柔性机器人协调操作的动力学分析与规划
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柔性机器人协调操作是机器人研究的前沿课题之一,由于难度较大,目前国内外在此方面的研究成果还十分有限。本文采用新的方法,建立了柔性臂机器人,考虑关节柔性和臂柔性的机器人及其协调操作系统的动力学模型。系统研究了柔性机器人及其协调操作的正动力学问题,逆动力学问题,轨迹跟踪,冗余驱动,内力和承载能力等,并将这些方法拓展到受限柔性机器人以及柔性机器人协调操作受限物体领域当中,取得了一系列研究成果。
     首先,基于实际位移,采用Timoshenko梁理论和有限元法,由Lagrange方程建立了柔性臂机器人和考虑关节柔性和臂柔性的机器人动力学模型。由此推导出了对于给定的关节输入求解柔性机器人末端轨迹的动力学方程。通过采用与通常方法不同的边界条件,推导出了给定机器人末端任务求解机器人输入关节角和关节力矩的柔性机器人动力学方程。
     然后,根据本文所建立的柔性机器人动力学模型,由柔性机器人协调操作的运动约束条件和动力约束条件,推导出了柔性机器人协调操作刚性负载的动力学方程。由此推导出了对于给定的关节输入求被协调操作物体质心轨迹的动力学方程。令被操作物体的实际质心位置,而不是由刚体运动分析所确定的名义位置为边界条件,并且令其满足期望的轨迹,由提出的载荷分配方法,推导出了给定被操作物体轨迹求解机器人关节输入的动力学方程。此动力学方程可以求出机器人理想的关节输入。文中对柔性机器人协调操作的正动力学问题,逆动力学问题,载荷分配,轨迹跟踪,内力和承载能力等方面进行了理论分析和数值仿真。
     接着,首次对柔性机器人协调操作的动力规划问题进行了研究,提出了输入功率这一新的规划目标。与采用输入关节力矩最小和输入关节速度最小为目标时的动力规划结果相比,以关节输入功率最小为规划目标进行动力规划时,可降低系统的能耗,同时系统的运动学和动力学特性较好。
     最后,首次利用有限元法,根据柔性机器人与作业环境的运动约束条件和动力约束条件,推导出了受限柔性机器人的动力学模型,以及柔性机器人协调操作受限物体的动力学模型。由于采用了系统变形后的实际位置为边界条件,本文所提出的受限柔性机器人的动力学模型和柔性机器人协调操作受限负载的动力学模型克服了通常方法不方便对受限柔性系统进行动力学分析的弱点。文中通过数值仿真讨论了逆动力学问题,轨迹跟踪,载荷分配和与作业环境的最
    
     北京工业大学工学博士学位论文
    大接触力等方面。
The cooperation of flexible manipulators is one of the advanced topics in the robotics research. A literature search reveals little results on the cooperation of flexible manipulators. The dynamic models of flexible-link manipulators, manipulators with joint and link flexibility and the cooperation of flexible manipulators are developed. The forward dynamics, inverse dynamics and trajectory tracking of the flexible robot arms and further the forward dynamics, inverse dynamics, trajectory tracking redundant actuation, internal forces and dynamic load-carrying capacity of cooperating manipulators have been systematically studied. The methods have been developed further and used for the constrained flexible manipulators and flexible manipulators cooperating constrained objects.
    First of all, using the Timoshenko beam theory and the Finite Element Method, according to Lagrange equation, the dynamic models of flexible-link manipulators and those with joint and link flexibility are proposed base on actual displacement. The dynamic equations are derived, which can be used to obtain the trajectory of the end-effector for given input joint angles or input joint torques. With boundary conditions different from the conventional method, the dynamic equation is developed, which can be used to find input joint angles or input joint torques for the specified trajectory of the end-effector.
    Then, according to the kinematic and dynamic constrains of the cooperation, the dynamic models of multiple flexible robot arms cooperating a rigid body are developed by the proposed dynamic models of flexible manipulators. The dynamic models of the cooperation of the flexible robot arms have been derived, which can be used to obtain the trajectory of the mass center of the cooperated object for given joint input. Assuming the actual mass center of the cooperated object, instead of the nominal rigid position determined by the kinematics of the rigid link counterpart, to be the boundary constraint and to satisfy the anticipated trajectory, the dynamic model is developed with the proposed load distribution method. The model can be used to find perfect input joint angles or input joint torques for specified trajectory of the mass center of the cooperated object. The inverse dynamics, forward dynamics, load distribution, trajectory tracking internal forces and allowable dynamic
    
    
    
    load-carrying capacity of the cooperation of the flexible manipulators have been discussed through analyses and numerical simulations.
    After that, the dynamic programming of cooperating flexible manipulators has been studied and a new measure, namely, the input power measure, has been proposed for the first time. Compared with the results of the other objective functions such as minimum input joint torques and minimum input joint angular velocity, the power consumption can be decreased and the kinematical and dynamical performances will be better by dynamic programming when taking the minimum joint input power as the objective function.
    Finally, using the Finite Element Method, according to the kinematic and dynamic constrains between the operated object and the environment, the dynamic models have been developed for constrained flexible manipulators and flexible robot arms cooperating constrained objects by the proposed dynamic models of flexible manipulators for the first time. Because the actual position has been assumed to be the boundary constraint, the proposed dynamic models have overcome the weakness that the conventional method is not convenient for the dynamic analysis of the kind of constrained flexible systems. The issues, inverse dynamics, trajectory tracking, load distribution and maximum dynamic contact force exerted on the environment, have been discussed through numerical simulations.
引文
1 W. J. Book, O. Maizza-Neto and D. E.Whitney. Feedback Control of Two Beam, Two Joint System with Distributed Flexibility. J. Dyn. Sys. Meas. Control. 1975, 97(4) :424-431
    2 W. J. Book. Recursive Lagrangian Dynamics of Flexible Manipulator Arms. Int. J. Robot. Res. 1984, 3(3) :87-101
    3 A. De Luca and B. Siciliano. Closed-Form Dynamic Model of Planar Multilink Lightweight Robots. IEEE Trans. Sys. Man Cybernet. 1991, 21(4) :826-839
    4 H. Asada, Z. D. Ma and H. Tokumaru. Inverse Dynamics of Flexible Robot Arms: Modeling and Computation for Trajectory Control. J. Dyn. Sys. Meas. Control. 1990, 112:177-185
    5 G. G. Hastings and W. J. Book. Verification of a Linear Dynamic Model for Flexible Robotic Manipulators. Proc. EEEE Int. Conf. Robot. Automation. 1986:1024-1029
    6 D. Wang and M. Vidyasagar. Transfer Functions for a Single Flexible Link. Proc. IEEE Int. Conf. Robot. Automation. 1989: 1042-1047
    7 S. Cetinkunt and W. J. Book. Symbolic Modeling of Flexible Manipulators. Proc. IEEE Int. Conf. Robot. Automation. 1987: 2074-2080
    8 S. Cetinkunt and B. Ittoop. Computer-Automated Symbolic Modeling of Dynamics of Robotic Manipulators with Flexible Links. IEEE Trans. Robot. Automation. 1992, RA-8(2) :94-105
    9 R. P. Judd and D. R. Falkenburg. Dynamics of Nonrigid Articulated Robot Linkages. IEEE Trans: Automat. Control. 1985, AC-30(5) :499-502
    10 Y. Huang and C. S. G. Lee. Generalization of Newton-Euler Formulation of Dynamic Equations to Nonrigid Manipulators. ASME J. Dyn. Sys. Meas. Control. 1988, 110:308-315
    11 J. Sadler. On the Analytical Lumped-Mass Model of an Elastic Four-Bar Mechanism. J. Engineering for Industry. 1975, 97: 561-565
    12 G. Sandor and X. Zhuang. A Linearized Lumped Parameter Approach to Vibration and Stress Analysis of Elastic Linkages. Mech. Mach. Theory. 1985, 20(5) : 427-437
    
    
    13 Y. Sarkissyan et al. Approximate Dynamic Synthesis of Linkages with Elastic Links. 9th World Congress on the Theory of Machines and Mechanisms. 1995: 1571-1574.
    14 S. Wojciech. Optimal Trajectories for a Manipulator with Flexible Links. 9th World Congress on the Theory of Machines and Mechanisms. 1995: 1915-1919
    15 G. Rodriguez. Spatial Operator Approach to Flexible Manipulator Inverse and Forward Dynamics. Proc. IEEE Conf. on Robotics and Automation. 1990: 845-850
    16 W. H. Sunada and S. Dubowsky. On the Dynamic Analysis and Behavior of Industrial Robotic Manipulators with Elastic Members. ASME J. Mech. Trans. Automat. Design. 1983, 105:42-51
    17 E. Bayo. A Finite-Element Approach to Control the End-Point Motion of a Single-Link Flexible Robot. J. Robot. Sys. 1987, 4(1) :63-75
    18 P. B. Usoro, R. Nadira and S. S. Mahil. A Finite Element/lagrange Approach to Modeling Lightweight Flexible Manipulators. ASME J. of Dynamic Systems, Measurement and Control. 1986, 108:198-205
    19 J. P. Sadler and Z. Yang. Large-Displacement Finite Element Analysis of Flexible Manipulators. Proceedings of the First International Applied Mechanical Systems Design Conference. Nashville, TN, 1989: 70. 1-70. 8
    20 E. Bayo. Computed Torque for the Position Control of Open-Chain Flexible Robots. IEEE Int. Conf. on Robotics and Automation. 1988: 316-321
    21 P. B. Usoro, R. Nadira and S. S. Mahil. A Finite Element/Lagrange Approach to Modeling Lightweight Flexible Manipulators. ASME J. of Dynamic Systems Measurement and Control. 1986, 108:198-205
    22 G. Naganathan and A. H. Soni. Coupling Effects of Kinematics and Flexibility in Manipulators. International Journal of Robotics Research. 1987, 6(1) :75-84
    23 J. B. Jonker. A Finite Element Dynamic Analysis of Flexible Manipulators. Int. Journal of Robotics Research. 1990, 9(4) : 59-74
    24 P. Kalra and A. M. Sharan. Accurate Modeling of Flexible Manipulators Using Finite Element Analysis. Journal of Machanism and Machine Theory. 1991, 26(3) :299-313
    25 P. E. Gaultier and W. L. Cleghorn. A Spatially Translating and Rotating Beam Finite Element for Modeling Flexible Manipulators. Mech. Mach. Theory. 1992, 27(4) : 415-433
    
    
    26 G. Naganathan and A. Soni. Nonlinear Modeling of Kinematic and Flexibility Effects in Manipulator Design. ASME J. Mechanisms, Transmissions and Automation in Design. 1988, 110:243-254
    27 P. E. Gaultier and W. L. Cleghorn. Modeling of Flexible Manipulator Dynamics: A Literature Survey. 1st Nat. Appl. Mech. Robot. Conf. Cincinnati, OH, 1989:2c-3. 1-10
    28 R. J. Theodore and A. Ghosal. Comparison of the Assumed Modes and Finite Element Models for Flexible Multilink Manipulators. International Journal of Robotics Research. 1995, 14(2) :91-111
    29 J. C. Simo and L. Vu-Quoc. On the Dynamics of Flexible Beams under Large Overall Motions-the Plane Case: Part 1. ASME Journal of Applied Mechanics. 1986, 53:849-854
    30 J. C. Simo and L. Vu-Quoc. On the Dynamics of Flexible Beams under Large Overall Motions-the Plane Case: Part 2. ASME Journal of Applied Mechanics. 1986, 53:855-863
    31 J. C. Simo and L. Vu-Quoc. On the Dynamics in Space of Rods Undergoing Large Motions-a Geometric Calmly Exact Approach. Computer Methods in Applied Mechanics and Engineering. 1988, 66:125-161
    32 J. C. Simo. A Finite Strain Beam Formulation. The Three-Dimensional Dynamic Problem, Part 1. Computer Methods in Applied Mechanics and Engineering. 1985, 49:55-70
    33 J. C. Simo and L. Vu-Quoc. A Three-Dimensional Finite-Strain Rod Model. Part 2: Computational Aspects. Computer Methods in Applied Mechanics and Engineering. 1986, 58: 79-116
    34 Z Yang and J. P. Sadler. A One-Pass Approach to Dynamics of High-Speed Machinery Through Three-Node Lagrangian Beam Elements. Mech. Mach. Theory. 1999, 34: 995-1007
    35 Z. Yang and J. P. Sadler. Large-Displacement Finite Element Analysis of Flexible Linkages. ASME Journal of Mechanical Design. 1990, 112: 175-182
    36 郭吉丰,童忠钫,挠性机器人逆动力学建模,机器人. 1991, 13(2) : 1-9
    37 郭吉丰,空间柔性机器人的正逆动力学模型,机械工程学报. 1996, 32(4) : 29-36
    
    
    38 郭吉丰等.挠性机器人逆动力学显式模型.机械工程学报.1994,30(6):86~92
    39 S. K. Ider. Open-Loop Flexibility Control in Multibody Systems Dynamics. Mech Mach Theory. 1995, 30:861~869
    40 F. Xi. Trajectory Tracking of a Spatial Flexible Link Manipulator Using an Inverse Dynamics Method. Mech Mach Theory. 1995, 30:1113~1126
    41 R.H. Cannon and E. Schmitz. Initial Experiments on the End-Point Control of a Flexible One-Link Robot. Int. J. Robot. Res. 1984, 3(3):62~75
    42 F. Matsuno and Y. Sakawa. A Simple Model of Flexible Manipulators with Six Axes and Vibration Control by Using Accelerometers. J. Robot. Sys. 1990, 7(4):575~597
    43 T. Yoshilawa, H. Murakami and K. Hosoda. Modeling and Control of a Three Degree of Freedom Manipulator with Two Flexible Links. In Proceedings of the 29th Conference on Decision and Control. Los Alamitos, CA: IEEE Computer Society Press, 1990:2532~2537
    44 Z. Fan et al. Dynamic Analysis of Flexible Manipulator Arms with Distributed Viscoelastic Damping. ASME Journal of Dynamic Systems, Measurement and Control. 1997, 119:831~833
    45 范子杰等.粘弹性阻尼材料在柔性机械手振动控制中应用的实验研究.机器人.1992,14(3):1~4
    46 边宇枢.柔性冗余度机器人自运动销减余振的研究.机械科学与技术.1999,18(5):689~691
    47 S. Tosunoglu, S. H. Lin and D. Tesar. Accessibility and Controllability of Flexible Robotic Manipulators. J. Dyn. Sys. Meas. Control. 1992, 114:50~58
    48 A. Konno et al. Configuration-Dependent Vibration Controllability of Flexible-Link Manipulators. Int. J. Robot. Res. 1997, 16(4):567~576
    49 余跃庆.弹性连杆机构参量振动频率特性分析.机械工程学报.1996,32:61~67
    50 余跃庆.结构参量改变时弹性机构本征特性的研究.机械科学与技术.1996,15:715~720
    51 F. Pfeiffer and B. Gebler. A Multistage-Approach to the Dynamics and Control of Elastic Robots. In Proceedings of the IEEE International Conference on Robotics and Automation. Washington, DC: IEEE Computer Society Press, 1988(Philadephia,
    
    Pennsylvania, April):2-8
    52 E. Bayo et al. Inverse Dynamics and Kinematics of Multi-Link Elastic Robots: an Interactive Frequency Domain Approach. Int. J. Robot Res. 1989, 8(6) :49-62
    53 A. De Luca and B. Siciliano. Trajectory Control of a Non-Linear One-Link Flexible Arm. Int. J. Control. 1989, 50(5) : 1699-1715
    54 吴成立,陆震,于守谦,郑红,一种柔性冗余度机器人的动力学优化算法,机械科学与技术, 2001, 20(3) : 338-338
    55 S. Lopez-Linares et al. Inverse Dynamics Based Trjectory Tracking for a One-Link Flexible Arm. In Proceedings of the ASME International Conference on Computers in Engineering. 1991 (Santa Clara, California, August):543-548
    56 F. Xi and R. G. Fenton. Point-to-Point Quasi-Static Motion Planning for Flexible-Link Manipulators. IEEE Transactions on Robotics and Automation. 1995, 11(5) :770-776
    57 F. Xi and R. G. Fenton. A Quasi-Static Motion Planner for Flexible Manipulators Using the Algebra of Rotations. Proc. IEEE Int. Conf. on Robotics and Automation. 1991:2363-2368
    58 T. Yoshikawa et al. Murakami. Quasi-Static Trajectory Tracking Control of Flexible Manipulator by Macro-Micro Manipulator System. Proc. IEEE Int. Conf. Robot. Automat. 1993: 210-215
    59 W. Yim and S. N. Singh. Nonlinear Inverse and Predictive End Point Trajectory Control of Flexible Macro-Micro Manipulators. ASME Journal of Dynamic System Measurement and control. 1997, 119: 412-420
    60 F. Boyer and W. Khalil. An Efficient Calculation of Flexible Manipulator Inverse Dynamics. The International Journal of Robotics Research, 1998, 17(3) :282-293
    61 H. Moulin and E. Bayo. Accuracy of Discrete Models for the Solution of the Inverse Dynamics Problem for Flexible Arms, Feasible Trajectories. ASME Journal of Dynamic Systems Measurement and Control. 1997, 119:396-404
    62 M. Dado and A. Soni. Dynamic Response Analysis of 2-R Robot with Flexible Joints. Proc. IEEE Int. Conf. on Robotics and Automation. 1987: 479-483
    63 M. Readman and P. Belanger. Stabilization of the Fast Modes of a Flexible-Joint Robot. Int. Journal of Robotics Research. 1992, 11(2) : 123-134
    
    
    64 R. M. Berger and H. A. Elemaraghy. Feedback Linearization Control of Flexible Joint Robots. Robotics and Computer-Integrated Manufacturing. 1993, 1(9) : 239-256
    65 L. E. Pfeffer, O. Khatib and J. Hake. Joint Torque Sensory Feedbacki in the Control of a PUMA Manipulator. IEEE Journal of Robtics Automation. 1989, 5: 418-425
    66 K. Jankowski and H. Brussel. Inverse Dynamics Task Control of Flexible Joint Robots-1. Mech. Mach. Theory. 1993, 28(6) : 741-749
    67 K. Jankowski and H. Brussel. Inverse Dynamics Task Control of Flexible Joint Robots-2. Mech. Mach. Theory. 1993, 28(6) : 751-762
    68 J. K. Mill. Stability and Control of Elastic-Joint Robotic Manipulators During Constrained-Motion Tasks. IEEE Trans on Robotics and Automation. 1992, 8(1) :119-126
    69 G. L. Anderson. Stability of a Manipulator with Resilient Joints. J. Sound Vibration. 1985, 101(4) :463-480
    70 M. W. Spong, K. Khorasani and P. V. Kokotovic. An Integral Manifold Approach to the Feedback Control of Flexible Joint Robots. IEEE J. Robot. Automat. 1987, RA-3:391-400
    71 M. W. Spong. Modeling and Control Of Elastic Joint Robots. Trans. ASME J. Dyn. Sys. Measurement Control. 1987, 109:1-9
    72 S. K. Ider, Force and Motion Trajectory Tracking Control of Flexible Joint Robot. Mech. Mach. Theory. 2000, 35:363-378
    73 S. Gogate and Y. Lin. Formulation and Control of Robots with Link and Joint Flexibility. Robotica. 1993, 11: 273-282
    74 Yue Shigang Yu, Yueqing and Bai Shixian. Flexible Rotor Beam Element for the Maninulators with Joint and Link Flexibility. Mech Mach Theory. 1997, 32(2) :209-219
    75 F. Xi and R. Fenton. Coupling Effect of a Flexible Link and a Flexible Joint. Int. Journal of Robotics Research. 1994, 13(5) : 443-453
    76 P. Gaultier and W. Cleghorn. A Spatially Translating and Rotating Beam Finite Element for Modeling Flexible Manipulators. Mech. Mach. Theory. 1992, 27(4) : 415-433
    
    
    77 Z. Yang and J. P Sadler. Finite Element Analysis of Revolute Manipulators with Link and Joint Compliance by Joint-Beam Elements. ASME Robotics, Spatial Mechanisms and Mechanical Systems. 1992, DE-V. 45:619~625
    78 Z. Yang and J. Sadler. Finite Element Modeling of Spatial Robot Manipulators.21st Biennial Mechanisms Conf. 1990:489~496
    79 M. Dado and A. Soni. Complete Dynamic Analysis of Elastic Linkages. J. Mechanisms, Transmissions and Automation in Design. 1987, 109:481~486
    80 J. Bricout, J. Debus and P. Micheau. A Finite Element Model for the Dynamics of Flexible Manipulators. Mech. Mach. Theory. 1990, 25(1): 119~128
    81 V. Modi and J. Chan. Performance of an Orbiting Flexible Mobile Manipulator. J. Mechanical Design. 1991, 113: 516~524
    82 J.P. Sadler and Z. Yang. A Comprehensive Study of Modal Characteristics of a Cylindrical Manipulator with both Link and Joint Flexibility. Mech. Mach. Theory. 1997, 32:941~956
    83 A.A. Smaili. A Three-Node Finite Beam Element for Dynamic Analysis of Planar Manipulators with Flexible Joints. Mechanisms and Machine Theory. 1993, 28(2): 193~205
    84 岳士岗.冗余度柔性机器人动力学研究.北京工业大学博士学位论文.1995
    85 张绪平,余跃庆.提高柔性空间机器人承载能力的结构参量规划.机械科学与技术.1999,18(6):931~933
    86 张绪平,余跃庆.冗余度柔性空间机器人的最优关节初始位形.机械科学与技术.1999,18(5):692~694
    87 张绪平,余跃庆.综合考虑关节及杆柔性的空间机器人的动力学分析.机械科学与技术.1998,17(5)
    88 张绪平,余跃庆.集中质量对柔性空间机器人振动特性的影响.机械科学与技术.1999,18(1):80~82
    89 张绪平.空间柔性冗余度机器人动力学分析与综合.北京工业大学博士学位论文.1995.
    90 Xu-ping Zhang and Yue-Qing Yu. A New Spatial Rotor Beam Element for Modeling Spatial Manipulators with Joint and Link Flexibility. Mech Mach Theory. 2000, 35:403~421
    91 张绪平,余跃庆.柔性冗余度机器人运动规划的新方法——冗余位形法.机械工程学报.2000,36(7):57~60
    
    
    92 余跃庆,刘林涛,提高柔性冗余度机器人动态特性的最小便性能法,机器人, 2001,23(7) :717-720
    93 J. S. Luh and Y. F. Zheng. Constrained Relations between Two Coordinated Industrial Robots for Motion Control. Int. J. Robotics Res. 1987, 6(3) :60-70
    94 Y. F. Zheng and J. Y. S. Luh. Joint Torques for Control of Two Coordinated Moving Robots. Proc. IEEE Conf. on Robotics and Automation. San Francisco, CA, 1986: 1375-1380
    95 S. Hayati. Hybrid Position/Force Control of Multiarm Cooperating Robots. Proc. IEEE Conf. on Robotics and automation. San Francisco/ CA, 1986: 82-89
    96 T. J. Tarn, A. K. Bejczy and X. Yun. Dynamic Coordination of Two Robot Arms. Proc. 25th IEEE Conference on Decision and Control. Athens, Greece, 1986: 1-4
    97 T. J. Tarn, A. K. Bejczy and X. Yun. Design of Dynamic Control of Two Cooperating Robot Arms: Closed Chain Formulation. Proc. IEEE Conf. on Robotics and automation. Raleigh, NC, 1987:1-7
    98 K. Furuta et al. Master-Slave Manipulator Based on Internal Model Following Control Concept. Proc. IEEE Conf. on Robotics and automation. Raleigh, NC, 1987: 567-572
    99 X. Yun. Nonlinear Feedback Control of Two Manipulators in the Presence of Environmental Constrains. Proc. IEEE Conf. on Robotics and Automation. Scottsdale, AZ, 1989: 1252-1259
    100 S. Arimoto, F. Miyazaki and S. Kawamura. Cooperative Motion Control of Multiple Robot Arms or Fingers. Proc. IEEE Conf. on Robotics and Automation. Raleigh, NC, 1987: 1407-1412
    101 I. H. Suh and K. G. Shin. Coordination of Dual Robot Arms Using Kinematic Redundancy. Proc. IEEE Conf. on Robotics and automation. Philadephia, PA, 1988: 504-509
    102 A. Cole, J. Hauser and S. Sastry. Kinematics and Control of Multi-fingered Hands with Rolling Contact. Proc. IEEE Conf. on Robotics and automation. Philadelphia, PA, 1988: 228-233
    103 Z. X. Li, P. Hsu and S. Sastry. Grasping and Coordinated Manipulation by a Multi-fingered Robot Hand. The International Journal of Robotics Research. 1989, 8(4) : 33-50
    104 E. Paljug, X. Yun and V. Kumar. Control of Rolling Contacts in Multi-Arm
    
    Manipulation. IEEE Transactions on Robotics and Automation. 1994, 10(4) :441-452
    105 X. Yun. Object Handling Using Two Arms without Grasping. Int. Journal of Robotics Research. 1993, 12(1) :99-106
    106 P. Hsu. Coordinated Control of Multiple Manipulator Systems. IEEE Transactions on Robotics and Automation. 1993, 9(4) :400-410
    107 Y. H. Liu, Y. Xu and M. Bergerman. Cooperation Control of Multiple Manipulators with Passive Joints. IEEE Transactions on Robotics and Automation. 1999, 15(2) : 258-267
    108 U. Sezgin, L. D. Seneviratne and S. Earles. Collision Avoidance in Multipe-Redundant Manipulators. Int. Journal of Robotics Research. 1997, 16(5) :714-724
    109 Zhao Jing and Shi-Xian Bai. Load Distribution and Joint Trajectory Planning of Coordinated Manipulation for Two Redundant Robots. Mechanism and Machine Theory. 1999,34:1155-1170
    110 I. D. Walker. Impact Configurations and Measures for Kinematically Redundant and Multiple Armed Robot Systems. IEEE Transactions on Robotics and Automation. 1994, 10(5) : 670-683
    111 D. Sun, K. J. Mills and Y. H. Liu. Position and Force Control of Two CRS A460 Robots Manipulating a Flexible Sheet: Theory and Experiment. ASME J. Dynam. Sys. Measurement Control. 1998, 120: 529-533
    112 D. Sun and Y. H. Liu. Modeling and Impedance Control of a Two-Manipulator System Handling a Flexible Beam. ASME J. Dyn. Systems Meas. Control. 1997, 119(4) : 73 6-742
    113 D. Sun, K. J. Mills and Y. H. Liu. Position Control of Robot Manipulators Manipulating a Flexible Payload. The International Journal of Robotics Research. 1999, 18(3) : 319-332
    114 T. Yoshikawa and X. Z. Zheng. Coordinated Dynamic Hybrid Position/Force Control for Multiple Robot Manipulators Handing One Constrained Object. Int Journal of Robotics Research. 1993, 12(3) :219-230
    115 Y. F. Zheng and J. Y. S. Luh. Optimal Load Distribution for Two Industril Robots Handling a Single Object. Trans. ASME J. Dyn. Sys. Measurement Contr. 1989, 111: 232-237
    
    
    116 T. E. Alberts and D. I. Soloway. Force Control of a Multiarm Robot System. Proc. IEEE Int. Conf. on Robotics and Automation. 1988: 1490-1496
    117 T. Yoshikawa and K. Nagai. Manipulating and Grasping Forces in Manipulation by Multifmgered Hands. Raleigh, NC, 1987:1998-2004
    118 V. Kumar and K. J. Waldron. Force Distribution in Closed Kinematic Chains. Proc. IEEE International Conference on Robotics and automation. Philadelphia, PA, 1988: 114-119
    119 Y Nakamura, K. Nagai and T. Yoshikawa. Mechanics of Coordinative Manipulation by Multiple Robotic Mechanisms. Proc. IEEE Conf. on Robotics and automation. Raleigh, NC, 1987: 991-998
    120 V. Kumar and J. Gardner. Kinematics of Redundantly Actuated Closed Chains. IEEE Transactions on Robotics and automation. 1990, 6(2) : 269-274
    121 I. D. Walker, R. A. Freeman and S. I. Marcus. Dynamic Task Distribution for Multiple Cooperating Robot Manipulators. Proc. IEEE Conf. on Robotics and automation. Philadelphia, PA, 1988: 1288-1290
    122 I. D. Walker, R. A. Freeman and S. I. Marcus. Distribution of Dynamic Loads for Multiple Cooperating Robot Manipulators. J. Robot. Sys. 1989, 6:35-48
    123 I. D. Walker, R. A. Freeman and S. I. Marcus. Analysis of Motion and Internal Loading of Objects Grasped by Multiple Cooperating Manipulators. Int. J. Robot. Res. 1991, 10(4) : 369-409
    124 王兴贵等,多机械臂搬运同一物体的协调动态载荷分配,力学学报. 1999, 31(1) : 119-125
    125 Y. H. Liu and S. Arimoto. Decentralized Adaptive and Nonadaptive Position/Force Controllers for Redundant Manipulators in Cooperations. Int. J. Robot. Res. 1998, 17(3) : 232-247
    126 K. Jankowski et al. Contact Force Distribution on Object Grasped by Two Manipulators. Mechanics Research Communications. 1993,20(3) : 191-199
    127 M. Zivanovic and M. Vukobratovic. General Mathematical Model of Multi-Arm Cooperating Robots with Elastic Interconnection at The Contact. ASME J of Dynamic Systems, Measurement and Control. 1997, 119:707-717
    128 Z. Li et al. Dynamic Workspace Analysis of Multiple Cooperating Robot Arms. IEEE Transactions on Robotics and Automation. 1991, 7(5) :589-596
    
    
    129 L. T. Wang and M. J. Luo. Dynamic Load-Carrying Capacity and Inverse Dynamics of Multiple Cooperating Robotic Manipulators. IEEE Transactions on Robotics and Automation. 1994, 10(1) :71-77
    130 Y. S. Zhao et al. The Novel Approaches for Computing the Dynamic Load-Carrying Capacity of Multiple Cooperating Robotic Manipulators. Mechanism and Machine Theory. 1998, 34:637-643
    131 叶献方,陈绪兵,周爱新等,基于神经网络的速度规划研究,中国机械工程, 2001, 12(4) : 463-467
    132 K. L. Doty, C. Melchiorri and E. M. Schwartz and C. Bonivento. Robot Manipulability. IEEE Transactions on Robotics and Automation. 1995, 11(3) : 462-468
    133 S. Lee and J. M. Lee. Task-Oriented Dual-Arm Manipulability and its Application to Configuration Optimization. Proc. IEEE Conference on Decision and Control. Austin, TX, 1988:2253-2260
    134 P. Chiacchio, S. Chiaverini, L. Sciavicco and B. Siciliano. On the Manipulability of Dual Cooperative Robots. NASA Conference on Space Telerobotics. Vol.Ⅱ. Pasadena CA, 1989: 351-360
    135 S. Lee. Dual Redundant Arm Configuration Optimization with Task-Oriented Dual Arm Manipulability. IEEE Transactions on Robotics and Automation. 1989, 5(1) :78-97
    136 P. Chiacchio, S. Chiaverini, L. Sciavicco and B. Siciliano. Task Space Dynamic Analysis of Multiarm System Configurations. Int. Journal of Robotics Research. 1991, 10(6) : 708-715
    137 A. Bicchi, C. Melchiorri and D. Balluchi. On the Mobility and Manipulability of General Multiple Limb Robots. IEEE Transactions on Robotics and Automation. 1995, 11 (2) : 2 15-228
    138 陈国锋,杨昂岳,双臂机器人位姿的方向可操作性,机器人. 1996, 18(2) : 108-114
    139 P. Chiacchio, S. Chiaverini, L. Sciavicco and B. Siciliano. Global Task Space Manipulability Ellipsoids for Multiple-Arm Systems. IEEE Transactions on Robotics and Automation. 1991, 7(5) :678-685
    
    
    140 A. Hemami and R. Cheng. A Preliminary Step for Path Tracking of Coordinated Robot Arms Based on Kinematics. Int. Journal of Robotics Research.1992, 11(3):185~195
    141 王兴贵等.双机械臂协调系统的一类最优轨迹规划方法.机械工程学报,1996,32(5):80~87
    142 S. Ahmad and H. Guo. Dynamic Coordination of Dual-Arm Robotic Systems with Joint Flexibility. Proc. of the IEEE Conf. on Robotics and Automation. Washington: IEEE, 1988:332~337
    143 S. Ahmad. Control of Cooperative Multiple Flexible Joint Robots. Proc. of the IEEE Conf. on Decision and Control. Washington: IEEE, 1991:1413~1418
    144 K. Jankowski et al. Dynamic Coordination of Mukiple Robot Arms with Flexible Joints. Int. Journal of Robotics Research. 1993, 12(6): 505~528
    145 Q. Sun, I. Sharf and M. Nahon. Stability Analysis of the Force Distribution Algorithm for Flexible-Link Cooperating Manipulators. Mechanism and Machine Theory. 1999, 34:753~763
    146 Q. Sun, M. Nahon and I. Shatf. Force Optimization in Multi-Armed Manipulators with Flexible Links. Proceedings of the First World Automation Congress, Hawaii, 1994:183~187
    147 Q. Sun, M. Nahon and I. Sharf. Minimizing The Stain Energy for Flexible-Link Cooperating Manipulators. 1996 Design Enginering Technical Conferences and Computers in Engineering Conference. Irvine, CA, 1996:18~22
    148 F. Matsuno and M Hatayama. Robost Cooperative Control of Two Two-Link Flexible Manipulators on the Basis of Quasi-Static Equations. Int. Journal of Robotics Research. 1999, 18(4): 414~428
    149 Mehrdad Moallem, K. Khorasani and R. V. Patel. An Integral Manifold Approach for Tip-Position Tracking of Flexible Multi-Link Manipulator. IEEE Transactions on Robotics and Automation. 1997, 13(6): 823~837
    150 窦建武,余跃庆.两柔性机器人协调操作的动力学模型及其逆动力学分析.机器人.2000,22(1):39~47
    151 窦建武,余跃庆.两柔性机器人协调操作开环单自由度刚性负载的动力学建模与仿真.机器人.1999,21(7):672~681
    152 窦建武,余跃庆.柔性机器人协调操作闭链负载的一般模型.机器人.2001,23(1):6~10
    
    
    153 窦建武,余跃庆,基于目标运动规划的柔性机器人协调操作闭链刚性负载的动力学模型,机械科学与技术. 2001, 20(2) : 161-163
    154 C. J. Damaren. On the Dynamics and Control of Flexible Multi-Body Systems with Closed Loops. Int. Journal of Robotics Research. 2000, 19(3) : 238-253
    155 T. Yoshikawa. Dynamic Hybrid Position/Force Control of Robot Manipulators-Description of Hand Constraints and Calculation of Joint Driving Force. IEEE Transactions on Robotics and automation. 1987, 3(5) : 386-392
    156 N. H. McClamroch and D. Wang. Feedback Stabilization and Tracking in Constrained Robots. IEEE Trans. Automat. Contr. 1988, 33(5) : 419-426
    157 N. Hogan. Impedance Control: An Approach to Manipulation: Part Ⅰ-Theory, Part Ⅱ-Implementation, Part Ⅲ-Application. Trans. ASME J. Dyn. Sys. Measurement Contr. 1985, 107(3) : 1-24
    158 H. Kazerooni, T. B. Sheridan and P. K. Houpt. Robust Compliant Motion for Manipulators, Part I: The Fundamental Concepts of Compliant Motion. IEEE Transactions on Robotics and Automation. 1986, 2(2) : 83-92
    159 A. De Luca and C. Manes. Modeling of Robots in Contact with a Dynamic Environment. IEEE Transactions on Robotics and automation. 1994, 10(4) : 269-274
    160 M. Vukobratovic and V. Potkonjak. Dynamics of Contact Tasks in Robotics. Part I: General Model of Robot Interacting with Environment. Mech Mach Theory. 1999,34:923-942
    161 Y-R. Hu, A. A. Goldenberg and C. Zhou. Motion and Force Control of Coordinated Robots During Constrained Motion Tasks]. Int. Journal of Robotics Research. 1995, 14(4) : 351-365
    162 B. C. Chiou and M. Shahinpoor. Dynamic Stability Analysis of a One-Link Force-Controlled Flexible Manipulator. J. Robotic Systems. 1988, 5(5) :443-451
    163 B. C. Chiou and M. Shahinpoor. Dynamic Stability Analysis of a Two-Link Force-Controlled Flexible Manipulator. Trans. ASME J. Dyn. Sys. Measurement Contr. 1990, 112:661-666
    164 D. J. Latornel, D. B. Cherchas and R. Wong. Dynamic Characteristics of Constrained Manipulators for Contact Force Control Design. Int. Journal of Robotics Research. 1998, 17(3) : 211-231.
    165 F. Matsuno and K. Yamamoto. Dynamic Hybrid Position/Force Control of a Two Degree-of-Freedom Flexible Manipulator. J. Robot Systems. 1994, 11(5) :
    
    355~366
    166 F. Matsuno, T. Asano and Y. Sakawa. Modeling and Quasi-Static Hybrid Position/Force Control of Constrained Planar Two-Link Flexible Manipulator. IEEE Transactions on Robotics and Automation. 1994, 10(3): 287~297
    167 樊晓平,徐建闽,毛宗源和周其节.受限柔性机器人臂的鲁棒变结构混合位置/力控制.自动化学报.2000,26(2):176~183
    168 H.K. Kim, S. B. Choi and B S. Thompson. Compliant Control of a Two-Link Flexible Manipulator Featuring Piezoelectric Actuators. Mech Mach Theory. 2001, 36:411~424
    169 张启先.空间机构的分析与综合.机械工业出版社,北京,1984
    170 白师贤等.高等机构学.上海科学出版社,上海,1988
    171 马香峰.机器人机构学.机械工业出版社,北京,1991
    172 熊有伦等.机器人学.机械工业出版社,北京,1993
    173 蒋新松.机器人学导论.辽宁科学技术出版社,沈阳,1994
    174 刘北晨.工程计算力学——理论与应用.机械工业出版社,1994,6
    175 张策等.弹性连杆机构的分析与设计.北京 机械工业出版社,1997,6
    176 何君毅等.工程结构非线性问题的数值解法.国防工业出版社,1994,8
    177 K.J. Bathe. Finite Element Procedures in Engineering Analysis. Prentice-Hall,Inc., Englewood Cliffs, New Jersey, 1982
    178 陆佑方.柔性多体系统动力学.北京 高等教育出版社,1997,6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700