柔性机器人协调操作的运动学和动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机器人协调操作和柔性机器人的研究是机器人领域中的两个前沿课题。
    到目前为止,国内外在机器人协调操作这一领域的研究中,绝大多数局限于
    刚性机器人协调操作方面。相对于刚性机器人而言,柔性机器人能够满足未
    来机器人在高速、精密、大承载和轻量化等方面的要求,因而越来越受到各
    国学者的重视,但目前大多是针对单个柔性臂的研究。多柔性机器人的协调
    操作则能综合柔性机器人和协调机器人两方面的优势,克服单柔性机器人变
    形误差大、振动剧烈等缺点,使机器人系统的性能进一步提高,是柔性机器
    人发展的必然趋势。因此,已开始引起国外学者的兴趣,目前的研究尚在初
    期阶段。
     本文将柔性机器人和机器人协调操作两个领域加以融合,以柔性机器人
    协调操作系统为对象,在柔性机器人协调操作刚性负载的动力学建模、逆动
    力学分析及仿真、系统的操作性能分析、操作精度控制等方面进行系统深入
    的研究。
     首先,通过分析认识到,柔性机器人协调操作区别于刚性机器人协调操作
    的两个本质特性是:1)柔性机器人协调操作的名义刚性位形不一定满足相应
    的刚性机器人协调操作的运动协调约束条件;2)柔性机器人协调操作的运动
    学分析和动力学分析之间存在相互耦合,运动学分析不能脱离动力学分析而
    单独进行。相应地采用有限元模型,定义了柔性机器人的名义刚性位形、刚
    性位形和实际位形,分别给出了柔性机器人协调操作零自由度刚性负载、单
    自出度开链刚性负载的运动协调约束条件和动力协调约束条件,并利用这些
    约束条件,导出了既不显含系统内力又不显含系统外部无功约束力的系统动
    力学方程,给出了相应逆动力学的求解方法。文中还通过仿真算例就不同基
    解位形对操作结果的影响进行了比较。
     其次,利用闭链刚性机构内部各杆件之间的运动微分关系,导出了柔性
    机器人协调操作单自由度闭链刚性机构的运动协调约束条件和动力协调约束
    条件,从而得到了系统动力学方程。而后,又对柔性机器人协调操作多环多
    自由度闭链刚性负载进行了研究,通过多环多自由度闭链刚性负载内部的运
    动微分关系,建立了基于标准目标任务的系统动力学通用模型,该模型具有
    结构化特性,有利于建立此类系统的虚拟样机,编制通用化、参数化的计算
    机仿真软件。
     然后,利用柔性机器人协调抓取的几何微分约束和力平衡约束,通过深
    入分析系统在静态位形时其内部各运动参量和力参量之间的关系,定义了系
    统的操作刚度,从两个方面对系统的操作性能进行了分析:1)操作空间中,基
    
    
     os
    于系统操作刚度的全局特性;2)在一定约束的条件下,系统操作力矢端可达 二
    边界的局部特性。
     最后,在前面分析的基础上,提出了柔性机器人协调操作的位姿动态校
    正控制策略,并以两柔性机器人协调操作零自由度刚性负载CP轨迹作业为目
    标任务,将在线求得(或测得)的被操作负载位姿误差经过变换动态反馈至输入
    端,以规划各关节的校正输入,从而提高系统的位姿操作精度。文中还通过
    仿真算例分析了系统前向通道增益对控制稳定性和控制结果的影响。
     以上几方面研究形成了系统的理论和方法,为柔性机器人协调操作这一
    新领域研究的全面开展奠定了基础。
The coordination of robots and flexible manipulators are advanced topics in the robotics research. In the field of robot cooperation, most of works were limited in rigid robots so far. Compared with rigid ones, flexible robots are provided with the advantages of high speed, heavy payload and light weight. However, the large error, elastic vibration and other drawbacks due to the elastic deformation of flexible links can not be neglected in flexible robots. The coordination of flexible robots present the way to overcome these disadvantages, which has abstracted some attention and is being developed in recent years.
    
    
     In this dissertation, on the integration of flexible manipulator and coordinated robots, the cooperation of flexible manipulators manipulating rigid loads is studied in such aspects as system dynamic modeling. system inverse dynamics, numerical simulation, manipulability and control schemes.
    
    
     Firstly, two characteristics of flexible coordinated robot system have been recognized different from the coordinated system of rigid robots, i.e.
    
     i) The kinematic coordination constraints in the cooperation system of rigid robots will not hold true for that of flexible ones;
    
     ii) There exists coupling effect between the kinematics and dynamics of flexible cooperative system.
    
     Based on these properties, the nominal rigid configuration, rigid configuration and actual configuration have been defined, respectively. By applying the Finite Element Model, the kinematic and dynamic coordination constraints are then derived for coordinated flexible manipulators manipulating the rigid load with zero d.o.f. and the open-loop rigid load with one d.o.f., respectively. The dynamic equations of system have been established and the inverse dynamic algorithm has been presented. The influences of different basic configurations of solution have also been discussed through numerical simulation.
    
    
     Secondly, the kinematic and dynamic constraints of coordinated flexible manipulators manipulating a rigid four-bar linkage have been derived from the differential relationships of kinematics within the internal links of linkage. The dynamic equations of system have been governed consequently. Based on the
    
    iii
    
    
    
    standard assignment, the general dynamic equations have been then obtained for the coordinated flexible manipulators manipulating multi-loop rigid load with multid.o.f., which is useful to establishing the virtual prototype and designing simulation software of such system.
    
    
     Thirdly, based on the geometrical differential constraints and force balancing constraints of the coordinated flexible manipulators, the mutual relationships between the kinematic and dynamic parameters in static configuration have been presented. The manipulation stiffness of the coordinated system has also been proposed. The manipulability of the flexible robot system has been then analyzed in two aspects:
    
     i) The global characteristics in the manipulation workspace based on the manipulation stiffness;
    
     ii) The local property of the reachable boundary of generalized forces.
    
     A simulation of two coordinated manipulators manipulating a rigid load is presented as an example.
    
    
     Finally, the dynamic control scheme for compensating the position and orientation errors of the grasped load has been developed to complete the assignment of CP trace for two coordinated flexible manipulators manipulating a rigid load. The improvement on manipulating precision of grasped load has been achieved by feeding back the transformation of position and orientation errors of the grasped load to scheme the compensative input angle of each joint. The effect of the gain in forward channel on the stability and result of control scheme have also been illustrated by numerical simulation.
    
    
     A comprehensive study has been completed in this thesis, which paves the way to the further development of flexible cooperating robots.
引文
[1] Raibert M.H., and Craig J.J., Hybrid Position/Force Control of Manipulators, ASME J. Dym. Sys. Mea. Con., 102(2) , 1981, pp.126-133.
    [2] Alford, C.O., and Belyeu, S.M., Coordinated Control of Two Robot Arms, Proc. IEEE Conf. Rob. Autom., 1984, pp.468-473.
    [3] J.Y.S.Luh and Y.F.Zheng, Computation of Input Generalized Forces for Robots with Closed Kinematic Chain Mechanisms, IEEE J. of Robotics and Automation, Vol.RA-1, No.2, June 1985, pp.95-103.
    [4] Hayati. S., Hybrid Position/Force Control of Multi-Arm Cooperating Robots. Proc. of IEEE Conf. on Robotics and Automation, San Francisco, Apr. 1986, pp.82-89.
    [5] J.Y.S.Luh and Y.F.Zheng, Constrained Relations between Two Coordinated Industrial Robots for Motion Control, Int. J. Robotics Research, Vol.6, No.3, Fall 1987, pp.60-70.
    [6] B.H. Lee and C.S.G. Lee, Collision-Free Motion Planning of Two Robots, IEEE Trans, on Sys. Man, andCyb., Vol.SMC-17, No.1, Jan/Feb. 1987, pp.21-32.
    [7] U.Ozguner, S. Yurkovich, F. Al-Abbass, Decentralized Variable Structure Control of A Two-Arm Robotic System, Proc. of IEEE Conf. Rob. Autom., 1987, pp. 1248-1254.
    [8] Yuan F.Zheng, J.Y.S.Luh and Pei F.Jia, A Real-Time Distributed Computer System for Coordinate-Motion Control of Two Industrial Robots. Proc. of IEEE Conf. Rob. Autom., 1987, pp.1236-1241.
    [9] R. Zapata, A.Fournier, P. Dauchez, True Cooperation of Robots in Muti-Arms Tasks, Proc. of IEEE Conf. Rob. Autom., 1987, pp. 1255-1260.
    [10] Masaru Uchiyama, Naotoshi Iwasawa,Kyojiro Hakomori, Hybrid Position/Force Control for Coordination of A Two Arm Robot, Proc. of IEEE Conf. Rob. Autom., 1987, pp.1242-1247.
    [11] Nakamura. Y., Nagai. K., and Yoshikawa. T., Mechanics of Coordinative Manipulation by Multiple Robotic Mechanisms. Proc. of IEEE Conf. on Robotics and Automation, Raleigh, Mar.-Apr. 1987, pp.991-998.
    [12] Arimoto S., Cooperative Motion Control of Multirobot Arms and Fingers, Proc. IEEE Conf. Rob. Autom., 1987, pp.1407-1412.
    [13] Spong M.W., Modeling and Control of Elastic Joint Robots, ASME J. Dyn.
    
    Sys. Mea. Con., 109(4) , 1987, pp.310-319.
    [14] Forrest-Barlach M.G. and Babcock S.M., Inverse Dynamics Position Control of a compliant Manipulator, IEEE J. Robot. Automation, RA-3(1) , 1987, pp75-83.
    [15] Zheng Y. F., and Luh J. Y. S., Optimal Load Distribution for Tow Industrial Robots Handling a Single Object, Proc. of IEEE Conf. on Robotics and Automation, Philadelphia, Apr. 1988, pp.344-349.
    [16] Uchiyama M., and Dauchez P., A Symmetric Hybrid Position/Force Control Scheme for the Coordination of Two Robots, Proc. IEEE Conf. Rob. Autom., 1988,pp.350-356.
    [17] Cole A., Hauser J., and Sastry S., Kinematics and Control of Multifingered Hands with Rolling Contact, Proc. IEEE Conf. Rob. Autom., 1988, pp.228-233.
    [18] De Luca A., Dynamic Control of Robots with Joint Elasticity, Proc. IEEE Conf. Rob. Autom., 1988, pp. 152-158.
    [19] Ahmad S., Dynamic Coordination of Dual-Arm Robotic Systems with Joint Flexibility. Proc. IEEE Conf. Rob. Autom., 1988, pp.332-337.
    [20] Yoshihiko Nakamura, Kiyoshi Nagai, Tsuneo Yoshikawa, Dynamics and Stability in Coordination of Mutiple Robotic Mechanisms, Int. J. Robotics Research, Vol.8, No.2, Apr. 1989, pp.44-61.
    [21] Zexiang Li, Ping Hsu, Shankar Sastry, Grasping and Coordinated Manipulation By A Multifingered Robot Hand, Int. J. Robotics Research, Vol.8, No.4, Aug. 1989,pp.33-50.
    [22] Cole A. B., Hauser J. E., and Sastry S. S., Kinematics and Control of Multifingered Hands with Rolling Contact. IEEE Trans, of Automatic Control, Vol.34, Apr. 1989,pp.398-404.
    [23] Walker I., Marcus S., and Freeman R., Distribution of Dynamic Loads for Multiple Cooperating Robot Manipulators, Journal of Robotic System, Vol. 6, No.1,1989,pp.35-47.
    [24] Yun X., Tarn T.J., and Bejczy A.K., Dynamic Coordinated Control of Two Robot Manipulators, Proc. IEEE Conf. Rob. Autom., 1989, pp.2476-2481.
    [25] Unseren M.A. and Koivo A.J., Reduced Order Model and Decoupled Control Architecture for Two Manipulaors Holding an Object, Proc. IEEE Conf. Rob. Autom., 1989, pp. 1240-1245.
    [26] Li Z., Hsu P., and Sastry S., Grasping and Coordinated Manipulation by a Multifingered Robot Hand, Int. J. Robot. Res., 8(4) , 1989, pp.33-50.
    
    
    [27] Murray R.M. and Sastry S., Control Experiments in Planar Manipulation and Grasping, Proc. IEEE Conf. Rob. Autom., 1989, pp.624-629.
    [28] Cole A., Hsu P., and Sastry S., Dynamic Regrasping by Coordinated Control of Sliding for a Multifingered Hand, Proc. IEEE Conf. Rob. Autom., 1989, pp.781-786.
    [29] Wen J.T. and Kreutz K., Motion and Force Control for Multiple Cooperative Manipulators, Proc. IEEE Conf. Rob. Autom., 1989, pp.1246-1251.
    [30] Schneider S.A. and Cannon R.H., Object Impedance Control for Cooperative Manipulation: Theory and Experimental Results, Proc. IEEE Conf. Rob. Autom., 1989, pp.1076-1083.
    [31] Spong M.W., On the Force Control Problem for Flexible Joint Manipulators, IEEE Trans. Autom. Con., 34(1) , 1989, pp.107-111.
    [32] 蒋新松,机器人及机器人学中的控制问题,机器人,Vol.12,No.5,1990, pp.1-13.
    [33] Ian D. Walker, Robert A. Freeman, Steren I. Marcus, Analysis of Motion and Internal Loading of Objects Grasped By Multiple Cooperating Manipulators, Int. J. Robotics Research, Vol.10, No.4, Aug. 1991, pp.396-409.
    [34] Milan D.Djurovic and Miomir K.Vukobratovic, A Contribution to Dynamic Modeling of Cooperative Manipulation, Mech.Mach.Theory, Vol.25, No.4, 1990,pp.407-415.
    [35] A.J.Kovivo and M.A.Unseren, Modeling Closed Chain Motion of Two Manipulators Holding A Rigid Object, Mech.Mach.Theory, Vol.25, No.4, 1990,pp.427-438.
    [36] Djurovic M., and Vukobratovic M., A Contribution to Dynamic Modeling of Cooperative Manipulating. Mechanism and Machine Theory, Vol. 25, No.4, 1990,pp.407-416.
    [37] Yoshikawa T. and Zheng X., Coordinated Dynamic Hybrid Position/Force Control for Multiple Robor Manipulators Handling One Constrained Object, Proc. IEEE Conf. Rob. Autom., 1990, pp.1178-1183.
    [38] Hu Y. R. and Goldenberg A.A., Dynamic Control of Multiple Coordinated Redundant Manipulators with Torque Optimization, Proc. IEEE Conf. Rob. Autom., 1990, pp.1000-1005.
    [39] 曲道奎等,双机器人协调控制系统,机器人,Vol.13,No.3,1991,PP.6-11.
    [40] Zheng Y.F., Pei R., and Chen M.Z., Strategies for Automatic Assembly of Deformable Objects, Proc. IEEE Conf. Rob. Autom., 1991, pp.2708-2715.
    [41] Zribi M. and Ahmad S., Robust Adaptive Control of Multiple Robots in Cooperative Motion Using a Modification, Proc. IEEE Conf. Rob. Autom., 1991,pp.2160-2165.
    
    
    [42] Ahmad S., Control of Cooperative Multiple Flexible Joint Robots, Proc. IEEE Conf. on Decision and Control, 1991, pp.1413-1418.
    [43] Dellinger W.F., and Anderson J.N., Interactive Force Dynamics of Two Robotic Manipulators Grasping a Non-Rigid Objective, Proc. IEEE Conf. Rob. Autom., 1992, pp.2205-2210.
    [44] Jankowski K.P. and ElMaraghy H.A. Dynamic Decoupling for Hybrid Control of Rigid-/Flexible-Joint Robots Interacting with the Environment, IEEE Trans. Robot. Automation, 8(5) , 1992, pp.519-534.
    [45] Jankowski K.P. and ElMaraghy H.A. Inverse Dynamics and Feedforward Controllers for Constrained Flexible Joint Robots, Proc. IEEE Conf. on Decision and Control, 1992, pp.317-332.
    [46] Krzyszof P. Jankowski, Hoda A. ElMaraghy, Waguih H.EIMaraghy, Dynamic Coordination of Mutiple Robot Arms With Flexible Joints, Int. J. Robotics Research, Vol.12, No.6, Dec. 1993, pp.505-528.
    [47] Tsuneo Yoshikawa, Xin-zhi Zheng, Coordinated Dynamic Hybrid Position/Force Control for Multiple Robot Manipulators Handling One Constrained Object, Int. J. Robotics Research, Vol.12, No.3, June. 1993, pp.219-229.
    [48] Xiao ping Yun, Object Handling Using Two Arms Without Grasping, Int. J. Robotics Research, Vol.12, No.1, Feb. 1993, pp.99-105.
    [49] Luo Z.H., Direct Strain Feedback Control of Flexible Robot Arms:New Theoretical and Experimental Results. IEEE Trans. on Robotics and Automation, Vol.38, No.11, 1993, pp.201-217
    [50] Jankowski K.P. and Van Brussel H., Inverse Dynamics Task Control of Flexible Joint Robots-Part Ⅰ: Continuous-Time Approach, Part Ⅱ: Discrete-Time Approach, Mech. Mach. Theory, 1993.
    [51] David J. Montana, The Kinematics of Multi-Fingered Manipulation, IEEE Trans, on Robotics and Automation, Vol.11, No.4, Aug. 1995, pp.491-503.
    [52] Kosuge K., Sakai M., and Kanitani K., Manipulation of a Flexible Object by Dual Manipulators, Proc. IEEE Conf. Rob. Autom., 1995, pp.318-323.
    [53] Keith G. Mattson and Gordon R. Pennock, The Velocity Problems of Two 3-R Robots Manipulating a Four-Bar Linkage Payload, Mech.Mach.Theory, Vol.31,No.8,1996, pp. 1019-1032.
    [54] 王兴贵等, 双机械臂协调系统的一类最优轨迹规划方法, 机械工程学 报, Vol.32,No.5,Oct.,1996,PP.80-87.
    
    
    [55] Yukawa T., Uchiyama M., Nenchev D., and Inooka H., Stability of Control System in Handling of a Flexible Object by Rigid Arm Robots, Proc. IEEE Conf. Rob. Autom., 1996, pp.2332-2339.
    [56] Sun D., Shi X.L., and Liu Y.H., Modeling and Coordination of a Two-Arm Robotic System Manipulating a Deformable Object, Proc. IEEE Conf. Rob. Autom., 1996, pp.2346-2351.
    [57] 黄亚楼, 多机械臂抓取物的内力不变性, 机器人, Vol.19,No.2,1997, pp.86-91.
    [58] Dong Sun, Yunhui Liu, Modeling and Impedance Control of a Two-Manipulator System Handling a Flexible Beam, ASME J. of Dyn. Sys. Mea., and Con., Vol.119, Dec. 1997, pp.736-762.
    [59] Nilanjan SarKar, XiaoPing Yun, Vijay Kumar, Dynamic Control of 3-D Rolling Contacts in Two-Arm Manipulation, IEEE Trans. on Robotics and Automation, Vol.13, No.3, June 1997, pp.364-376.
    [60] Tsai-Yen Li, Jean-Claude Latombe, On-Line Manipulation Planning for Two Robot Arms in a Dynamic Environment, Int. J. Robotics Research, Vol.16, No.2,Dec. 1997, pp. 144-167.
    [61] Konstantinos et al., Kinematic Analysis and Position/Force Control of the Anthrobot Dextrous Hand, IEEE Trans. on Sys. Man, and Cyb., Vol.7, No.1, Feb. 1997, pp.95-104.
    [62] G. R. Pennock, K. G. Matton, Analytical and Graphical Solutions to the Forward Position Problem of rwo Robots Manipulating A Spatial Linkage Payload, ASME J.of Mech. Des.,Vol.l 19, Sep. 1997, pp.349-358.
    [63] Woosoon Yim, Sahjendra N. Singh, Nonlinear Inverse and Predictive End Point Trajectory Control of Flexible Macro-Micro Manipulators, ASME J. of Dyn. Sys. Mea., and Con., Vol.119, Sep. 1997, pp.412-420.
    [64] Milovan zivanovic', Miomiv Vukobratovic, Genaral Mathematical Model of Muti-Arm Cooperating Robots With Elastic Interconnection at the Contact, ASME J. of Dyn. Sys. Mea., and Con., Vol.119, Dec. 1997, pp.707-717.
    [65] C.R. Weisbin, D. Lavery and G. Rodriguez, Robots in Space into the 21st Century, Industrial Robot, Vol.24, No.2,1997, pp.169-181.
    [66] 王越超,谈大龙, 协作机器人学的研究现状与发展, 机器人, Vol.20, No.1,1998,PP.69-75.
    [67] A. DasGupta, H. Hatwal, Dynamics and Nonlinear Coordination Control of Multifingered Mechanical Hands, ASME J. of Dyn. Sys. Mea., and Con., Vol.120, Jun. 1998,pp.375-281.
    
    
    [68] Paul Michelman, Precision Object Manipulation With A Multifingered Robot Hand, IEEE Trans, on Robotics and Automation, Vol.14, No.1, Feb. 1998, pp.105-113.
    [69] G. R. Pennock, Charles C. Squires, Velocity Analysis of Two 3-R Robots Manipulating A Disk, Mech. Mach. Theory, Vol.33, No.1/2, 1998, pp.71-86.
    [70] H. Lipkin and J. Duffy, Hybrid Twist and Wrench Control for a Robotic Manipulator, ASME J. of Mech. Trans. and Auto. in Des., Vol.110, June 1998,PP.138-144.
    [71] Krzysztof Jankowski, Dynamics of Controlled Mechanical and Program Constraints-Ⅰ.Theory, Mech.Mach.Theory, Vol.24, No.3,1998, pp.175-179.
    [72] Krzysztof Jankowski, Dynamics of Controlled Mechanical and Program Constraints-Ⅱ.Methods of Solution, Mech.Mach.Theory, Vol.24, No.3,1998, pp.181-185.
    [73] Krzysztof Jankowski, Dynamics of Controlled Mechanical and Program Constraints-Ⅲ. Illustrative Examples, Mech.Mach.Theory, Vol.24, No.3, 1998, pp. 187-193.
    [74] Ning Xi and Tzyh Fong Tarn, Sensor-Referenced Multiple Robot Cooperation for Material Handling, Industrial Robot, Vol.25, No.2,1998, pp.129-133.
    [75] 管贻生,张启先,李泽湘,多指手操作:运动学算法和实验,机器人, Vol.20,No.5,Sep.1998,PP.321-332.
    [76] A. Midha, A.G. Erdman and D.A. Frohrib, A Closed-Form Numerical Algorithm for the Periodic Response of High-Speed Elastic Linkages, Trans. of ASME, J. of Eng. for Ind.,Vol.101, Jan. 1979, pp.154-162.
    [77] A. Midha, A.G. Erdman and D.A. Frohrib, A Computationally Efficient Numerical Algorithm for the Transient Response of High-Speed Elastic Linkages, Trans. of ASME, J. of Eng. for Ind., Vol.101, Jan. 1979, pp. 138-148.
    [78] A. Midha, A.G. Erdman and D.A. Frohrib, Finite Element Approach to Mathematical Modeling of High-Speed Elastic Linkages, the 5th OSU Applied Mechanics Conference. Dec. 1977,pp.8-1-8-16.
    [79] David A.Turcic and A. Midha, Dynamic Analysis of Elastic Mechanism Systems, Part Ⅰ: Generalized Equations of Motion, ASME 83-WA/DSC-43, pp.1-11.
    [80] Xiaochun Gao, Zhiying King and Qixian Zhang, A Hybrid Beam Element for Mathematical Modeling of High-Speed Flexible Linkages, Mech. Mach. Theory, Vol.24, No.1, 1989, pp.29-36.
    
    
    [81] Sorin Musat and Bogdan I. Epureanu, Finite-Element Modeling in Flexible-Mechanism Dynamics, the 9th IFToMM Milano, Vol.2, pp.985-988.
    [82] Yueqing Yu, The Effect of Link Form on the Dynamic Response of Flexible Mechanisms, the 9th IFToMM Milano, Vol.2, pp.975-979.
    [83] Henry T.Wu and Neel K. Mani, Selection of Modal Basis for Flexible Bodies of Mechanical Systems, Mech. Mach. Theory, Vol.30, No.3,1995, pp.471-489.
    [84] Junghsen Lieh, Dynamic Modeling of a Slider-Crank Mechanism with Couple and Joint Flexiblity, Mech. Mach. Theory, Vol.30, No.1, 1994, pp.139-147.
    [85] Vinod K. Mahna and Nanik T. Asnani, Computational Techniques for Finite Element Method Based Kineto-Elasto Dynamic Analysis of Mechanisms, DE-Vol.71, Machine Element and Machine Dynamics, ASME 1994, pp.81-87.
    [86] D. Surdilovic and M. Vukobratovic, On Method for Efficient Dynamic Modeling of Flexible Manipulators, Mech. Mach. Theory, Vol.31, No.3,199 pp.297-315.
    [87] G.G. Lowen and C.Chassapis, The Elastic Behavior of Linkages: An Update, Mech. Mach. Theory, Vol.21, No.1, 1986, pp.33-42.
    [88] Thomas E.Blejwas, The Simulation of Elastic Mechanisms Using Kinematic Constraints and Lagrange Multiplier, Mech. Mach. Theory, Vol.16, No.4, 1981, pp.441-445.
    [89] 殷学纲等 具有弹性连杆的机构的非线性振动分析, 振动工程学报, Vol.9,No.2,Jun.1996,PP.198-204.
    [90] 费从宁 有限柔度多柔体系统刚柔耦合运动分析, 振动工程学报,Vol.8, No.3,1995,PP.212-218.
    [91] 蒋新松 机器人学导论 辽宁科学技术出版社 1994. 4
    [92] 熊有伦 机器人学 机械工业出版社 1993. 10
    [93] Richard M.Murray,Zexiang Li,S.Shankar Sastry 机器人操作的数学导论 机 械工业出版社 1998. 6(A Mathematical Introduction to Robotic Manipulation CRC Press,Inc.,2000 Corporate Blvd.,N.W.,Boca Ration, Florida 33431,USA.1994)
    [94] M.Vukobratovic N.Kircanski 操作机器人的实时动力学 科学出版社 1992. 3(Real-Time Dynamics of Manipulation Robots Springer-Verlag,1985)
    [95] 马香峰 机器人机构学 机械工业出版社 1991. 9
    
    
    [96] 张伯鹏 张昆 徐家球 机器人工程基础 机械工业出版社 1989. 3
    [97] 白师贤 高等机构学 上海科学技术出版社 1988
    [98] 张策等 弹性连杆机构的分析与综合 机械工业出版社 1997. 6第二版
    [99] 黄文虎 邵成勋等 多柔体系统动力学 科学出版社1996. 10
    [100] 张启先 空间机构的分析与综合 机械工业出版社 1984
    [101] 黄真 孔令富 方跃法 并联机器人机构学理论及控制 机械工业出版社 1997. 12
    [102] 高为炳 变结构控制的理论及设计方法 科学出版社 1998. 1
    [103] 日本产业机器人协会编 产业机器人技术 机械工业出版社 1987. 3
    [104] 李骊 强非线性振动系统的定性理论和定量方法 科学出版社 1997. 1
    [105] 钟万勰 弹性力学求解新体系 大连理工大学出版社 1997. 4
    [106] 曾癸铨 李亚普诺夫直接法在自动控制中的应用 上海科学技术出版社 1985. 2
    [107] 王照林 运动稳定性及其应用 高等教育出版社 1992. 5
    [108] 胡海昌 多自由度固有振动理论 科学出版社 1987. 5
    [109] 徐绪海 朱方生 刚性微分方程的数值方法 武汉大学出版社1997. 8
    [11O]George N.Sandor and Arthur Erdman 庄细荣等译 高等机构设计:分析 与综合(第二卷)高等教育出版社 1993. 12
    [111] 李春文 冯元琨 多变量控制的逆系统方法 清华大学出版社 1991. 8
    [112] 岳士岗 冗余度柔性机器人的动力学研究,北京工业大学博士论文,1995.
    [113] 蔡胜利 冗余驱动的弹性并联机器人动力学研究,北京工业大学博士论 文,1996.
    [114] 赵京 冗余度机器人、弹性关节冗余度机器人及其协调操作的运动学与动 力学研究,北京工业大学博士论文,1997. 10
    [115] 文荣 带间隙空间伸展机构柔性多体系统动力学及其实验研究,中国运载 火箭研究院博士论文,1997. 8
    [116] 陆佑方 柔性多体系统动力学 高等教育出版社 1996.
    [117] 余跃庆 李哲 现代机械动力学 北京工业大学出版社 1998.
    [118] 孙增圻 严隽薇 钱宗华 机器人智能控制 山西教育出版社 1995.
    [119] 孙迪生 王炎 机器人控制技术 机械工业出版社 1998.
    [120] 诸静 机器人与控制技术 浙江大学出版社 1991.
    [121] 杨叔子 杨克冲 机械工程控制基础 华中理工大学出版社 1991.
    [122] 丁文镜 减振理论 清华大学出版社 1988.
    [123] 王鸿钰 步进电机控制技术入门 同济大学出版社 1990.
    [124] 李忠杰 宁守信 步进电机应用技术 机械工业出版社 1988.
    [125] 黄文虎 陈滨 王照林 一般力学(动力学、振动与控制)最新进展科学出 版社 1994.
    
    
    [126] 谢绪凯 现代控制理论基础 辽宁人民出版社 1980.
    [127] 王永岩 动态子结构方法理论及应用 科学出版社 1999.
    [128] Dong Sun and James K.Mills, Position and Force Control of Two CRS A460 Robots Manipulating a Flexible Sheet: Theory and Experiment, ASME J. of Dyn. Sys. Mea. and Con., Vol.120, Dec. 1998, pp.529-533.
    [129] Daniel Cox, Mitch Pryor, Murat Cetin, Delbert Tesar, Experiments of Cooperative Manipulation for Dual-Arm Robotic Operations, 10th World Congress on the Theory of Machine and Mechanisms, Oulu, Finland, June 20-24, 1999,pp.897-902.
    [130] Dominique P.Chevallier, Shahram Payandeh, On Motion Behavior of the Grasped Object Due to the Influence of External Wrenches, 10th World Congress on the Theory of Machine and Mechanisms, Oulu, Finland, June 20-24,1999, pp. 1264-1269.
    [131] Fumitoshi Matsuno, Michinori Hatayama, Robust Cooperative Control of Two-Link Flexible Manipulators on the Basis of Quasi-Static Equations, Int. J. Robotics Research, Vol.18, No.4, April 1999, pp.414-428.
    [132] Q. Sun, I. Sharf, M. Nahon, Stability Analysis of the Force Distribution Algorithm for Flexible-link Cooperating Manipulators, Mech. Mach. Theory, 1999, 34(5) :753-763.
    [133] Dong Sun and James K.Mills, Position Control of Robot Manipulators Manipulating a Flexible Payload, Int. J. Robotics Research, Vol.18, No.3, March 1999, pp.319-332.
    [134] 王兴贵等,多机械臂协调搬运同一物体的协调动态载荷分配,力学学报, Vol.31,No.1,Jan.1999,PP.119-125.
    [135] 左炳然,钱文翰,机器人多指抓取力封闭分析的非线性规划算法,机械 工程学报,Vol.35,No.2,Apr.1999,PP.19-22.
    [136] Yoshikawa. T., Manipulability of Robotic Mechanisms, Int. J. Robotics Research, Vol.4, No.2,1985, pp.3-9.
    [137] Haruhiko Asada, A Geometrical Representation of Manipulator Dynamics and Its Application to Arm Design, ASME J. of Dyn. Sys. Mea. and Con., Vol.105, Sep. 1983, pp.131-135.
    [138] Sukhan Lee., Dual Redundant Arm Configuration Optimization With Task-Oriented Dual Arm Manipulability, IEEE Trans. Robotics and Automation, Vol.5, Sep. 1989, pp.78-97.
    [139] F.C.Park, Distance Metrics on the Rigid-Body Motions with Applications to
    
    Mechanism Design, ASME J.of Mech. Des.,Vol.117, Mar. 1995, pp.48-54.
    [140] F.C.Park and J.W.Kim , Manipulability of Closed Kinematic Chains, ASME J.of Mech. Des.,Vol.120, Dec. 1998, pp.542-548.
    [141] Frank C. Park, Roger W. Brockett, Kinematic Dexterity of Robotic Mechanisms, Int. J. Robotics Research, Vol.4, No.1, Feb. 1994, pp. 1-15.
    [142] Antonio Bicchi, Claudio Melchiorri, and Daniele Balluchi, On the Mobility and Manipulability of General Multiple Limb Robots, IEEE Trans. Robotics and Automation, Vol.11, Apr. 1995, pp.215-228.
    [143] Feng Gao, Xinjun Liu and William A. Gruver, Performance Evaluation of Two-Degree-of-Freedom Planar Parallel Robots. Mech. Mach. Theory, 1998, 32(6) :661-668.
    [144] Pasquale Chiacchio, Stefano Chiaverini, Lorenzo Sciavicco, and Bruno Siciliano, Global Task Space Manipulability Ellipsoids for Multiple-Arm Systems, IEEE Trans. Robotics and Automation, Vol.7, Apr. 1991, pp.678-685.
    [145] Clement Gosselin and Jorge Angeles, Singularity Analysis of Closed-loop Kinematic Chains, IEEE Trans, on Robotic and Automation, Vol.6, No.3, June 1990, pp281-289.
    [146] Yong Sheng Zhao, et al., The Novel approaches for Computing the Dynamic Load-Carrying Capacity of Multiple Cooperating Robotic Manipulators, Mech. Mach. Theory, 1999, 34:637-643.
    [147] Jacques M. Herve, Theory of Groups and the theory of Mechanisms, 10th World Congress on the Theory of Machine and Mechanisms, Oulu, Finland, June 20-24,1999, pp.52-56.
    [148] Pierre M. Larochelle, On the Geometry of Approximate Bi-Invariant Projective Displacement Metrics, 10th World Congress on the Theory of Machine and Mechanisms, Oulu, Finland, June 20-24,1999, pp.548-553.
    [149] Jose Maria Rico, Jaime Gallardo, Joseph Duffy, "Representation of the Euclidean Group via Finite Screws, 10th World Congress on the Theory of Machine and Mechanisms, Oulu, Finland, June 20-24,1999, pp.604-609.
    [150] Milos Zefran, et al., Metrics and Connections for Rigid-Body Kinematics, Int. J. Robotics Research, Vol.18, No.2, Feb. 1999, pp.243-258.
    [151] JM Herve, The Lie Group of Rigid Body Displacement, a Fundamental Tool for Mechanism Design, Mech. Mach. Theory, 1999, 340:719-730.
    [152] Remi Richard, Clement M. Gosselin, On the Determination of the Workspace of Complex Planar Robotic Manipulators, ASME J. of Mech. Des., Vol.120,
    
    June 1998, pp.269-278.
    [153] Jiaqing Seng, Y.C. Chen, Kevin A. O'Nell, On the Existence and the Manipulability Recovery Rate of Self-Motion at Manipulator Singularities, Int. J. Robotics Research, Vol.16, No.2, April 1997, pp. 171-184.
    [154] Kees van den Doel, Dinesh K. Pai, Redundancy and Non-Linearity Measures for Robot Manipulators, IEEE, 1994, pp. 1873-1880.
    [155] Jonghoon Park, W.K. Chung, Y. Youm, Behaviors of Extended Jacobian Method for Kinematic Resolutions of Redundancy, IEEE, 1994, pp. 89-95.
    [156] Charles A. Klein, Caroline Cha-Jenq, Shamim Ahmed, A New Formulation of the Extended Jacobian Method and its Use in Mapping Algorithmic singularities for Kinematically Redundant Manipulators, IEEE Trans. on Robotics and Automation, Vol.11, No. 1, Feb. 1995, pp.50-55.
    [157] 吴敏 桂卫华 现代鲁棒控制 中南工业大学出版社 1998.
    [158] E. Edelstein, A.Rosen, Nonlinear Dynamics of a Flexible Multirod(Multibeam) System, ASME J. of Mech. Des., Vol.120, June 1998, pp.224-231.
    [159] Marco A.Arteaga, On the Properties of a Dynamic Model of Flexible Robot Manipulators, ASME J. of Mech. Des., Vol.120, March 1998, pp.8-14.
    [160] Degao Li, Jean w. Zu, Andrew A.Goldenberg, Dynamic Modeling and Mode Analysis of Flexible-Link, Flexible-Joint Robots, Mech. Mach. Theory, 1998, Vol.33(7) :1031-1044.
    [161] 于清 洪嘉振 柔性多体系统动力学的若干热点问题 力学进展 Vol.29, No.2,May 25,1999,PP.145-154.
    [162] 徐曙 汪中正 柔性空间闭链机构的动力学方程 机械工程学报 Vol.27, No.2,Apr.1991,PP.2-6.
    [163] Sorin Musat, Bogdan I. Epureanu, Finite-Elemen Modeling in Flexible-Mechanism Dynamics, IFToM, pp.985-988.
    [164] Ahmad Smaili, Murali Kopparapu, Muhammad Sannah, Elastodynamic Response of A d.c. Motor Driven Flexible Mechanism System with Compliant Drive Train Components During Star-up, Mech. Mach. Theory, 1996, Vol.31(5) :659-572.
    [165] F.Xi, Trajectory Tracking of a Spatial Flexible Link Manipulator Using an inverse Dynamics Method, Mech. Mach. Theory, 1995, Vol.30(8) :l113-1126.
    [166] Junghsen Lieh, Dynamic Modeling of a Slider-Crank Mechanism with Coupler and Joint Flexibility, Mech. Mach. Theory, 1994, Vol.29(l):139-147.
    [167] Yu Wang, Zhaozhou Zhang, A Spatial and Temporal Finite Element Method for Dynamic Analysis of Flexible Mechanisms, Proc. of IEEEE, pp.28-32.
    
    
    [168] F. Xi, R. G. Fenton, Coupling Effect of A Flexible Link and A Flexible Joint, Int. J. Robotics Research, Vol.13, No.5, Oct. 1994, pp.443-453.
    [169] G.G.Lowen, C.Chassapis, The Elastic Behavior of Linkages: An Update, Mech. Mach. Theory, 1986, Vol.21(1) :33-42.
    [170] Koon-Ho Yang, Youn-Sik Park, Dynamic Stability Analysis of a Closed-Loop Flexible Link Mechanism, Mech. Mach. Theory, 1996, Vol.31(5) :545-560.
    [171] 殷学纲,蹇开林,黄尚廉,运动柔性梁振动主动控制的有限段分析,应 用力学学报,Vol.15,No.4,Dec.1998,PP.22-26.
    [172] 冯力,叶尚辉,刘明治,微分几何与向后差分相结合的多柔体系统的动 力学数值方法,应用力学学报,Vol.15,No.4,Dec.1998,PP.92-96.
    [173] W.L.Xu, S.K.Tso, X.S. Wang, Sensor-Based Deflection Modeling and Compensation Control of Flexible Robotic Manipulator, Mech. Mach. Theory, 1998, Vol.33(7) :909-924.
    [174] F.Xi, R.G.Fenton, Determination of Nominal Joint Displacements of a flexible Link Manipulator by Inverse Kinematics Analysis, Mech. Mach. Theory, 1994, Vol.29(3) :393-405.
    [175] Henry T. Wu, Neel K. Mani, Hashem Ashrafiuon, Slection of Modal Basis for Flexible Bodies of Mechanical Systems, Mech. Mach. Theory, 1995, Vol.30(3) :471-489.
    [176] Michal Hac, Dynamics of Flexible Mechanisms with Mutual Dependence between Rigid Body Motion and Longitudinal Deformation of Links, Mech. Mach. Theory, 1995, Vol.30(6) :837-847.
    [177] P.K.Nath, A.Ghosh, Kineto-Elastodynamic Analysis of Mechanism by Finite Element Method, Mech. Mach. Theory, 1980, Vol. 15:179-197.
    [178] 张绪平 空间柔性冗余度机器人动力学分析与综合 北京工业大学博士论 文 1999.
    [179] Mechanical Dynamics, Inc., Using Adams/View V.9,1998.
    [180] Mechanical Dynamics, Inc., Using Adams/Flex V.9,1998.
    [181] Yue Shigang, Yu Yueqing, Bai Shixian, Flexible Robot Beam Element for the Manipulators with Joint and Link Flexibility. Mech. Mach. Theory, 1997, 32(2) :209-219.
    [182] 郭吉丰 空间柔性机器人的正逆动力学模型 机械工程学报 1996, 32(4) :29-36.
    [183] Frederic Boyer, Wisama Khalil, An Efficient Calculation of Flexible Manipulator Inverse Dynamics, Int. J. Robotics Research, Vol.17, No.3, March 1998,PP.282-293.
    
    
    [184] 郭吉丰 许大中 童中钫 一种挠性机器人逆动力学的控制迭代算法-动态位姿误差补偿法 机器人 1992,14(6) :15-19.
    [185] 宋轶民 基于神经网络的弹性连杆机构的振动主动控制理论、方法与实验 研究 天津大学博士论文 1999
    [186] Mingli Bai, Dong Hua Zhou, and Helmut Schwarz Identification of Generalized Friction for an Experimental Planar Two-Link Flexible Manipulator Using Strong Tracking Filter, IEEE Trans. On Robotics and Automation, Vol.15, No.2, April, 1999.
    [187] 顾仲权 马扣根 陈卫东 振动主动控制 国防工业出版社 1998. 11.
    [188] 李论 柔性机器人与机构动力学仿真软件的研究 北京工业大学硕士学位 论文 2000. 5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700