高速轻型并联机械手关键技术及样机建造
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了一种可实现二平动自由度并联机构的概念设计、尺度综合、伺服电机参数预估、控制器参数整定、运动学标定等关键技术,开发了一台可充电电池质量高速自动分拣机械手产品化样机,取得了如下创造性成果:
    利用平行四边形的性质,提出一种具有我国自主知识产权,可实现二平动自由度的全铰接并联机构---Diamond 机构。该机构因采用转动副,伺服电机安装在机架上,故制造成本低,且利于实现高速运动。将该机构与一单自由度进给机构串接可构成三平动自由度混联机械手,因此特别适用于在一个平面内需要高速运动,而在与该平面正交方向需要长(短)距步进或缓进的场合。
    提出了一种全域综合性能指标。该指标兼顾了雅克比矩阵条件数全域均值和波动量间的矛盾,同时通过引入传力特性、工作空间/机构体积比、以及工程可行性等一系列约束条件,进而实现了机构尺度的最优综合。
    提出一种确定伺服进给电机参数的方法。该方法借助奇异值分解原理,建立了关节变量上界与单位操作变量间的映射关系,进而可快速预估出伺服电机参数。
    提出一种对固定增益PID调节器进行参数整定的有效方法。该方法采用CHR扰动抑制算法整定速度环参数,并根据电控与机械子系统匹配原则,实现位置环增益整定。上述方法与速度前馈功能,有效地提高了机械手的速度、轨迹精度和运动稳定性。
    提出一种首先辨识主动臂回零转角误差,而后再辨识其它几何参数误差的分层递阶运动学标定方法。理论与工程实践证明,该方法具有很强的鲁棒性。
    基于上述研究成果,建造出一台可充电电池质量高速自动分拣机。样机具有结构简单、制造成本低、生产率高等优点。手爪最高速度可达4 .5m/s,最大加速度达60 m/s2,点—点定位精度达0 .05mm。另台样机已经出口英国Warwick 大学,用于科研与教学。
This dissertation is focused upon the development of a complete theoretical package in terms of the conceptual design,dimensional optimization synthesis,servomotor parameters estimation,control parameters setting and kinematic calibration of a novel 2-DOF translational parallel robot for rapid pick-and-place operations. As a result, a prototype machine for automatic sorting of rechargeable batteries has been developed. The following creative works have been completed.
    Utilizing the properties of parallelograms, a 2-DOF revolute-jointed translational parallel robot patented with the name Diamond has been proposed. The light-weight component design and the base-mounted actuator arrangement allow the robot to achieve very high velocity and acceleration. This device can also be integrated with a 1-DOF feed mechanism, enabling a 3-DOF translational hybrid robot to be created. The integration is particularly useful for transporting workpieces at very high speed in a plane together with a relatively slow or step-by-step long distance motion in the direction normal to that plane.
    It has been found that the mean value of condition number of the Jacobian matrix is not suitable for evaluating the kinematic performance of the parallel mechanisms driven by external actuators. A global and comprehensive cost function is proposed by considering both the mean value and fluctuation of the condition number of Jacobian matrix. Meanwhile, a set of appropriate constraints has been considered in terms of the force transmission behavior, the workspace/machine volume ratio, and the feasibility in practical implementation.
    With the aid of the principle of virtual work, the dynamic model of the robot has been formulated. An approach to estimate the servomotor parameters is proposed using the singular value decomposition technique, resulting in the mapping function between the maximum value of joint variables and the unit operation variables. This makes it possible to the upper bounds of the servomotor parameters to be estimated in an effective manner. These parameters include the moment of inertia, the maximum speed, torque, and power.
    A method for the fixed-parameter PID controller tuning is proposed by taking into account of the nonlinearity and structural stiffness. The method can be implemented by
    two steps, (1) Tune the PID parameters of the velocity control loop by the CHR method, and (2) Tune the position control gain according to the matching principle of the dynamic characteristics of the control and mechanical subsystems. It has also been shown that the velocity tracking error can be dramatically reduced by using the feedforward control strategy. An effective kinematic calibration approach has been presented by taking the initial position of the reference point of the moving platform as the origin of the calibration frame. The method can be implemented by identifying the home errors of the active proximal links in the first place and followed by identifying the rest geometrical errors. The above outcomes have been used for the development of a prototype machine for automatic sorting of rechargeable batteries. It has been shown that the device is of simple structure, low cost, and high productivity. The gripper velocity is up to 4.5m/sec and the acceleration to 60m/sec2. The point-to-point positioning accuracy is 0.05mm. Another prototype has been developed for the University of Warwick in the UK for teaching and research.
引文
1 Clavel R, Dispositif pour le deplacement et le positionnement d’un element dans l’espace, Switzerland patent, CH1985005348856, 1985
    2 Clavel R, Device for displacing and positioning an element in space, WO8703528A1, 1987
    3 Clavel R, Device for the movement and positionning of an element in space, U.S. Patent, No. 4,976,582, 1990.
    4 Rey L., Clavel R., the Delta parallel robot, in Boer C.R., Parallel kinematic machine: theoretical aspects and industrial requirements, New York: Springer, 1999, 401-417
    5 http://www.demaurex.ch
    6 http://www.abb.com
    7 http://www.sig-robotics.com
    8 http://www.parallemic.org/WhosWho/Companies/Profile001.html
    9 http://www.isr.umd.edu/ISR/accomplishments/025_Kinematic
    10 Tsai, L.W., Multi-degree-of-freedom mechanisms for machine tools and the like, U.S. Patent, No. 5,656,905, 1997
    11 Tsai L.W., Walsh G.C., Stamper R.E., Kinematicsw of a novel three DOF translational platform, Proceedings of the 1996 IEEE international conference on robotics and automation, Minneapolis, Minnesota, 1996, 3446-3451
    12 Tsai, L.W., Stamper R., A parallel manipulator with only translational degrees of freedom, In ASME 1996 Design Engineering Technical Conference, 96-DETC-MECH-1152, Irvine, CA, 1996
    13 Pierrot F., Fournier A., Dauchez P. Towards a fully-parallel 6 DOF robot for high-speed applications Proceedings of IEEE International Conference on Robotics and Automation, Sacramento, CA, 1991, v2, 1288-1293
    14 Pierrot F., HEXA: A fast six-DOF fully-parallel robot. The 5th Int. Conf. on Advanced Robotics, Pisa , Italy: 1991, 1158 -1163.
    15 http://www.lirmm.fr
    16 Miller K., Synthesis of a manipulator of the new UWA robot, Proc. Australian conference on robotics an automation, Brisbane, 1999, 228-233.
    17 Miller K. Maximization of workspace volume of 3-DOF spatial parallel, ASME J. Mechanical Design, 2002, v124: 347-350
    18 Miller K., Dynamics of the new UWA robot, Proc. 2001 Australian Conference on Robotics and Automation, 2001, 1-6
    19 Lallemand J.P., Goudali A., Zeghloul S. , The 6 DOF 2 -Delta parallel robot, Robotica, 1997, 15(4):407-416
    20 Pierrot F., Company O., Parallel Mechanism Machining Device, EP1084802A2, 2000
    21 Pierrot F., Company O., H4: a new family of 4-dof parallel robots, IEEE/ASME International
    22 Company O., Pierrot F., A new 3T-1R parallel robot. ICAR99: 9th International Conference on Advanced Robotics, Tokyo, Japan, 1999, 557-562
    23 Pierrot F., Marquet F., Company O., H4 parallel robot: modeling, design and preliminary experiments. IEEE Int. Conf. On Robotics and Automation, Seoul, 2001
    24 http://lsro.epfl.ch/prd/applications.php
    25 Hunt K.H., Structural kinematics of in-parallel-actuated robot-arms, ASME J. Mech., transmission and automation in design, 1983, v105(4): 705-712
    26 Chakarov D., Parushev P., Synthesis of parallel manipulator with linear drive modules, Mechanism and Machine Theory, 1994, 29(7):917-932
    27 Danescu G., Jacquet P., Dahan M., A solution for the spatial mechanism design., In IASTED Int. Conf., Applied Modeling and Simulation, Lugano, 1994: 20-22
    28 HervéJ.M., Group mathematics and parallel link mechanisms, In 9th World Congress on the Theory of Machines and Mechanisms, Milan, 1995: 2079-2082
    29 Glazunov V.A., Classification principles and analysis methods for parallel-structure spatial mechanisms, J. of Machinery Manufacture and Reliability, 1990, (1):41-49,
    30 Pritschow G, Wurst K.H., Systematic design of hexapods and other parallel link systems, Annals of CIRP, 1997, v46(1): 291-295
    31 Merlet J-P., Still a long way to go on the road for parallel mechanisms, In ASME 27th Biennial Mechanisms and Robotics Conf., Montréal, 2002
    32 Koren Y, Will PKM be adopted by industry?, In Boer C.R., Parallel kinematic machines: theoretical aspects and industrial requirements, London: Springer-Verlag, 1999, 271-273
    33 Tonshoff H.K., Grendel, H. and Kaak, R., Structure and characteristics of the hybrid manipulator, In: Boer C.R., Parallel kinematic machines: theoretical aspects and industrial requirements, London: Springer-Verlag, 1999, 365-376.
    34 Tsai L W. The enumeration of a class of three-DOF parallel manipulators. The 10th World Congress on the Theory of Machine and Mechanisms, Oulu, Finland, 1999, 1121–1126.
    35 Ceccarelli, M., A new 3 D.O.F. spatial parallel mechanism, Mechanism and Machine Theory, 1997, Vol.32(8): 895-902.
    36 Tsai L.W., Robot analysis: the mechanics of serial and parallel manipulators, A Wiley-Interscience Publication, 1999
    37 Gao F., Li W., et al, New kinematic structures for 2-, 3-, 4-, and 5-DOF parallel manipulator designs, Mechanism and Machine Theory , 2002, 37: 1395–1411
    38 Siciliano B., The Tricept robot: inverse kinematics, manipulability analysis and closed-loop direct kinematics algorithm, Robotica, 1999, Vol.17: 437-445
    39 蔡光起,胡明等. 机器人化三腿磨削机床的研制, 制造技术与机床, 1998(10): 4-6
    40 蔡光起,原所先等. 三自由度虚拟轴机床静力学及动力学的若干研究, 中国机械工程, 1999, 10(10): 1108-1111
    41 http://www.heckert-maschinen.com
    42 Liu X.J., Kim J., Wang J.S., Two novel parallel mechanisms with less than six DOFs and the applications, Proceedings of the WORKSHOP on Fundamental Issues and Future Research Directions for Parallel Mechanisms and Manipulators, Quebec, Canada, 2002, 172-177
    43 黄田,李曚,张大卫等,4 自由度混联机器人,国家发明专利,申请号:03105161.8,2003.3
    44 Merlet J.P., The importance of optimal design for parallel structures, In Boer C. R., Parallel kinematic machine: theoretical aspects and industrial requirements, New York: Springer, 1999, 401-417
    45 Merlet J.P., An initiative for the kinematics study of parallel manipulators, Proceedings of the WORKSHOP on Fundamental Issues and Future Research Directions for Parallel Mechanisms and Manipulators, Quebec, 2002, 2-9
    46 Gosselin C et, Angeles J. The optimum kinematic design of a spherical 3-DOF parallel manipulator, J. of Mechanisms, Transmissions and Automation in Design, 1989, 111(2): 202-207
    47 Pittens K H et, Podhorodeski R P. A family of Stewart platforms with optimal dexterity, J. of Robotic Systems, 1993, 10(4): 463-479
    48 Huang T, Whitehouse D J, Wang J S. Local dexterity, optimum architecture and design criteria for parallel machine tools, Annals of CIRP, 1997, 47(1):347-351
    49 Gosselin C et, Angeles J. The optimum kinematic design of a planar 3-DOF parallel manipulator, J. of Mechanisms, Transmissions and Automation in Design, 1988, 110(1): 35-40
    50 Stoughton R et, Arai T. A modified Stewart platform manipulator with improved dexterity, IEEE Trans. On Robotics and Automation, 1993, 9(2): 166-173
    51 Gosselin C, Angeles J. A globe performance index for the kinematic optimization of robotic manipulators, J. Mech. Design, 1991, 113(3): 220-226
    52 Huang T., Wang J. S., Gosselin C.M., Whitehouse D. J., Kinematic synthesis of hexapods with prescribed orientation capability and well-conditioned dexterity, SME J. of Manufacturing Processes, 2000, Vol.2, No.1, pp. 36-47.
    53 黄田,王洋,倪雁冰等. 3-HSS 并联机床总体布局方案及运动学设计理论浅析, 全国生产工程第8 届学术大会暨第三届青年学术会议, 威海, 1999: 221-226
    54 Sugimoto K. Kinematics and dynamic analysis of parallel manipulator by means of motor algebra, ASME J. Of Mechanisms, Transmissions, and Automation in Desigh, 1987, 109: 3-7
    55 Dasgupta B, Mruthyunjaya T S. Closed-form dynamic equations of the general Stewart platform through the Newton-Euler approach, Mech. Mach. Theory, 1998, 33(7): 993-1012
    56 Ji Z.M. Dynamics decomposition for Stewart platforms. J. of Mechanical Design. 1994, 116: 67-69
    57 Lee K M, Shan D K. Dynamic analysis of a Three-Degrees-Freedom In-Parallel actuated manipulator, IEEE Transactions On Robotics and Automation, 1988, 4(3): 361-367
    58 Lee J.D., Albus J.S, Dagalakis N.G, Tsai T. Computer simulation of a parallel link manipulator. Robotics & Computer-Integrated Manufacturing, 1989, 5: 333-342
    59 Pang H., Shahinpoor M. Inverse dynamics of a parallel manipulator. J. of Robotic Systems, 1994, 11(8): 693-702
    60 黄真. 空间机构学. 北京: 机械工业出版社, 1991
    61 Chen C.C., et al. Dynamic analysis and determination of the joint characteristics of parallel-drive robot manipulators. J. of Robotics Systems, 1993, 10(6): 791-809
    62 Codourey A, Burdet E. A Body-oriented method for finding a linear form of the dynamic equation of fully parallel robots. Proc. of the IEEE International Conference on Robotics and Automation, 1997, 456-461
    63 Tsai L W. Solving the inverse dynamics of a Stewart-Gough manipulator by the principle of virtual work. ASME J. Mech. Design, 2000, 122: 3-9
    64 Miller K. Dynamics of the new UWA robot, Proc. Australian Conference on Robotics and Automation, Sydney, 2001, 1-6
    65 Miller K. Experimental verification of modeling of DELTA robot dynamics by direct spplication of Hamilton’s principle. IEEE International Conference on Robotics and Automation, 1995, 532-537
    66 黄真, 孔令富, 方跃法. 并联机器人机构学理论与控制. 北京: 机械工业出版社, 1997
    67 黄田,赵兴玉等,并联机床伺服进给电机参数选择的一种方法,自然科学进展,2001,11(5):522-529
    68 Ghorbel F., Modeling and PD control of closed-chain mechanical systems, Proc. of IEEE Conference on Decision and Control, New Orleans, 1995, 540-542
    69 Ghorbel H., Dabney B., Experimental validation of a reduced model based tracking control of parallel robots, Proceedings of IEEE International Conference on Control Application, Mexico, 2001, 375-382.
    70 Lee J.D., Optimal control of a flexible parallel link robotic manipulator, Comput. Struct., 1993, 48(3), 375–385.
    71 Konishi Y., Aoyama T., and Inasaki I., Learning control of a parallel-link direct-drive robot manipulator, Robot. Auton. Syst., 1989, 5:127–134.
    72 Burdet E., Rey L., Codourey A., A trivial and efficient learning method for motion and force control, Engineering Applications of Artificial Intelligence, 2001, 14:487-496
    73 Walker M.W., Adaptive control of manipulators containing closed kinematic loops, IEEE Trans. Robot. Automat., 1990, 6:256-263
    74 Burdet E., Codourey A., Evaluation of parametric and nonparametric nonlinear adaptive controllers, Robotica, 1998, v16:59-73
    75 Burdet E., Sprenger B., Codourey A., Experiments in nonlinear adaptive control, Proceedings of the 1997 IEEE International Conference on Robotics and Automation, Albuquerque, 1997:213-217
    76 Honegger M., Codourey A., Burdet E., Adaptive control of the Hexaglide, a 6 dof parallel manipulator, Proceedings of IEEE International Conference on Robotics and Automation, Albuquerque, 1997:20-25
    77 Amirat Y., Francois G.F., Pontnau J., Design and control of a new six-DOF parallel robot: Application to equestrian gait simulation, Mechatronics, 1996, 6(2); 227–239.
    78 Kokkinis T., Stoughton R., Dynamics and control of closed-chain robot arms with application to a new direct-drive robot arm, Int. J. Robot. Automat., 1991, 6(1):221-226 .
    79 Bégon P., Pierrot F., Dauchez P., Fuzzy sliding mode control of a fast parallel robot, Proc. IEEE Int. Conf. Robot. Automat., 1995:1178–1183.
    80 Babaci S., Amirat Y., Pontnau J., Fuzzy adaptation impedance of a 6 dof parallel robot application to peg in hole insertion, Proc. 5th IEEE Int. Conf. Fuzzy Syst., New Orleans, 1996:1770–1776
    81 Wang H., Xue C., Neural network control of a parallel robot, IEEE Iternational Conference on Intelligent Systems for the 21st Century, Vancouver, BC, 1995,.3:2934-2938
    82 Geng Z., Haynes L.S., Dynamic control of a parallel link manipulator using a CMAC neural network, Comput. Elect. Eng., 1993, 19(4): 265–276.
    83 Begon P., Pierrot F., Fuzzy sliding mode control of a fast parallel robot, Proceedings of IEEE International Conference on Robotics and Automation, Nagoya, 1995: 1178-1183
    84 Li S., Feng Z., Variable structure control for 6-6 parallel manipulators based on cascaded CMAC, Proceedings of the World Congress on Intelligent Control and Automation, Shanghai, 2002, 3:1939-1943
    85 熊有伦,机器人技术基础,华中理工大学出版社,1996.8
    86 汪劲松, 黄田. 并联机床—机床行业面临的机遇与挑战. 中国机械工程, 1999, 10(10): 1103 ~1107
    87 Zhuang H, Yan J, Masory O. Calibration of Stewart platform and other parallel manipulators by minimizing inverse kinematic residual. J. of Robotic System, 1998, 15(7): 395~405
    88 Mou J. A review on machine errors modeling and compensation. Proc. of Int. Conf. on Precision Engineering, 1997: 1~11
    89 Soons J A. Error analysis of a hexapod machine tool. Laser Metrology and Machine Performance, 1997: 346~358
    90 Ota H et al. Forward kinematic calibration method for parallel mechanism using pose data measured by a double ball bar system. Invited Speech of CIRP Workshop, Paris, 2001
    91 黄田, 汪劲松. 基于末端误差最小子集检测信息的6 自由度并联机构运动学标定技术, 第五届海内外青年设计与制造科学会议论文集,大连,2002.7
    92 黄田,李亚等,一种三自由度并联机构几何误差建模、灵敏度分析及装配工艺设计,中国科学:E辑.2002,32(5).-628-635
    93 Zhuang H. Self-calibration of parallel mechanisms with a case study on Stewart platforms. IEEE trans. on robotics and automation, 1997, 13(3): 387~396
    94 Zhuang H, Liu L. Self-calibration of a class of parallel manipulators. Proc. of IEEE Int. Conf. on Robotics and Automation, 1996, 2: 994~999
    95 Daney D. Self calibration of Gough platform using leg mobility constraints. In 10th World Congress on the Theory of Machines and Mechanisms, Oulu, 1999, 104-109
    96 Khalil W et al. Self calibration of Stewart-Gough parallel robots without extra sensors. IEEE Trans. on Robotics and Automation, 1999, 15(6):1118~1121
    97 Evans C J, Hochen R J, Estler W T. Self-calibration: reversal, redundancy, error separation, and ‘Absoulte Testing'’. CIRP Annals, 1996, 45(2): 617~634
    98 Merlet J-P, Still a long way to go on the road for parallel mechanisms-a keynote speech at the ASME 2002 DETC conference, http://www.sop.inria.fr.
    99 Huang, T., Li Z.X.,Li, M., Conceptual design and dimensional synthesis of a novel 2-DOF translational parallel robot for pick-and-place operations, ASME Journal of Mechanical Design, at press
    100 黄田,李曚,李占贤,仅含转动副的二自由度平动并联机器人机构,国家发明专利,专利申请号:01145160.2,1991
    101 Gosselin C M. Dexterity indices for planar and spatial robotic manipulators. ICRA, Cincinnati, OH, 650-655, 1990.
    102 Huang T, Whitehouse D J, Wang J. Local dexterity, optimal architecture and design criteria of parallel machine tools. Annals of CIRP, 47(1):.347-351, 1998.
    103 Merlet J P. The need for a systematic methodology for the evaluation and optimal design of parallel manipulators. The 3rd Chemnitzer Parallel kinematik Seminar, Chemnitz, 2002, 49-62.
    104 Gosselin,C. Angeles M. J., A globe performance index for the kinematic optimization of robotic manipulators, ASME J. of Mechanical Design, 1991, .113(3): 220-226.
    105 赵松年, 张奇鹏. 机电一体化机械系统设计. 机械工业出版社, 北京: 1996.
    106 Dissanayake M.W.M.G., Poo A.N., Robot trajectory planning for minimising residual vibrations, Proceedings IEEE International Symposium on Intelligent Control, 1988, 471 –474.
    107 薛定宇,反馈控制系统设计与分析,清华大学出版社,2000
    108 Paul R.P., Shimano B.E., Mayer G., Kinematic control equation for simple manipulators, IEEE Trans. SMC, 1981, 11(6): 449-455
    109 Manual of FM357-2 multi-axis module for servo and stepper drives, edition 01.01, SIEMENS AG, 1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700