem. Soc., 1966, 88, 390; (c) Richter M. M., Fan F. R. F., Heeger A. J., Bard A. J., Chem. Phys. Lett., 1994, 226, 15; (d) Richard T. C., Bard A. J., Anal. Chem.,1995, 67, 3140; (e)Collinson M. M., Wightman R. M., Anal. Chem., 1993, 65, 2579.
    2 (a)H aapakka, K. E., K ankare, Anal. Chim. Acta. 1981,130, 415.; (b)Kenneth D. L., Hercules D. M., J. Am. Chem. Soc., 1969, 91, 1902.; (c)张棘,严凤霞,王筱敏,方禹之,《光谱学与光谱分析》,1995,15,109.
    3 (a)Karatani H., Shizuki T., Electrochim. Acta, 1996, 41, 1667; (b)Karatani H., J. Photochem. Photobiol. A: Chem., 1994, 79, 71.
    4 Heinze, K. F., N ieman, T. A., Anal. Chin. Acta, 1993, 284, 33.
    5 Ludvik, J., Volke, J., Pragst, F. J., E lectroanal. Chem., 1986, 215, 179.
    6 Nocera D. G., G ray H. B., J. Am. Chem. Soc., 1984, 106, 824.
    7 Chittock R. S., Glidle, A., Wharton, C. W., Cooper, J. M., et al., Anal. Chem., 1998, 79, 4170.
    8 Harvery E N. J. Phys. Chem., 1929, 33, 1456.
    9 S. Sakura, H. Imai, Anal. Sci., 1988, 4, 9-13.
    10 (a)K. E. Haapakka, JJ. Kankare, Anal. Chim. Acta, 1982, 138, 263-275;(b)K. E. Haapakka, J. J. Kankare, Anal. Chim. Acta, 1982, 139, 379-382.
    11 K. E. Haapakka, Anal. Chim. Acta, 1982, 139, 229-236.
    12 K. E. Haapakka, J. J. Kankare, Anal. Chim. Acta, 1980, 118, 333-340.
    13 严凤霞,王伦,王筱敏,钱光宇,《光谱学与光谱分析》,1990,10,45-19.
    14 安镜如,姚晴,分析化学,1990,18,867-870.
    15 Sun Y. G., Cui H., Li Y. H., Anal. Let., 2000, 33, 3239-3252.
    16 Sun Y. G., Cui H., Li YH., Anal. Let., 2000, 33, 2281-2291.
    17 Sun Y. G., Cui H., Li Y. H., Talanta., 2000, 53, 661- 666.
    18 Jirka G. P., Martin A. F., Nieman T. A., Anal. Chim. Acta, 1993, 284, 345.
    19 Kremeskotter J., Wilson R., LuffB. J., and Wilkinson, Meas. Sic. Technol., 1995, 6, 1325.
    20 Atwater J. E., DeHart J., Wheeler Jr R. R., J. Biolum. Chemilum., 1998, 13, 125.
    21 LaespadaM. E. F., Pavon J. L. P., Cordero B. M., Anal. Chim. Acta,. 1996, 327, 253.
    22 李瑛秀,朱连德,朱果逸《分析试验室》,2001,20(5),89.
    23 Zhu L. D., Li Y. X., Zhu G. Y., Sens. and Actuators, 2002, 86, 209.
    24 Hostis E. L., Michel P. E., Fiaccabrino G. C., Koudelka-Hep M., Sens. Actuators, 2000, 64, 156.
    25 Tsafack V. C., Marquette C. A., Leca B., Blum L. J., Analyst, 2000, 125, 151-155.
    26 Marquette C. A., Ravaud. S., Blum L. J., Anal Lett., 2000, 33 (9), 1779.
    27 Marquette C. A., Blum L. J., Anal. Chim. Acta, 1999, 381, 1
    28 Leca, B. and Blum, L. J., Analyst, 2000, 125(5), 789-791.
    29 Zhang G. F., Chen H. Y., Anal. Chim. Acta, 2000, 419, 25.
    30 Ouyang C. S., Wang C. M., J. Electrochem. Soc., 1998, 145(8), 2654.
    31 Ouyang C. S., Wang C. M., J. Electroanal. Chem., 1999, 474, 82
    32 Kearney N. J., Hall C. E.. Jewsbury R. A., Timmis S. G., Anal. Commun., 1996, 7, 815.
    33 Marquette C. A., Blum L. J., Sens. Actuators B, 1998, 51,100-106.
    34 Aizwa M., Pro. BCEIA. Electroanal. Chem., 1997,25.
    35 Yang M. L, Liu C. Z, Qian K. J, He P. G, Fang Y. Z, Analyst, 2002, 127, 1267.
    36 安镜如,林建国《化学学报》,1992,50,594.
    37 庄惠生,王琼娥,张帆《分析化学》,1997,25(3),330.
    38 Bolletta F, Ciano M, Balzani V and Serpone N. Inorgan. Clim. Acta, 1982, 62, 207.
    39 Luong JC, Nadjo L and Wrighton M S. J. Am. Chem. Soc.,1978,100, 5790.
    40 Richter M M, BardA J. Anal. Chem., 1996, 68, 15.
    41 Tokel-Takvoryan N E and Bard A J. Chem. Phys. Letters, 1974, 25(2), 235.
    42 Tokel-Takvoryan N E, Hemingway R E and Bard A J. J. Am. Chem. Soc.,1973,95,652.
    43 Uchikura K, Kirisawa M. Anal Sci., 1991, 7, 971.
    44 Brune S N, Bobbit D R. Talanta, 1991, 38, 419.
    45 He L, Cox KA, DanieisonN D. Anal. Lett., 1990, 23, 195.
    46 Chen X, Sato M, Lin Y J. Microchem. J., 1998, 58, 13.
    47 Hercules D M, Lytle F E. J. Am. Chem. Soc., 1966, 88, 4745.
    48 Tachikawa H., BardA. J., J. Chem. Phys. Lett., 1973, 19, 287.
    49 I. Rubinstein, A. J. Bard, J. Am. Chem. Soc. 1981, 103, 512.
    50 Ege D, Becker W G, Bard A J. Anal. Chem., 1984, 56, 2413.
    51 Wujian Miao, Jai-Pil Choi, and Allen J. Bard, J. Am. Chem. Soc. 2002, 124, 14478-14485.
    52 Yanbing Zu and Allen J. Bard, Anal. Chem. 2000, 72, 3223-3232.
    53 Feng Li and Yanbing Zu, Anal. Chem. 2004, 76, 1768-1772.
    54 Zhihui Guo, Yan Shen, Mingkui wang, Shaojun Dong, Anal. Chem. 2004, 76,184-191.
    55 Leland J K, Powell MJ, J. Electrochem Soc., 1990,137(10), 3127.
    56 Huzhi Feng and Yanbing Zu, J. Phys. Chem. B 2005, 109, 12049-12053.
    57 J. McCall, C. Alexander, M. M. Richter, Anal. Chem., 1999, 71, 2523-2527.
    58 J. McCall, M. M. Richter, Analyst, 2000 125, 545-548.
    59 Huzhi Feng and Yanbing Zu, J. Phys. Chem. B 2005, 109, 16047-16051.
    60 W. D. Cao, J. P. Ferrance, J. Demas, and J. P. Landers, J. Am. Chem. Soc. 2006, 128, 7572.
    61 Noffsinger J B., Danielson N D., Anal. Chem., 1987, 59, 865.
    62 Uchikura K. Chem Pharm Bull (Tokyo), 2003,51(9), 1092.
    63 Noffsinger J. B., and Danielson N. D., Anal. Chem. 1987, 59, 865.
    64 Noffsinger J. B., and Danielson N. D., J. Chromatogr., 1987, 387, 520.
    65 Arora A., de Mello A. J., Manz. A., Anal. Commun., 1997, 34, 393.
    66 (a)Clifdon-Hadley F. A., Rev. Med. Microbiol., 2000, 11, 47; (b) Yu H., Raymonda J. W., Campagnari A. A., Biosens. Bioelectron., 2000,14, 829; (c) 邢婉丽,晁福寰,蒋中华,马立人,《高等学校化学学报》,2000, 21(6), 873; (d) Grimshaw C., Gleason C., Yong J., J. Pharmaceut. Biomed. Anal., 1997, 16, 605.
    67 (a)Hsueh Y. T., Collins S. D., Smith R. L., Sens. and Actuators, 1998, 49, 1; (b) Hsueh Y. T., Northrup M. A., Smith R. L., Sens. and Actuators, 1996, 33, 110; (c)Motmans K., Raus J., Vandevyver C., J. Immunol. Methods, 1996, 190, 107; (d) O'Connell C. D., Juhasz A., Reeder D. J., Hoon D. S. B., Clin. Chem., 1998, 44, 1161.
    68 (a)Jameison F., Sanchez R. I., Dong L., and Martin M. T., Anal. Chem., 1996, 68, 1298; (b)Martin A. F., and Nieman T. A., Biosens. Bioelectro., 1997, 12(6), 479.
    69 Chen X., Jia L., Wang X. R., Hu G. L., Sato M., Anal. Sci., 1997, 13, 7.
    70 Chen X., Sato M., Anal. Sci. 1995, 11,749.
    71 Kenten J. H., Casade J., Link. J., et al., Clin. Chem., 1991, 37, 1626.
    72 Sato Y, Uosaki K. J., Electroanal. Chem, 1995,384,57.
    73 Forster R A, et al., Anal. Chem. 2000,72,5576.
    74 Chang-Zhi Zhao, et al., Electrochimica Acta, 1998, 43, 2167.
    75 Lynn Dennany, et al, J. Am. Chem. Soc. 2003, 125, 5213.
    76 Michael T. Carter, Allen J. Bard, Bioconjugate Chem., 1990, 1(4), 257.
    77 Marisol Rodriguez and Allen J. Bard, Anal. Chem. 1990, 62, 2658.
    78 T Kuwabara, et al, Analytical Biochemistry, 2003, 314,30.
    79 (a)Zhang X, Bard A J. J. Phys. Chem, 1988, 92,5566-5569; (b)Miller C J, McCord P, Bard A J. Langmuir, 1991, 7,2781-2787; (c)Sawaguchi T, Ishio A, Matsue T, et al., Denki Kagaku, 1989, 57,1209.
    80 (a)Wang H Y, Xu G B, Dong S J. Talanta, 2001, 55,61-67; (b)Bi LH, Wang HY, Shen Y, Wang E K, Dong S J. Electrochem. Comm, 2003, 5, 913-918; (c)Guo Z H, Shen Y, Wang M K, Zhao F, Dong S J. Anal. Chem, 2004, 76,184-191.
    81 (a)Egashira N, Kumasako H, Uda T, Ohga K.. Electroanalysis. 2002, 14,871-873; (b)Cui H., Zhao X Y, Lin X Q. Luminescence. 2003, 18,199.
    82 Armelao L, Bertoncello R, Badocco D, Pastore P. Electroanalysis, 2003, 15, 803.
    83 Szentirmay M N, Martin C R., Anal. Chem., 1984, 56,1898.
    84 Martin A F, Nieman T A., Chimica. Acta, 1993, 281,475.
    85 Tudos A J, Ozinga J J, Poppe H, Kok W Th. Anal. Chem, 1990, 62,367.
    86 Choi H N, Cho S H, Lee W Y. Anal. Chem, 2003, 75, 4250.
    87 Lee J K, Lee S H, Kim H, Kim D H, Lee W Y. Chem. Comm., 2003, 13, 1602.
    88 Blackburn G. F., Shah H. P., Kenten J. H., Clin. Chem., 1991, 37 (9), 1534.
    89 Kenten J. H., Gudibande S., Link. J., et al., Clin. Chem., 1991, 38, 873.
    90 Daniel R. D., Nature, 1995, 377, 758.
    91 Nicbolas R., Hoyle N. R., Eckert B., Clin. Chem., 1996, 42 (9), 1576.
    92 Kenten J. H., Casade J., Link. J., et al., Clin. Chem., 1991, 37, 1626.
    93 Stern H. J., Carlos R. D., Schutzbank T. E., Clin. Biochem., 1995, 28:, 470.
    94 Wellerl L., Kenten., E., Freeman, Clin. Chem., 1995, 41 (6), 221.
    95 K M otmans, J R aus, C V andevyver, J. Immunol Methods, 1996, 190, 107.
    96 (a)Diamandis, E. P. Clin. Chem. 1991, 37(9), 1486-1491; (b)Scorilas, A.; Diamandis, E. P. Clin. Biochem. 2000, 33, 345-350; (c)Qin, Q. -P.; Lovgren, T.; Pettersson, K. Anal. Chem. 2001, 73, 1521-1529.
    97 M. Zhou, J. Roovers, G. P. Robertson, and C. P. Grover, Anal. Chem. 2003, 75, 6708-6717.
    98 Conner B. J., Reyes C. M., Wallace R. B., et al, Proc. Natl. Acad. Sci. USA., 1983, 80,278.
    99 Riordan J. R., Rommens J. M., Kerm B., Alon N., Science, 1989, 245, 1066.
    100 Jacobs K., Wolf S. F., Gougherty J. P., et al, Neucleic Acids Res., 1987, 15,2911.
    101 Lebacq P., Squalli D., Joannees M., et al, J. Biochem. Biophys. Methods, 1988, 15, 255.
    102 Hurskainen P., Dahlen P., Lovgren T., et al, Nucleic Acid. Res., 1991, 19, 1057.
    103 McNeil J. A., Johson C. V., Carter K. C., Gent. Anal. Tech. Appl., 1991, 8, 41.
    104 Arakawa H., Maeda M., Tsuji A., Anal. Biochem., 1991, 199, 238.
    105 Tombelli S., Minunni M., Mascini M., Methods, 2005, 37(1), 48-56.
    106 (a)Karlsson R. et al. J Immunol Methods 1991, 145, 229-240; (b)Margulies D. H., Opinion Immunol. 1996, 8(2), 262-270.
    107 Graham C. P., Leslie D., Suirrell D. J., Bioses. Bioelectron, 1992, 7(7), 487.
    108 吴永强,《四川轻化工学院学报》,2003,16,4.
    109 Kleinjung F., Bier F. F., Warsilnke A., et al., Anal. Chim. Acta, 1997, 350, 51.
    110 姜广奋,陈润生,阎宏,欧阳颀,《中国科学》2000,30(5),461.
    111 Bier F. F., Kleinjang F., Scheller F. W., Sens. and Actuators B, 1997, 38, 78.
    112 Thiel A. J., Frutos A. G., Jordan C. E., et al., Anal Chem., 1997, 69, 4948.
    113 Johnston D. H., Glasgow K., and Thorp H. H., J. Am. Chem. Soc. 1995, 117, 8933.
    114 Ropp P., and Thorp H. H,, Chem. Biol., 1999, 6, 599.
    115 D. Ozkan, A. Erdem, P. Kara, K. Kerman, M. Ozsoz, et al., Anal Chem., 2002, 74, 5931.
    116 Palecek E., Billova S., Havran L., Jelen F., et al., Talanta, 2002, 56, 919.
    117 Santos-Alvarez P., Lobo-Castanon M. J.,Tunon-Blanco P. et al., Anal. Chem. 2002, 74, 3342.
    118 Wang J., Rivas G., Cai X., Electroanalysis, 1997, 9, 395.
    119 Hashimoto K., Ito K., Ishimori Y., Anal Chim. Acta, 1994, 286, 219.
    120 Tanious F. A., Yen S-F., Wilson W. D., Biochemistry, 1991, 30, 1813.
    121 Takenaka S., Uto Y., Saita H., Wilson W. D., et al., Chem. Commun., 1998, 1111.
    122 Takenaka S., Takagi M., Bull. Chem. Soc. Jap., 1999, 72(3), 327.
    123 Takenaka S., Takagi M., Ulto Y., Kondo H., Nucleic Acids Symposium Series, 1998, 39, 107.
    124 (a)Hashimoto K., Ito K., Ishimori Y., Anal Chem., 1994, 66, 3830; (b)Carrondo M., Coll M., Aymami J., Rich A., et al., Biochemistry, 1989, 28, 7849.
    125 Xu C., Cai H., He P. G., Fang Y. Z., Fresenius J. of Anal. Chem, 2000, 367, 593,119.
    126 Xu C., Cai H., He P. G., Fang Y. Z., The Analyst, 2001, 126, 62.
    127 Xu C., He P. G., Fang Y. Z.. Anal. Chim. Acta., 2000, 411, 31.
    128 Cai H, Xu Y, He P. G, Fang Y. Z., J. Electroanal. Chem., 2001, 510, 78.
    129 Cai H, Xu Y, Zhu N. N., He P. G, Fang Y. Z., The Analyst. 2002, 127, 803.
    130 Cai H, Wang Y. Q., He P. G, Fang Y. Z. Anal, Chim. Acta, 2002, 469, 165.
    131 (a)N. N. Zhu, A. P. Zhang, P. G. He, Y. Z. Fang, Analyst, 2003, 128, 260; (b)N. N. Zhu, A. P. Zhang, P. G. He, Y. Z. Fang., Electroanalysis, 2004, 16, 577.
    132 N. N. Zhu, H. Cai, P. G. He, Y. Z. Fang, Analyst, 2003, 481,181.
    133 (a)Lumley T. De., Campbell C., Heller A., J. Am. Chem. Soc., 1996, 118, 5504; (b)Patolsky F., Katz E., BardeaA., Willner I., Langmuir, 1999, 15, 3703.
    134 Ellington A D, Szostak J W. Nature, 1990, 346,818.
    135 Tuerk C, Gold L. Science, 1990, 249,505.
    136 Jay Hesselberth, Michael P R, et al. Molecular Biotechnology, 2000,74,15.
    137 Soukup G A, Breaker R R. Nanotechnology, 1999,17, 469.
    138 John A.. Science, 1990, 249, 488-489.
    139 Thomas H, D inshaw J, Science, 2000, 287 (5454),820.
    140 Kevin NM, Kirk BJ, Caro IMJ. Biochemistry, 1998, 9 (6),2902.
    141 Bless NM, Smith D, Ward PA., CurrBiol, 1997, 7 (11),877.
    142 Shtatland T, Gill SC, Nucleic Acids Res, 2000, 28 (21),93.
    143 Jenison RD, Gill SC, Pardi A, et al.. Science, 1994, 263, 1425-1429.
    144 刘晓静,刘韧,顾长国,朱旭东,《生理科学进展》,2004,35(4),374-378.
    145 Cerchia L, Hamm J, Libri D, et al. FEBS Letters, 2002, 528, 12.
    146 Mendonsa SD, Bowser MT., Anal Chem, 2004, 76 (18),5387-53921
    147 Savran C. A., Knudsen S. M., Manalis S. R., et al., Anal, Chem. 2004, 76, 3194-3198.
    148 Minunni M., Tombelli S., Mascini M., et al., Biosens. Bioelectron. 2004. 20, 1149-1156.
    149 Murphy M. B., Fuller S. T., Richardson P. M., Doyle, S. A., Nucl. Acids Res. 2003.31, 18e 110.
    150 H. Cai, T. Ming-Hung Lee, I-Ming Hsing, Sensors and Actuatons B, 2006, 114433-437
    151 Bernhard Basnar, Roey Elnathan, and Itamar Willner, Anal. Chem. 2006, 78, 3638-3642
    152 Ho HA, L eclercM. J Am Chem Soc, 2004, 126(5),1384
    153 Polsky, R.; GilI, R.; Kaganovsky, L.; Willner, I., Anal. Chem., 2006, 78(7), 2268-2271.
    154 Y. Xiao, et al., Angew. Chem. Int. Ed., 2005, 44, 5456-5459
    155 Y. Xiao, et al., J. Am. Chem. Soc., 2005, 127, 17990-17991
    156 J. A. Hansen, et al. J. Am. Chem. Soc.,2006, 128, 2228-2229
    157 Rajendran M., and Ellington A. D., Ligler and Taitt Edition, 2002, 369-396
    158 Li J. J., Fang X., and Tan W., Anal, Biochem. 2002, 282, 142-146.
    159 Yamamoto R., and Kumar P. K. R., Genes to Cells, 2000, 5, 389-396.
    160 Nutiu, R.; Li, Y., J. Am. Chem. Soc., 2003, 125(16), 4771-4778
    161 Stojanovic M. N., and Landry D. W., J. Am. Chem. Soc. 2002, 124, 9678-9679
    162 Hashimoto K., Ito K., Ishimiri Y., Anal. Chim. Acta., 1994, 286, 219
    163 (a)Wang J., Emil P., J. Am. Chem. Soc., 1996, 118,7667; (b)Wang J., Cai X., Analytical Chemistry, 1996, 68, 2629
    164 Qian K. J., Zhang L., Fang, Y. Z., et al., Chinese Journal of Chemistry, 2004, 22, 702-707
    165 Xu C., Cai H., He P., Fang Y., Fresenius J. of Anal. Chem., 2001, 369, 468
    166 Lee T. Y., Shim Y. B., Anal, Chem., 2001, 73, 5629.
    167 Korri-Youssoufi H., Makrouf B., Anal, Chim. Acta., 2002, 469, 85
    168 Millan. K. M., Saraullo A., Mikkelsen S. R., Anal Chem., 1994, 66, 2943
    169 Sun X., He P., Liu S., Ye J., Fang Y., Talanta, 1998, 47, 487.
    170 Liu S., Ye J., He P., Fang Y., Anal. Chim. Acta., 1996, 335, 239.
    171 刘盛辉,孙长林,何品刚,方禹之.《分析化学》,1999,27,130.
    172 方禹之,刘盛辉,何品刚.《高等学校化学学报》,1996,17,1222.
    173 Pividori M. I., Merkoci A. and Alegret S., Biosensors & Bioelectronics., 2000, 15, 291.
    174 李清军,焦奎,孙伟,胡轩,《青岛科技大学学报》,2005,26(3).
    175 Devaraj N. K., Miller G. P., Chidsey C. E. D., et al., J Am. Chem. Soc. 2005, 127, 8600-8601.
    176 Fang X., Liu X., and Sheldon S., J. Am. Chem. Soc., 1999, 121, 2921-2922.
    177 赵湛,崔大付,《电子产品世界》,2000,8,63.
    178 Joseph Wang, Guodong Liu, Arben Merkoci, J Am. Chem. Soc., 2003, 125, 3214-3215.
    179 N. T. K. Thanh, Z. Rosenzweig, Anal, Chem. 2002, 74, 1624.
    180 J. Nam, S. Park, C. A. Mirkin, J. Am. Chem. Soc., 2002, 124, 3820.
    181 X. Wu, H. Liu, K. N. Haley, M. P. Bruchez, et al., Nat. Biotechnol., 2003, 21, 41.
    182 李朝辉,王柯敏,谭蔚泓等,《科学通报》,2005,50(13).
    183 Luis M. Liz-Marzan., Michel Giersig., Paul Mulvaney, Langmuir, 1996, 12, 4329.
    184 (a)Shibata S., YanoT., Yamane, M. Jpn. J. Appl. Phys. Suppl., 1998, 37, 41. (b)Shibata S., Taniguchi T., Yano T., Yamane M., J. Sol-Gel Sci. Technol. 1997, 10, 263.
    185 Boutonnet M, Kizling J, Stenius P, et al., Colloidsand Surfaces, 1982, 5(3), 209-225
    186 (a)Arriagada FJ, Osseo Asarek K., Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 154(3), 311-326; (b)Arriagada FJ, Osseo Asarek K. J Colloid andlnterface Sci., 1999, 211 (2), 210-220.
    187 S. Santra, P. Zhang, K. M. Wang, Weihong Tan, et al., Anal. Chem. 2001, 73, 4988-4993.
    188 Rossi, L. M.; Shi, L.; Quina, F. H.; Rosenzweig, Z. Langmuir, 2005, 21(10), 4277-4280.
    189 汪斌华,黄婉霞,刘雪峰等,《材料科学与工程学报》,2003,21(4),514-517.
    190 Zhu N. N., Cai H., He P. G., and Fang Y. Z., Analytica Chimica Acta, 2003, 481, 181-189
    191 张志超 袁翠 万谦宏,《分析化学》医学期刊(新)2007年1月第7卷第1期
    192 M. Qhobosheane, S. Santra, Weihong Tan, et al., Analyst, 2001, 126, 1274-1278
    193 Liu, S.; Hang, M. Adv. Funct. Mater. 2005, 15, 961.
    194 J. Wang, L. Guodong, R. Gustavo, Anal Chem., 2003, 75,4667.
    195 Wierzbinski, E.; Arndt, J.; Hammond, W.; Slowinski, K. Langmuir, 2006, 22(6), 2426-2429.
    196 Moses, S.; Brewer, S. H.; Lowe, L. B.; et al., Langmui, 2004, 20(25), 11134-11140.
    197 (a)Xu Y., Yang L., Ye X. Y., He P. G., Fang Y. Z., Electroanalysis 2006, 18, 873-881; (b)Xu Y., Jiang Y., Yang L., He P. G., Fang Y. Z., Chinese Journal of Chemistry 2005, 23, 1-10; (c)Xu Y., Yang L., He P. G., Fang Y. Z.,Journal of Biomedical Nanotechnology 2005, 1, 1-6;(d)Xu Y., Cai H., Ye X. Y., He P. G., Fang Y. Z., Electroanalysis 2004, 16, 150-155; (e)XuY., Jiang Y., Cai H., He P. G., Fang Y. Z., Analytica Chimica Acta 2004, 516, 19-27.
    1 L. He, M. D. Musick, C. D. Keating, et al., J. Am. Chem. Soc., 2000, 122, 9071.
    2 J. Wang, D. K. Xu, R. Polsky, J. Am. Chem. Soc., 2002, 124, 4208.
    3 G. M. Makrigiorgos, S. Chakrabarti, B. D. Price, et al., Nat. Biotechnol., 2002, 20, 936.
    4 G. Sutherland, J. Mulley, in: R. H. Symons (Ed.), Nucleic Acid Probes, CRC Press, Boca Raton, FL, 1989, p. 159.
    5 M. A. Augustin, W. Ankenbauer, B. Angerer, J. Biotechnol.,2001, 289.
    6 Z. Foldes-Papp, B. Angerer, W. Ankenbauer, R. Rigler, J. Biotechnol., 2001, 86, 237.
    7 X. H. Xu, A. J. Bard, J. Am. Chem. Soc. 1995, 117, 2627.
    8 A. B. Steel, T. M. Herne, M. J. Tarlov, Anal. Chem., 1998, 70, 4670.
    9 K. A. Peterlinz, R. M. Georgiadis, M. J. Tarlov, et al., J. Am. Chem. Soc. 1997, 119,3401.
    10 Y. Okahatz, M. Kawase, H. Furasawa, Y. Ebara, et al., Anal. Chem., 1998, 70, 1288.
    11 G. F. Blackburn, H. P. Shah, J. H. Kenten, J. Leland, et al., Clin. Chem., 1991, 37,1534.
    12 D. R. Deaver, Nature ,1995, 377, 758.
    13 D. M. Hercules, F. E. Lytle, J. Am. Chem. Soc. 1966, 88, 4745.
    14 J. Rublnstein, C. Martin, A. J. Bard, Anal. Chem., 1983, 55, 1580.
    15 F. Li, X. Q. Lin, H. Cui, Electroanal. Chem.,2002, 534, 91.
    16 W. C. W. Chan, S. M. Nie, Science 281 (5385) (1998) 2013.
    17 X. Peng, L. Manna, J. Kadavanieh, A. P. Alivisatos, et at., Nature 404 (6773) (2000) 59.
    18 D. J. Maxwell, J. R. Taylor, S. Nie, J. Am. Chem. Soc. 2002, 124, 9606.
    19 S. Santra, P. Zhang, K. M. Wang, R. Tapec, W. Tan, Anal. Chem. 2001, 73, 4988.
    20 Y. P. Ho, M. C. Kung, S. Yang, T. H. Wang, Nano Lett., 2005, 5,1693.
    21 J. Wang, Anal. Chim. Acta, 2003, 500, 247.
    22 J. Nam, S. Park, C. A. Mirkin, J. Am. Chem. Soc. 2002, 124, 3820.
    23 N. T. K. Thanh, Z. Rosenzweig, Anal. Chem., 2002, 74, 1624.
    24 X. Wu, H. Liu, K. N. Haley, F, Peale, M. P. Bruchez, et al., Nat. Biotechnol., 2003, 21, 41.
    25 J. Wang, L. Guodong, R. Gustavo, Anal. Chem. 2003, 75, 4667.
    26 H. Cai, Y. Xu, P. G. He, Y. Z. Fang, J. Electroanal. Chem. 2001,510, 78
    27 H. Cai, Y. Q. Wang, P. G. He, Y. Z. Fang, Anal. Chim. Acta, 2002 469, 165.
    28 N. N. Zhu, A. P. Zhang, P. G. He, Y. Z. Fang, Analyst, 2003,128, 260.
    29 N. N. Zhu, A. P. Zhang, P. G. He, Y. Z. Fang, Electroanalysis, 2004, 16, 577.
    30 N. N. Zhu, H. Cai, P. G. He, Y. Z. Fang, Analyst, 2003, 481,181.
    31 R. P. Bagwe, C. Y. Yang, L. R. Hilliard, W. H. Tan, Langmuir, 2004, 20, 8336
    32 L. Wang, C. Y. Yang, W. H. Tan, Nano Lett. 2005, 5, 37.
    33 L. H. Zhang, S. J. Dong, Anal. Chem. 2006, 78, 5119.
    34 W. Stober, A. Fink, J. Colloid Interface Sci., 1968, 26,62.
    35 M. L. Yang, C. Z. Liu, K. J. Qian, Y. Z. Fang, P. G. He, Analyst, 2002, 127,1267.
    36 I. Rubinstein, A. J. Bard, J. Am. Chem. Soc., 1981, 103,512.
    37 D. Ege, G. W. Becker, J. A. Bard, Anal. Chem. 1984, 56, 2413.
    38 Liz A. Thompson, K. Janusz, J. Mira, J. Jiri, J. Am. Chem. Soc. 2003, 125, 324.
    1 K. Ikebukuro, C. Kiyohara, K. Sode, Biosens. Bioelectron., 2005, 20, 2168.
    2 K. Stadtherr, H. Wolf, P. Lindner, Anal. Chem., 2005, 77, 3437.
    3 (a) X. Fang, Z. Cao, T. Beck, W. Tan, Anal. Chem., 2001, 73, 5752; (b) M. Lee, D. R. Walt, Anal. Biochem., 2000, 282, 142; (c) N. Hamaguchi, A. Ellington, M. Stanton, Anal Biochem., 2001, 294, 126.
    4 (a) M. Liss, B. Petersen, H. Wolf, E. Prohaska, Anal Chem., 2002, 74, 4488-4495; (b) C. A. Savran, S. M. Knudsen, S. R. Manalis, et al., Anal. Chem., 2004, 76, 3194.
    5 S. Tombelli, M. Minunni, M. Mascini, Anal. Lett. 2002, 35, 599.
    6 H. Cai, T. Ming-Hung Lee, I-Ming Hsing, Sensors and Actuatons B, 2006,114,433-437
    7 V. Pavlov, Y. Xiao, B. Shlyabovsky, I. Willner, J. Am. Chem. Soc. 2004,126, 11768-11769.
    8 M. Levy, S. F. Cater, A. D. Ellington, ChemBioChem. 2005, 6, 2163-2166.
    9 R. Polsky, R. Gill, L. Kaganovsky, I. Willner, Anal Chem. 2006,78, 2268-2271.
    10 Z. Chang, J. M. Zhou, P. G. He, Y. Z. Fang, et al., Electrochimica Acta, 2006, 52, 575-580.
    11 I. Rubinstein, A. J. Bard, J. Am. Chem. Soc. 1981, 103,512.
    12 Zhihui Guo, Yan Shen, Shaojun Dong, et al., Anal. Chem. 2004, 76,184-191
    13 Huzhi Zheng, Yanbing Zu, J. Phys. Chem. B, 2005,109,16047-16051
    14 Yanbing Zu and Allen J. Bard, Anal Chem. 2000, 72, 3223-3232
    15 Y. Xiao, et al., J. Am. Chem. Soc., 2005, 127, 17990-17991
    16 Lee, M., Walt, D. R. Anal. Biochem. 2000, 282, 142-6.
    17 Jiang, Y, Fang, X, Bai, C. Anal, Chem. 2004, 76, 5230-5235.
    18 Tasset D. M, Kubik M. F, Steiner W. J. Mol. Biol, 1997, 272, 688-698.
    19 Spiridonova V. A, Rog, E. V, et al. Russian Journal of Bioorganic, 2003, 29, 450-453.
    20 Ho H. A, Leclerc M. J. Am. Chem. Soc., 2004, 126, 1384-7.
    21 许善峰,李芳,姜涌明,杨生妹;中国医学生物技术应用杂志;2004(3),172-177
    22 E. Di. Cera, Q. D. Dang and Y. M. Ayala. Cell. Mol. Life Sci., 1997, 53(8):701-730
    23 Y. Xu, L. Yang, X. Y. Ye, P. G. He, Y. Z. Fang, Electroanalysis, 2006, 18(15), 1449-1456
    1. Huang Song-Yin(黄松音), Duan Chao-Hui(段朝晖), Liang Mu-Xing (梁穆兴). et al., Chinese Journal of Thrombosis and Hemostasis (血栓与止血学), 2002, 8(4),156
    2. Zhang Yin(张莹), Wei Wen-Ning (魏文宁). Chinese Journal of Microcircirculation (《微循环学杂志》),2005, 15(2), 70-72
    3. Herman R. P. Thrombhaemost, 1979, 41,544-547
    4. Yan Hui-Min, Huang Ji-Qun, Liao Zhao-Quan. Academic Journal of Guangzhou Medical College (《广州医学院学报》), 1995, 23(5), 33-37
    5. Kazunori Ikebukuro, Chiharu Kiyohara, Koji Sode. Biosensors and Bioelectronics, 2005, 20, 2168-2172.
    6. Lee, M., Walt, D. R. Anal, Biochem. 2000, 282, 142-6.
    7. Jiang, Y, Fang, X, Bai, C. Anal, Chem. 2004, 76, 5230-5235.
    8. Tasset D. M, Kubik M. F, Steiner W. J Mol. Biol, 1997, 272, 688-698.
    9. Spiridonova V. A, Rog, E. V, Dugina, T. N. et al. Russian Journal of Bioorganic, 2003, 29, 450-453.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700