数字化外科和牵引成骨技术治疗半侧颜面短小畸形的临床研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的
     1建立适合半侧颜面短小畸形患者的三维CT影像学模型的三维坐标系,进行面部畸形的测量、分析,和牵引成骨的术前设计。
     2利用快速成型技术设计手术导板,精确引导半侧颜面短小畸形患者下领骨截骨以后牵引器置入手术。
     3对半侧颜面短小畸形患者下颌骨牵引前后三维CT影像学资料数据进行测量和统计学分析,评估手术效果,改进手术方式,寻找最佳手术时机。
     研究对象及方法
     研究对象:2009年8月~2011年6月在中国医学科学院整形外科医院颌面整形外科中心就诊的半侧颜面短小畸形患者12例。
     研究方法:
     1将半侧颜面短小畸形患者的三维CT模型数据导入医用软件中,计算出镜像模型,将两数据同时输入工业设计软件中求导最佳拟合平面,设立为三维模型的正中矢状面,在此基础上重设三维坐标系。标记各解剖标记点,记录三维坐标,进行精确的测量分析,了解面部不对称的构成和程度。根据测量的结果精确设计牵引器植入的位置和方向。
     2将半侧颜面短小畸形患者的三维CT模型数据导入医用软件中,分体重建下齿槽血管神经束、牙胚等一一标记于下颌骨外板,再将所有数据导入工业设计软件,精确设计截骨方案,利用RP技术设计手术导板,在术中以手术导板引导手术操作与术前设计思想的无缝衔接,简化手术难度,降低意外损伤风险,缩短手术时间,提高手术效果。
     3将半侧颜面短小畸形患者术前的三维CT模型数据导入工业软件中,重设三维坐标系,导入术后的三维模型数据并与术前数据精确匹配,使之统一于同一三维坐标系。测量各解剖标志点的术前术后三维坐标值,并计算各骨性标志点、线距、空间角度和各解剖平面的空间改变。
     结果
     112例半侧颜面短小畸形患者经过重设三维坐标系,术前精确测量分析和设计后,顺利行下颌骨牵引延长手术。
     2通过使用RP技术制造出数字化颌骨手术导板,将手术操作与术前设计精确拟合,全面实现手术设计方案,提高了手术的精确性和安全性。其中2例患者升支严重发育不良,由于精确的方案及手术导板的应用,避免了下颌升支重建手术,牵引延长顺利,效果良好。
     3测量6例半侧颜面短小畸形患者术前和术后半年的三维CT数据,并进行了部分数据的统计学分析。测量结果证实数字化技术指导下的颌骨牵引手术效果满意。数据分析证实替牙期的儿童患者上颌骨和颧骨存在着很大的生长潜力,这一阶段手术可以有效减少手术次数和降低治疗的复杂程度。
     结论
     本实验运用数字化技术进行半侧颜面短小畸形的术前测量和精确的术前设计,设置最佳截骨手术方案;利用RP技术制作手术导板,引导手术过程,保证手术操作与术前设计思想的无缝衔接,提高了手术精确度,减少了手术操作难度;本研究还测量了6例患者的术前和术后半年的CT数据,并进行了部分数据的统计学分析,初步证实替牙期为半侧颜面短小畸形患者的最佳手术时机。
Objective
     1Set up three-dimensional coordinate system of hemifacial microsomia (HFM)patients with three-dimensional CT (3DCT)imaging model. Analyze and measure the deformities of facial asymmetry.Designing preoperative scheme of distraction osteogenesis.
     2Use rapid prototyping technique designs operative guide,accurately guiding mandiblular distractor implantation of hemifacial microsomia patients.
     3Measure and statistically analyze the three-dimensional CT data of hemifacial microsomia before mandibular distractor implantation and after distractor removed,assessment the results of operations, improved surgical approach.
     Study object and Methods
     Study object12HFM patients treated in Plastic Surgery Hospital,Chinese Academy of Medical Sciences Centre, Maxillofacial Plastic Surgery from August2009to June2011were selected in the study.
     Methods
     1Input HFM patient's three-dimensional CT model data to medical software, calculating the mirro model data, and then input the two model data into industrial design software,looking for the best fitting plane,defining which as the symmytrical plane.Set the symmetrical plane as the median sagittal plane, then reset the three-dimensional coordinate system. Mark the anatomical landmarks,which should be accurate measured and analyzed in order to decide asymmetrical composition. Accurately design the position and orientation of distractor follow the results of measurement and analysis.
     2Input patient's three-dimensional CT model data to medical software.Reconstruct the inferior alveolar neurovascular bundle, tooth etc, and then mark them at the outer cortex of mandible.Input all the data into industrial design software, and accurately design the osteotomy scheme.Desiged surgical guide using RP technology, guiding accurate designed osteotomy surgery. Unite preoperative design ideas and surgical procedures,simplifying surgical difficulty..reducing the risk of accidental injuries, reducing operation time and improving surgical results.
     3Input patient's three-dimensional CT model data to industrial design software, and reset the three-dimensional coordinate system. Import postoperative three-dimensional CT model data,exact matching the preoperative data in order to unite them in the same three-dimensional coordinate system.Measure three-dimensional coordinate values of anatomical landmarks before and after the distraction osteogenisis, and calculate coordinates changes of skull anatomical landmarks, length, angle and anatomical plane.
     Results
     1After three-dimensional coordinate system was resetted, after accurate measured、analyzed and designed data of preoperation,12cases of hemifacial microsomia patients successfully completed mandibular distraction osteogenesis.
     2Through using RP technique to produce digital guide of mandibular osteogenesis, surgical operation and preoperative design was well fitted. We realized the surgical design procedure perfectly, improving surgical precision and security.2patients had severe dysplasia on mandibular ramus, by accurate preoperation design and using surgical guide, had avoided the mandibular ramus reconstruction surgery, and the distraction process went smoothly.
     3We measured6cases of hemifacial microsomia preoperation and postoperation three-dimensional CT data, and conducted a statistical analysis of some data. Measurement results confirmed that under the guidance of digital technology,mandibular distraction osteogenesis results were satisfactory. Data analysis confirmed that children in mixed dentition period have great growth potential on maxilla and zygoma.Distracition osteogenesis in this period can effectively reduce the operation times and the complexity of the surgery.
     Conclusion
     In this experiment we used digital surgery techniques for treatment of hemifacial microsomia patients.By preoperative measurement and analysis, dedign the best surgery program, and using RP technique to produce digital guide of mandibular osteogenesis, surgical operation and preoperative design was well fitted, we realized the surgical design procedure perfectly, improving surgical precision and security. We also measured6patients with preoperative and postoperative three-dimensional CT data, confirmed that children in mixed dentition period have great growth potential on maxilla and zygoma.Distracition osteogenesis in this period can effectively reduce the operation times and the complexity of the surgery. Mixed dentition period is the best timing of mandibular distraction osteogenesis.
引文
1. Kaban, L. B., J. B. Mulliken, et al. Three-dimensional approach to analysis and treatment of hemifacial microsomia. Cleft Palate J.1981,18(2):90-99.
    2.张智勇,庄洪兴。下颌骨牵展延长术用儿童半侧小面畸形的治疗。实用美容整形外科杂志。1998,9:95-98。
    3. Murray, J. E., L. B. Kaban, et al. Analysis and treatment of hemifacial microsomia. Plast Reconstr Surg.1984,74(2):186-199.
    4.高益鸣,邱蔚六,唐友盛,沈国芳。下颌骨发育性不对称畸形颌面硬组织特征的研究。中国口腔颌面外科杂志。2006,4(3):177-181。
    5. Tadamasa Sawada. Visual detection of symmetry of 3D shapes. Journal of Vision.2010,10(6):4,1-22.
    6. Cuccia AM, Caradonna C. The natural head position. Different techniques of head positioning in the study of craniocervical posture. Minerva Stomatol.2009 Nov-Dec;58(11-12):601-12.
    7. Chitra Dorai, John Weng, Anil K. Jain。Optimal Registration of Multiple Range Views. In 12th Int. Conference on Pattern Recognition.1994:569-571.
    8.王兴,林野,伊彪,李自力,梁成,周彦恒。颌骨牵引成骨在矫正半侧颜面发育不全中的应用。中华医学杂志。2001,5:259-262。
    9. Davinder J. Singh, Patricia H. Glick, Scott P. Bartlett. Mandibular Deformities:Single-Vector DistractionTechniques for a Multivector Problem. The Journal of Craniofacial Surgery.2009,20(5):1468-1472.
    10.王兴,张震康,张熙恩。正颌外科手术学。1999:126-132。
    11. Swennen G, Dempf R, Schliephake H. Cranio-facial distraction osteogenesis:a review of the literature. Part II:Experimental studies. Int J Oral Maxillofac Surg.2002,31(2):123-35.
    12. Chow A, Lee HF, Trahar M, et al. Cephalometric evaluation of the eraniofaeial complex in patients treated with an intraoral distraction osteogenesis device:a long-term study. Am J Orthod Dentofaeial Orthop,2008,134(6):724-731.
    13. Yan X, Gu P. A review of rapid prototyping technologiesand systems. Computer-Aided Design[J].1996,28(4):307-318.
    14. Landers R, Pfister A, Hubner U, et al. Fabrication of soft tissue engineering scaffolds by means of rapid prototyping techniques[J]. J Mater Sci,2002,37(15):3107-3116.
    15.柴岗。快速成型技术在整形外科中的应用。组织工程与重建外科杂志。2007,3(2):107-109.
    16. Sinn DE, Cillo JE Jr, Miles BA. Stereolithography for craniofacial surgery [J]. Cranio Surg,2006,17(5):869-87.
    17.杨亚琴,李保成,白培康,等.快速成型技术在生物赝复体制造中的应用.中北大学学报,2005,4:305-308.
    18. Eggbeer D, Bibb R, Evans P. Toward identifying specification requirementsfor digital bone - anchored prosthesis designincorporating substructure fabrication:a pilot study [J]. Int J Prosthodont,2006,19(3):258-263.
    19. Rotaru H, Baciut M, Stan H, et al. Silicone rubber mould cast polyethylmethacrylate-hydroxyapatite plate used for repairing a large skull defect[J]. Cranio Surg,2006,34(4):242-246.
    20.丁焕文,涂强,王迎军,张迪辉,王虹,曾锁林,刘宝,陈晓峰,尹庆水。数字化骨科手术新方法的建立及其临床广泛应用。中国骨科临床与基础研究杂志2010 2(6):92-97.
    21. Stephen F, Glenn J, Thomas J. Surgical planning and prosthesis construction using computed tomography, CAD/CAM technology, and the internet for immediate loading of dental implants [J]. J Esthet Restor Dent 2006,18(6):312-325.
    22. LG Cima, JP Vacanti, C Vacanti, et al. Tissue engineering by cell transplantation Using degradable polymer subtrates [J]. Journal of Biomechannical Engineering.1999,113 (6):143-151.
    23. Almeida Hde A, Bartolo PJ. Virtual topological optimisation of scaffolds for rapid prototyping. Med Eng Phys.2010 Sep; 32 (7):775-82.
    24. Karoly Jakab, Cyrille Norotte, Francoise Marga, Keith Murphy, Gordana Vunjak-Novakovic and Gabor Forgacs. Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication. 2010,2:1-14.
    25. Organovo's NovoGen MMX Bioprinter Named One of Time Magazine's Best Inventions of 2010. Time Magazine.2010-11-12.
    26. Three-dimensional reconstruction of craniofacial deformity using computed tomography. Hemmy DC, David DJ, Herman GT. Neurosurgery. 1983 Nov;13(5):534-41.
    27.张学昌。逆向建模技术与产品创新设计。北京大学出版社。2009,9:76.。
    28.刘家武,刘磊,肖金刚,杨亮。三维颅颌面测量器的实验研究。口腔医学2008年2:72-74。
    29.邱憬孙健等。颌面缺损结构光三维测量与螺旋CT扫描图像的配准。中国组织工程研究与临床康复。2010,14(39):7319-22。
    30. Arridge. Three dimensional digitization of the face and skull. J Maxillofac Surg.1985 Jun;13(3):136-43.
    31. BaumrindS, Moff itt FH, Curry S. The geometry of three-dimensional measurement from paired coplanar x-ray images. Am J Orthod.1983 Oct; 84 (4):313-22.
    32. Marsh JL, Vannier MW. Surface imaging from computerized tomographic scans. Surgery.1983 Aug;94(2):159-65.
    33. Marsh JL, Vannier MW. The "third" dimension in craniofacial surgery. Plast Reconstr Surg.1983 Jun;71(6):759-67.
    34. Marsh JL, Vannier MW, Bresina S, Hemmer KM. Applications of computer graphics in craniofacial surgery. Clin Plast Surg.1986 Jul;13(3):441-8.
    35. Cavalcanti MG, Vannier MW. Quantitative analysis of spiral computed tomography for craniofacial clinical applications. Dentomaxillofac Radiol,1998,27(6):344-350.
    36. Kitai N, Eriksson L, Kreiborg S, Wagner A, Takada K. Three-dimensional reconstruction of TMJ MR images:a technical note and case report. Cranio.2004 Jan;22(1):77-81.
    37. Irene Stauberl, Eleftherios Vairaktaris2, Alexandra Holst3, Maria Schuster4, Ursula Hirschfelder3, Friedrich Wilhelm Neukaml, Emeka Nkenkel。Three-dimensional Analysis of Facial Symmetry inCleft Lip and Palate Patients Using Optical SurfaceData. Journal of Orofacial Orthopedics.2008:No.4:268-282.
    38.王兴,林野,伊彪,周彦恒,梁成,王晓霞,李自力,张震康。内置式颌骨牵引成骨在疑难牙颌面畸形矫治中的应用——附88例报告。北京大学学报(医学版)。2001,33:258-262。
    39. Gorlin, R. J., and Pindborg, J. Syndromes of the Head and Neck, 1st Ed. New York:McGraw-Hill,1964. Pp.261-265,419.
    40. Grabb, W. C. The first and second branchial arch syndrome. Plast. Reconstr. Surg.1965 Nov;36(5):485-508.
    41. Gougoutas et al. Hemifacial microsomia:clinical features and pictographic representations of the OMENS classification system. Plast Reconstr Surg.2007 Dec;120(7):112e-120e.
    42. Por H. Pachajoa a b, C. A. Rodriguez a d, C. Isaza a e. Microsomia hemifacial (espectro oculoauriculovertebral) en la cerdmica de la cultura prehispanica tumaco-tolita (300 a. C.-600 d. C.). Arch Soc Esp Oftalmol.2010; 85:154-5
    43. Cohen MM Jr, Rollniek BR, Kaye CI. Oculoauriculovertebralspectrum:an updated critique. Cleft Palate J,1989,26(3):276-286.
    44. Vento, M. D., LaBrie, R. A., and Mulliken, J. B. The 0. M. E. N. S. classification of hemifacial microsomia. Cleft Palate Craniofac. J,1991,28(1):68-76.
    45. Poswillo D. Otomandibular deformity:pathogenesis as a guide to reconstruction. J Maxillofac Surg 1974;2:64-72.
    46. Melnick M. The etiology of external ear malformations and its relation to abnormalities of the middle ear, inner ear, and other organ systems. Birth Defects 1980; 16:303-31.
    47. Werler MM, Sheehan JE, Hayes C, Padwa BL, Mitchell AA, Mulliken JB. Demographic and reproductive factors associatedwith hemifacial microsomia. Cleft Palate Craniofac J 2004;41:494-50.
    48. Gorlin RJ, Cohen MM Jr, Hennekam RCM. Syndromes of the Head and Neck,4th edn. New York:Oxford University Press pp.790-8.
    49. Horgan JE, Padwa BL, LaBrie RA, Mulliken JB OMENS-Plus: analysis of craniofacial and extracraniofacial anomalies in hemifacial microsomia. Cleft Palate Craniofac J.1995 Sep; 32 (5):405-12.
    50. Harvold EP, Vargervik K. Treatment of hemifacial microsomia [M]. New York:Alanliss Inc,1983.51-55.
    51. Rollnick BR, Kaye CI. Hemifacial microsomia and variants: pedigree data. Am J Med Genet.1983 Jun;15(2):233-53.
    52. Werler MM, Starr JR, Cloonan YK, Speltz ML. Hemifacial microsomia: from gestation to childhood. J Craniofac Surg.2009 Mar;20 Suppl 1:664-9.
    53. Stromland K, Miller M, Sjogreen L, Johansson M, Joelsson BM, Billstedt E, Gillberg C, Danielsson S, Jacobsson C, Andersson-Norinder J, Granstrom G. Oculo-auriculo-vertebral spectrum:associated anomalies, functional deficits and possible developmental risk factors. Am J Med Genet A.2007 Jun 15;143A(12):1317-25.
    54. Kelberman D, Tyson J, Chandler DC, McInerney AM, Slee J, Albert D, Aymat A, Botma M, Calvert M, Goldblatt J, Haan EA, Laing NG, Lim J, Malcolm S, Singer SL, Winter RM, Bitner-Glindzicz M. Hemifacial microsomia:progress in understanding the genetic basis of a complex malformation syndrom. Hum Genet.2001 Dec;109(6):638-45.
    55. David Poswillo. The pathogenesis of the first and second branchial arch syndrome. Oral Surg Oral Med Oral Pathol.1973 Mar; 35 (3):302-28.
    56. Johnston MC, Bronsky PT. Prenatal craniofacial development:new insights on normal and abnormal mechanisms. Crit Rev Oral Biol Med.1995; 6(1):25-79.
    57. Martha M. Werler, Jane E. Sheehan, Catherine Hayes, Allen A. Mitchell, John B. Mulliken. Vasoactive exposures, vascular events, and hemifacial microsomia. Birth Defects Res A Clin Mol Teratol.2004 Jun;70 (6):389-95.
    58. Fan WS, Mulliken JB, Padwa BL.An association between hemifacial microsomia and facial clefting. J Oral Maxillofac Surg,2005, 63(3):330-334.
    59. Cousley RRJ, Calvert M. L. Current concepts in the understanding and management of hemifacial microsomia. Br J Oral Maxillofac Surg 1997;50:536-551.
    60. Horgan JE, Padwa BL, LaBrie RA, Mulliken JB. OMENS-Plus: analysis of craniofacial and extracraniofacial anomalies in hemifacial microsomia. Cleft Palate Craniofac J,1995,32(5): 405-412. Cleft Palate Craniofac J.1995 Sep;32(5):405-12.
    61. Pruzansky, S. Not all dwarfed mandibles are alike. Birth Defects 1:120,1969.
    62. Mulliken, J. B., and Kaban, L. B. Analysis and treatment of hemifacial microsomia in childhood. Clin. Plast. Surg.14:91, 1987.
    63. Lauritzen, C., Munro, I. R., and Ross, R. B. Classification and treatment of hemifacial microsomia. Scand. J. Plast. Reconstr. Surg.19:33,1985.
    64. David DJ, Mahatumarat C, Cooter RD. Hemifacial microsomia:A multisystem classification. Plast Reconstr Surg 1987;80:525-533
    65. Poon CC, Meara JG, Heggie AA. Hemifacial Microsomia:Use of the OMENSPlus Classification at the Royal Children's Hospital of Melbourne. Plast Reconstr Surg.2003 Mar;111(3):1011-8.
    66. Huisinga-Fischer, Clara E. DDS, et al. CT-Based Size and Shape Determination of the Craniofacial Skeleton:A New Scoring System to Assess Bony Deformities in hemifacial Microsomia. J Craniofac Surg.2001 Jan; 12(1):87-94.
    67. Schmid W, Deregjibus A, Mongini F. Conservative treatment ofcraniomandibular asymmetries during growth. A long term study. Prog Orthod.2007.8(1):62-73.
    68. Meazzini MC, Mazzoleni F, Bozzetti A, et al. Does functionalappliance treatment truly improve stability of mandibular verticaldistraction osteogenesis in hemifacial microsomia? J Craniomaxillofac Surg,2008,36(7):384-389.
    69. Converse JM, Horowitz SL, Coccaro PJ, Wood-Smith D. The corrective treatment of the skeletal asymmetry in hemifacial microsomia.
    70. Kaban LB, M08es ML, Mulliken JB. surgical correction Of hemifacial microsaomia in the growth child. Plast Reconstr Surg,1988.82:9-19.
    71. Santamaria E, Morales C, Taylor JA, et al. Mandibular microsurgicalreconstruction in patients with hemifaeial microsomia. J Plast Reconstr Surg,2008,122(6):1839-1849.
    72. McCarthy JG, Schreiber J, Karp N, et al. Lengthening the humanmandible by gradual distraction[J]. Plast Reconstr Surg, 1992,89(1):1-8; discussion 9-10.
    73.王兴,林野,伊彪,等.颌骨牵引成骨在矫正半侧颜面发育不全中的应用.中华医学杂志,2001,81:259-262.
    74. Dec W, Pehomaki T, Warren SM, et al. The importance of vectorselection in preoperative planning of unilateral mandibulardistraction[J]. Plast Reconstr Surg,2008, 121(6)2084-2092; discussion 2093-2084.
    75. Paeng JY, Lee JH, Lee JH, et al. Condyle as the point of rotationfor 3-D planning of distraction osteogenesis for bemifaeialmicrosomia. J Craniomaxillofac Surg,2007,35(2): 91-102.
    76. Chow A, Lee HF, Trahar M, et al. Cephalometric evaluation of theeraniofaeial complex in patients treated with an intraoraldistraction osteogenesis device:a long-term study. Am J OrthodDentofaeial Orthop,2008,134(6):724-731.
    77. Ortiz Monasterio F, Molina F, Andrade L, Rodriguez C, Sainz Arregui J. Simultaneous mandibular and maxillary distraction in hemifacial microsomia in adults:avoiding occlusal disasters. Plast Reconstr Surg.1997 Sep;100(4):852-61.
    78. Longaker MT, Siebert JW. Microsurgical correction of facial contour in congenital craniofacial malformations:the marriage of hard and soft tissue. Plast Reconstr Surg.1996 Nov; 98 (6):942-50.
    79.
    80. McDowell F The classic reprint. Ancient ear-lobe and rhinoplastic operations in India. Plast Reconstr Surg.1969 May; 43 (5):515-22.
    81. Tanzer RC. Total reconstruction of the auricle:the evolution of a plan of treatment. Plast Reconstr Surg.1971:47:523-533.
    82. Brent B:Microtia repair with rib cartilage grafts:a review of personal experience with 1000 cases. Clin Plast Surg 2002, 29:257-271.
    83. Nagata, S. Modification of the stages in total reconstruction of the auricle:Part I. Grafting the three-dimensional costal cartilage framework for lobule-type microtia. Plast. Reconstr. Surg.1994,93:221.
    84. Nagata, S. Modification of the stages in total reconstruction of the auricle:Part II. Grafting the three-dimensional costal cartilage framework for concha-type microtia. Plast. Reconstr. Surg.1994,93:231.
    85. Nagata, S. Modification of the stages in total reconstruction of the auricle:Part III. Grafting the three-dimensional costal cartilage framework for small concha-type microtia. Plast. Reconstr. Surg.1994,93:243.
    86. Nagata, S. Modification of the stages in total reconstruction of the auricle:Part IV. Ear elevation for the constructed auricle. Plast. Reconstr. Surg.1994,93:254.
    87. Neumann CG. The expansion of an area of skin by progressive distention of a subcutaneous balloon;use of the method for securing skin for subtotal reconstruntion of the ear. Plast Reconstr Surg.1957,19:123-130.
    88.庄洪兴.先天性小耳畸形的治疗.中华整形烧伤外科杂志1988,4:17-19。
    89. Thorne C, Brecht L, Bradley J, et al.:Auricular reconstruction: Indications for autogenous and prosthetic techniques. Plast Reconstr Surg 2001,107:1241-1251.
    90. Codivilla A. On the means of lengthening in the lower limbs, the muscles and tissues which are shortened through deformity.Am J Orthop Surg,1905; 2:353-369.
    91. Ilizoarv GA. The tension-stress effect on the genesis and growth of tissue:parti.The influence of stability of fixation and soft tissue preservation.Clinic Orthop,1989,238:249-281.
    92. Ilizoarv GA. The tension-stress effect on the genesis and growth of tissue:partⅡ.The influence of rate and frequence of distraction. Clinic Orthop,1989,239:263-285
    93. Iliazorv GA. Clinical application of the tension-stress effected for limb lenghtening. Clinic Orthop,1990,250:8
    94. Snyder CC, Levine GA, Swanson HM, et al. Mandibular lengthening by gradual distraction:Preliminary report. Plast Reconstr Surg. 1973,51(5):506-508
    95. Karp NS, Thorne CH, McCarthy JG, Sissons HA. Bone lengthening in the craniofacial skeleton. Ann Plast Surg.1990,24(3):231-7.
    96. McCarthy JG, Schreiber J, Karp N et al:Lengthening the human mandible by gradual distraction. Plast Reconstr Surg 1992; 89(1):1-8.
    97. Ortiz-Monasterio F, Molina F. Mandibular distraction in hemifacial microsomia, operative technique. Plast Reconstr Surg,1994,1:105-112.
    98.王兴,林野,伊彪等,颌骨牵引成骨在矫正半侧颜面发育不全中的应用,中华医学杂志,2001,81:259-262。
    99. Yasui N, Kojimoto H, Shiomura Y. effect of distraction upon bone, Muscle and periosteum. Orthop Clin North Am,1991;22:563-567.
    100. Samchukov ML, Cherkashin AM, Cope JB.Distraction osteogenesis:origins and evolution. In:McMamara JA Jr, Trotman CA, eds. Advances in Craniofacial Orthopedics. Volume 34. Craniofacial Growth Series. Ann Arbor:Center for human Growth and Development,University of Michigan:1998:1-35.
    101. Marina R. Makarov, M. D. Evaluation of inferior alveolar nerve function during distraction osteogenesis in the dog. J Oral Maxillofac Surg,1998:56:1417-1423.
    102. Ilizarov GA. The principles of the Ilizarov Method. Bull Hosp J Dis Orthop Inst,1988;48:1.
    103. Kojimoto H, Yasui N.Bone lengthening in rabbit by callus distraction:the role of perosteum and endosteum. J Bone Joint Surg,1988;70B:543.
    104. Constantino PD, Shybut G, Friedman CD, et al. Segmental mandibular regeneration by distraction osteogenesis:an experimental study. Arch Otolaryngol Head Neck Surg,1973; 51:506.
    105. Minematsu K, Tsuchiya H, Taki J, Tomita K. Blood flow measurement during distraction osteogenesis. Clin Orthop Relat Res.1998 Feb;(347):229-35.
    106. Li G, Simpson AH, Kenwright J, et al. Effect of lengthening rate on angiogenesis during distraction osteogenesis. J Orthop Res, 1999,17:362-367.
    107. Ross D. Farhadieh, B. Sc(Med). Eeffet of distraction rate on biomechanical, mineralization, and histologic properties of an ovine mandible model. Plast. Reconstr Surg,2000:105:889-895.
    108. Wiltfang J, Kessler PA, Merten HA, et al. Continuious and intermittent bone distraction using a microhydraulic cylinder; an experimental study in minipigs. Br J Maxillofac Surg, 2001,39:2-7.
    109. Kessler PA, Merten HA, Neukam FW, et al. The effects of magnitude and frequency of distraction osteogenesis of the mandible. Plast Reconstr Surg,2002,109:171-180.
    110. Aronson J. Experimental and clinical experience with distraction Osteogenisis. Cleft Palate Craniofacial J 1994; 31 (6): 473-481.
    111. Schmelzeinsen R.Neumann G, von der Fecht R.Distraction osteogenesis in the mandible with a motor diven plate:a preliminary animal study. Br J Oral Maxillofac Surg,1996,34:375.
    112. Meazzini MC, Mazzoleni F, Gabriele C, et al. Mandibular distraction osteogenesis in hemifacial microsomia:long-term follow-up[J]. J Craniomaxillofac Surg,2005,33(6):370-376.
    113. Hollier LH, Kim JH, Grayson B, et al. Mandibular growth after distraction in patients under 48 months of age[J]. Plast Reeonstr Surg,1999,103(5):1361-1370.
    114. Molina F, Ortiz Monasterio F. Mandibular elongation and remodeling by distraction:a farewell to major OS-teotomies. [J]. Plast Reconstr Surg,1995,96(4):825-840.
    115. Baek SH. Kim S. The determinants of soccessfnl distraction osteogenesis of the mandible in hemifacial microsomia from longitudinal results [J]. J Craniofac Surg,2005,16(4):549-558.
    116. Kaban LB, Padwa BL, Mulliken JB. Surgical correction of mandibular hypoplasia in hemifacial microsomia:the case for treatment in early childhood[J]. J Oral Maxillofac Surg,1998, 56(5):628-638.
    117. Padwa BL, Mulliken JB, Maghen A, et al. Midfacial growth after costochondral graft construction of the mandibular ramus in hemifaeial microsomia [J]. J Oral Maxillofae Surg,1998,56(2): 122-127.
    118. MeCormick SU, McCarthy JG, Grayson BH, et al. Effect of mandibular distraction on the tempromandibular joint:part 1, canine study. J Cranio surg,1995,6(5):358-363.
    119. McCarthy JG. Distraction osteogenesis:The first ten years. AAOMS,1998,9-10.
    120. Crayson BH,McCormick S,Santiago PE, et al. Vector of device placement and trajectory of mandibular distraction. J Craniofac Surg,1997,8(60):473-482.
    121. McCormick SU, McCarthy JG, Grayson BH, et al. Effect of mandibular distracti on on the temporomandibular joint:part 2, clinical study. J Craniofac Surg,1995,6(5):364.
    122. Harper RP, Bell WH,Hinton RJ, et al. Reaction changes in the temporomandibu lar joint after mandibular midline osteodistraction. Br J Oral Maxillofac Surg,1997,35:20-25.
    123.王晓霞。下颌骨牵引成骨对周围组织的影响.现代口腔医学杂志,2001,15(4):307-309。
    124.王晓霞,王兴,李自力,杨朝晖。下颌骨牵引成骨术对下牙槽神经功能影响的实验研究。中华口腔医学杂志。2002,37(1):。
    125. Block MS, Daire J, Stover J, et al. Changes in the inferior alveolar nerve following mandibular lengthening in the dog using distraction osteogenesis. J Oral Maxillofac Surg 1993:51:652-660.
    126. Reynolds ST, Ellis E 3rd, Carlson DS. Adaptation of the suprahyoid muscle complex to large mandibular advancements. J Oral Maxillo-fac Surg,1988,46(12):1077-1085.
    127. Marquez IM, Fish LC, Stella JP. Two-year follow-up of distraction osteogenesis:its effect on mandibular ramus height in hemifacial microsomia. [J]Am J Oahod Dento-facial OfIhop,2000, 117(2):130-139.
    128. Constantino PD, Shybut G, Friedman CD, et al. Segmentation madibular regeneration by distraction osteogenisis. An experimental study. Arch Otolarygol Head and Neck surgery,1990, 116:535-545.
    129. Meyer T, Meyer U, Stratmann U, Wiesmann HP, Joos U. Identification of apoptotic cell death in distraction osteogenesis. Cell Biol Int.1999;23(6):439-46.
    130. Campisi P, Hamdy RC, Lauzier D, et al. Expression of bone morphogenetic proteins during mandibular osteogenesis. Plast Reconstr Surg,2003,111:201-208.
    131. Warren SM, Mehrara BJ, Steinbrech DS, et al. Rat mandibular distraction osteogenesis:part Ⅲ. Gradual distraction versus acute lengthening. Plast Reconstr Surg,2001,107:441-453.
    132. Farhadich RD, Dickinson R, Yu Y, et al. The role of transforming growth factor-beta, insulin-like growth factor I and basic fibroblast growth factor in distraction osteogenesis of the mandible. J Cranio Surg,1999,10:80-86.
    133. Tavakoli K, Yu Y, Shahidi S, et al. Expression of growth factors in the mandibular distraction zone:a sheep study. Br J Plast Surg,1999,52:434-439.
    134. Stewart KJ, Weyand B, Van't Hof RJ, et al. A quantitative analysis of the effect of insulin21ike growth factorl infusion during mandibular distraction osteogenesis in rabbits. Br J Plast Surg,1999,52:343-350.
    135. Cheung LK, Zheng LW. Effect of recombinant human bone morphogenetic protein22 on mandibular distraction at different rates in an experimental model. J Craniofac Surg,2006,17: 100-108.
    136. Okazaki H, Kurokawa T, Nakamura K, et al. Stimulation of bone formation by recombinant fibroblast growth factor22 in callotasis bone lengthening of rabbits. Calcif Tissue Int,1999,64:542-546.
    137. Richards M, Barbaera AH, Arnold IC, et al. Marrow-derived progenitor cell injections enhance new bone formation during distraction. J Orthop Res,1999,17:900-908.
    138. Al Ruhaimi KA. Effect of calcium sulphate on the rate of osteogenesis in distracted bone. Int J Oral Maxillofac Surg, 2001,30:228-233.
    139. Cho BC, Park JW, Baik BS, et al. Clinical application of injectable calcium sulfate on early bony consolidation in distraction osteogenesis for the treatment of craniofacial microsomia. J Craniofac Surg,2002,13:465-475.
    140. Cho BC, Park JW, Baik BS, et al. The role of hyaluronic acid,chitosan, and calcium sulfate and their combined effect on early bony consolidation in distraction osteogenesis of a canine model. J Craniofac Surg,2002,13:783-793.
    141. Cho BC, Kim JY, Lee JH, et al. The bone regenerative effect of chitosan microsphere-encapsulated growth hormone on bony consolidation in mandibular distraction osteogenesis in a dog model. J Craniofac Surg,2004,15:299-311.
    142. Cho BC, Chung HY, Lee DG, et al. The effect of chitosan bead encapsulating calcium sulfate as an injectable bone substitute on consolidation in the mandibular distraction osteogenesis of a dog model.J Oral Maxillofac Surg,2005,63:1753-1764.
    143. Ashinoff RL, Cetrulo CL Jr, Galiano RD, et al. Bone morphogenic protein22 gene therapy for mandibular distraction osteogenesis. Ann Plast Surg,2004,52:585-591.
    144. Aronson J, Good B, Stewart C, Harrison B, Harp J. Preliminary studies of mineralization during distraction osteogenesis.Clin Orthop,1990,250:43-49.
    145. Maj Peter D. Costantino, MC USAF. Experimental mandibular regrowth by distraction osteogenesis. Arch Otolaryngol Head Neek Surg,1993,119:511-516.
    146. Heiko Reichel, MD. Biomechanincal and densitometric bone properties after callus distraction in sheep. Clinical Orthopaedics And Related Research,1998; 357:237-246
    147. Smith SW, Sachdeva RC, CoPe JB. Evaluation of the consolidation period during osteodistraction using computed tomogrpahy.Am J Orthod Dentofacial Orthop,1999,116:254-263.
    148.张美超,钟世镇.国内生物力学中有限元的应用研究进展.解剖科学进展,2003,9(1):53-56.
    149.胡辉莹,钟世镇,聂晨阳.人体骨骼生物力学中有限元分析的研究进展.广东医学,2007,28(9):1532-1534.
    150.李岩峰 胡敏 吴子恒 林峰。不完全截骨牵张成骨重建犬下颌骨节段缺失的有限元模型建立。华西口腔医学杂志,2009,2(2):135-138.
    151. Reina-Romo E, Sampietro-Fuentes A, Gomez-Benito MJ, Dominguez J, Doblare M, Garcia-Aznar JM。Biomechanical response of a mandible in a patient affected with hemifacial microsomia before and after distraction osteogenesis. Med Eng Phys.2010 Oct;32(8):860-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700