用户名: 密码: 验证码:
时域荧光扩散光层析的基本理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于近红外光在生物组织中具有相对较低的组织吸收,可达到数厘米的穿透深度,同时随着荧光分子探针技术在生物医学研究中的深入研究和广泛应用,荧光扩散光层析(FDOT)技术作为一种新颖的分子成像技术得到了不断发展。时域技术在测量荧光寿命上具有潜在的优势,且能够同时重建荧光产率和寿命以及进行多组分分析。本文主要探讨了时域FDOT的基本原理和实验方法,其内容包括基于时间相关单光子计数技术的多通道时间分辨系统测量、图像重建算法、数值模拟和实验验证三个主要环节。
     扩散方程为辐射传输方程的一阶球谐近似,可作为描述光在组织体中的传输模型。荧光检测量的数学表达式可由激发光和发射荧光之间的耦合扩散方程得到。文中提出了将广义脉冲谱技术(GPST)应用到时域FDOT的方法。此方法应用有限元方法求解拉普拉斯变换的时域耦合扩散方程正向模型,在逆向模型中,通过引入一对拉普拉斯变换因子和应用代数重建技术(ART)求解线性方程使得荧光产率和寿命图像同时重建。另外还应用了归一化玻恩比方法,此方法具有与光源强度无关、对系统误差具有较小敏感性、对背景光学特性的非均匀性不敏感等优点,与拉普拉斯变换相结合能够克服测量系统的零点校正问题。将提出的算法进行了数值模拟验证,在空间分辨率、定量重建性等方面进行了评估,且讨论了在噪声数据下变换因子的选择对图像重建的影响。
     全时间分辨方法(Full TR)包含了组织体内部光学参数和荧光参数最丰富的信息,成像质量高,因而可作为评估其它算法成像质量的标准。在此方法中,利用有限元-时域有限差分方法求解了时域耦合扩散方程的正向模型,在逆向模型中应用了Newtown-Raphson方法重建了荧光产率和寿命图像,另外对权重矩阵的计算、线性逆和正则化方法进行了说明。将提出的方法进行了二维模拟验证,并对其空间分辨率、重建定量性、重建目标尺寸、噪声鲁棒性等方面进行了评估,且与广义脉冲谱技术进行了比较。
     针对时间相关单光子计数系统,采用了基于时间分辨反射测量技术的混浊介质光学参数重构方法快速准确地测量了固态及液态仿体的光学参数。基于自行设计的多通道时间分辩FDOT实验系统,将测得的实验数据应用于图像重建,应用前述的广义脉冲谱技术重建了荧光产率和荧光寿命的全三维图像,图像重建结果与实际情况相符,且验证了模拟实验结果,并对实验结果进行了讨论。
As near infrared light can travel several centimeters in tissue, fluorescence diffuse optical tomography(FDOT)with the aid of specific fluorescent probes promises to open new pathways for the characterization of biological processes in living animals at cellular and molecular levels. The time domain technique offers the potential advantages of directly measuring lifetime and has the favorite performances of simultaneously recovering of fluorescent yield and lifetime distributions, as well as resolving multiple components. The thesis focuses on the research of the imaging theory and method on time-domain FDOT, including measurement method based on the multichannel time-resolved system, the algorithm of image reconstruction, numerical simulation and experimental investigation.
     The diffusion equation (DE) is the P1 approximation of the Radiative Transfer Equation, and has been proved to be adequately accurate in case of thick tissue and mathematically tractable. The fluorescent light detection relies on a coupled DE that associates the excitation-light with the emission-one. We propose a generalized pulse spectrum technique (GPST) for time-domain FDOT. In this work, a finite element method solution to the Laplace transformed time-domain coupled diffusion equations is employed as the forward model, and the resultant linear inversions at two distinct transform-factors are solved with an algebraic reconstruction technique to separate fluorescent yield and lifetime images. The normalized Born ratio is used for its independence of the source intensity and less sensitivity to the systematic errors. In addition, it eliminates the requirement for accurate calibration of the temporal-origin in time-domain measurement and also exhibits a high robustness to the uncertainties of highly optically heterogeneous background. The algorithm is validated using simulated data, and the spatial resolution, noise-robustness and so on are assessed. The choice of appropriate transform factors is discussed.
     The full time-resolved mode possesses the richest information about the optical and fluorescent properties. Making full use of the time-resolved data would improve fidelity of the image reconstruction, and help set up the‘golden standard’for evaluating the performance of the other featured-data methodologies. In this work, a hybrid finite-element-finite-time-difference method for solving the TD coupled diffusion equations is developed to serve as the forward model. The Newtown-Raphson inverse model for simultaneous reconstruction of fluorescent yield and lifetime images is proposed, and some issues associated to its implementation, such as the computation of the weighting matrix, linear inversion and regularization strategy, are highlighted.The proposed algorithm is validated with simulated data for 2D phantom and its superiority in the improvement of image quality is demonstrated, in comparasion with the featured-data algorithm previously developed based on GPST.
     A method for determining the optical properties in turbid medium is developed based on time-resolved reflection measurement, and the optical properties of solid and liquid phantoms are measured. By use of multchannels time-resolved measurent system based on time-correlated single photon counting (TCSPC), we experimentally validate that the proposed GPST scheme can achieve simultaneous reconstruction of the fluorescent yield and lifetime distributions with a reasonable accuracy. The results demonstrate that the proposed methodology is suitable for further application into FDOT. Nevertheless, a lot of improvements on both the instrumentation and methodology are necessarily required prior to clinical applications.
引文
[1] H. R. Herschman, Molecular imaging: looking at problems, seeing solutions, Science, 2003,302:605-608
    [2] R. Weissleder, C.H. Tung, U. Mahmood and A. Bogdanov,“In vivo imaging with protease-activated near-infrared fluorescent probes,”Nat. Biotechnol.,1999, 17(4):375-378
    [3] V. Ntziachristos, C-H Tung, C. Bremer and R. Weissleder,“Fluorescence molecular tomography resolves protease activity in vivo,”Nat. Med., 2002, 8: 757-60 .
    [4] Achilefu, R. Dorshow, J. Bugaj and R. Rajapopalan,“Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging,”Invest. Radiol. 2000, 35: 479-485.
    [5] T.F. Massoud and S.S. Gambhir,“Molecular imaging in living subjects: seeing fundamental biological processes in a new light,”Genes Dev., 2003, 17(5):545-580.
    [6] V. Ntziachristos, C. Bremer, E.E. Graves, J. Ripoll, and R. Weissleder,“In vivo tomographic imaging of near-infrared fluorescent probes,”Molecular Imaging. , 2002, 1:82-88.
    [7] R. Weissleder and V. Ntziachristos, Shedding light onto live molecular targets, Nature Medicine ,2003, 9: 123-128
    [8]吕玉杰,自发荧光断层成像逆问题研究:[博士学位论文],北京,中国科学院自动化研究所, 2007
    [9]李慧,在体生物光学成像正向与逆向问题研究:[博士学位论文],北京,中国科学院自动化研究所,2005
    [10]陈延平,用于小动物模型研究的扩散光学分子成像技术:[博士学位论文]湖北,华中科技大学,2006
    [11]和慧园,反射模式时域荧光分子层析原理的模拟与实验研究:[硕士学位论文],天津;天津大学,2008
    [12] R. Blasberg, PET imaging of gene expression, Eur. J. Cancer, 2002, 38: 2137–2146
    [13] S. R. Cherry, MicroPET: A high resolution PET scanner for imaging small animals IEEE Trans. Nucl. Sci., 1997,44: 1161–1166
    [14] P. A. Dayton and K. W. Ferrara, Targeted imaging using ultrasound J. Magn. Reson. Imaging, 2002, 16:362–377
    [15] F. S. Foster, A new ultrasound instrument for in vivo microimaging of mice Ultrasound Med. Biol. , 2002, 28:1165–1172
    [16] H. Benveniste and S. Blackband, MR microscopy and high resolution small animal MRI: applications in neuroscience research Prog. Neurobiol., 2002, 67: 393–420
    [17] A. Y. Louie, M. M. Huber, E. T. Ahrens , et al., In vivo visualization of gene expression using magnetic resonance imaging Nat. Biotechnol. , 2000,18: 321–325
    [18] C. H. Contag and M. H. Bachmann, Advances in in vivo bioluminescence imaging of gene expression Annu. Rev. Biomed. Eng., 2002, 4: 235–260
    [19]王飞,邝菲,肿瘤分子影像学研究进展,实用肿瘤杂志,2006, 21(3), 206-208
    [20] W. C. W. Chan, D. J. Maxwell, X. H. Gao, et al., Luminescent quantum dots for multiplexed biological detection and imaging Curr. Opin. Biotechnol., 2002, 13: 40-46
    [21] S. R. Cherry,“In vivo molecular and genomic imaging: new challenges for imaging physics,”Phys. Med. Biol. 2004, 49: R13-48.
    [22] A.Y. Louie, M. M. Huber, E. T. Ahrens, et al., In vivo visualization of gene expression using magnetic resonance imaging, Nature Biotechnology, 2000, 18:321-325,
    [23]蒋星军,任彩萍,分子成像及其应用,生命科学,2005,17(5):456-460
    [24] S. Aime, C. Cabella, S. Colombatto, et al., Insights into the use of paramagnetic Gd(III) complexes in MR-molecular imaging investigations J. Magn. Reson. Imaging 2002,16: 394-406
    [25] M. J. Paulus, H. Sari-Sarraf, S. S. Gleason, et al., A new x-ray computed tomography system for laboratory mouse imaging IEEE Trans. Nucl. Sci., 1999, 46: 558–564
    [26] P. Arbeille, V. Eder, D. Casset, et al., Real-time 3D ultrasound acquisition and display for cardiac volume and ejection fraction evaluation Ultrasound Med. Biol., 2000, 26: 201–208
    [27] H. Leong-Poi, J. Christiansen, A. L. Klibanov, et al., Noninvasive assessment of angiogenesis by ultrasound and microbubbles targeted to alpha(v)-integrins Circulation, 2003, 107: 455–460
    [28] L. F. Greer and A. A. Szalay, Imaging of light emission from the expression of luciferases in living cells and organisms: a review Luminescence, 2002, 17: 43–74
    [29] C. H. Contag, P. R. Contag, J. I. Mullins, et al., A Photonic detection of bacterial pathogens in living hosts, Molecular microbiology, 1995, 18(4):593-603.
    [30] C. H. Contag, S. D. Spilman, P. R. Contag, Visualizing gene expression in livingmammals using a bioluminescent reporter, Photochemistry and photobiology ,1997, 66(4):523-31.
    [31] M. Edinger, Y. A. Cao, M. R. Verneris, et al. Revealing lymphoma growth and the efficacy of immune cell therapies using in vivo bioluminescence imaging. Blood, 2003, 101(2):640~648
    [32]张怡,赵春林,活体动物内光学成像技术的研究进展,生命科学,2006,18(1): 25-30
    [33] A. Maggi, P. Ciana, Reporter mice and drug discovery and development. Nat Rev Drug Discov, 2005, 4(3): 249~255
    [34]朱建新,宋小磊,汪待发,白净,荧光分子成像技术概述及研究进展,中国医疗器械杂志,2008, 32(1): 1671-7104
    [35] E. E. Graves, J. Ripoll, R. Weissleder, A submillimeter resolution fluorescence molecular imaging system for small animal imaging, 2003, Am. Assoc. Phys. Med. 30(5) : 901-911
    [36] D. Kepshire, S. C. Davis, H. Dehghani, Fluorescence tomography characterization for sub-surface imaging with protoporphyrin IX, Opt. Exp. 2008,16(12):8582-8593.
    [37] C. Bremer, V. Ntziachristos, Ralph Weisslder, Optical-based molecular imaging: contrast agents and potential medical applications, 2003, Eur Radiol, 13:231-234
    [38] M.A. O’Leary, D.A. Boas, X.D. Li, et al., Fluorescence lifetime imaging in turbid media, Opt. Lett. 1996, 21(2): 158-160.
    [39] A.T.N. Kumar, J.Skoch, B.J.Bacskai, et al., Fluorescence-liftetime-based tomography for turbid media, Opt. Lett. 2005, 30(24): 3347-3349.
    [40] V. Y. Soloviev, K. B. Tahir, J. McGinty, et al., Fluorescence lifetime tomography by using time-gated data acquisition, Appl. Opt. 2007,46(30) : 7384-7391.
    [41] D. Hattery, V. Chernomordik, Murray Loew, et al., Analytical solutions for time-resolved fluorescence lifetime imaging in a turbid medium such as tissue, Opt. Soc. Am. A. , 2001,18(7) :1523-1530.
    [42] A. P. Gibson, J. C. Hebden and S. R. Arridge, Recent advances in diffuse optical imaging, Phys. Med. Biol. 2005, 50: 1-43
    [43] D. A. Benaron, et. al., Noninvasive functional imaging of human brain using light J. Cereb. Blood Flow Metab, 2000, 20: 469–477
    [44] J. P. Culver, R. Choe, M. J. Holboke, et. al., Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging Med. Phys. 2003, 30: 235-247
    [45] D. A. Boas, K. Chen, D. Grebert , et. al., Improving the diffuse optical imaging spatial resolution of the cerebral hemodynamic response to brain activation inhumans, Opt. Lett., 2004b, 29: 1506–1508
    [46] H. Dehghani, M. M. Doyley, B. W. Pogue, et. al., Breast deformation modelling for image reconstruction in near infrared optical tomography Phys. Med. Biol., 2004, 49: 1131-1145
    [47] D. A. Boas, D. H. Brooks, E. L. Miller, et. al., Imaging the body with diffuse optical tomography IEEE Signal Process. Mag. 2001a ,18 :57–75
    [48] M. J. Eppstein, D. E. Dougherty, D. J. Hawrysz, et. al., Three-dimensional Bayesian optical image reconstruction with domain decomposition IEEE Trans. Med. Imaging, 2001, 20: 147-63
    [49] Y. Xu, N. V. Iftimia, H. Jiang, et. al., Imaging of in vitro and in vivo bones and joints with continuous-wave diffuse optical tomography Opt. Express, 2001, 8: 447–51
    [50] J. C. Hebden and D. T. Delpy, Enhanced time resolved imaging using a diffusion model of photon transport, Opt. Lett., 1994, 19: 311-313
    [51] Y. Xu, N. V. Iftimia, H .Jiang, et. al., Three-dimensional diffuse optical tomography of bones and joints, J. Biomed. Opt., 2002, 7: 88–92
    [52] W. Zou, J. Wang and D. D. Feng, Fluorescence molecular tomography image reconstruction based on the Green’s function, J. Opt. Soc. Am. A, 2007, 24(7) :2014-2022
    [53] A. Soubret and V. Ntziachristos, Fluorescence molecular tomography in the presence of background fluorescence, Phy. Med. Biol., 2006, 51:3983-4001
    [54] N. Deliolanis, T. Lasser, D. Hyde, et. al., Free-space fluorescence molecular tomography utilizing 3600 geometry projections, Opt. Lett., 2007, 32(4) : 382-384
    [55] S. V. Apreleva, D. F. Wilson and S. A. Vinogradov, Feasibility of diffuse optical imaging with long-lived luminescent probes, Opt. Lett., 2006, 31(8) : 1082-1084
    [56] A. Godovarty, A. B. Thompson, R .Roy, et. al., Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies J. Biomed. Opt., 2004, 9: 488–496
    [57] B. Milstein, S. Oh and Kevin. J. Webb, Fluorescence optical diffusion tomography, Appl. Opt., 2003, 42(16) : 3081-3094
    [58] B.Milstein, J.J. Stott, S. Oh, et al., Fluorescence optical diffusion tomography using multiple-frequency data, Opt. Soc. Am. A. , 2004,21(6) :1035-1049.
    [59] S. Keren, O. Gheysens, C. S. Levin, et al., A comparison between a time domain and continuous wave small animal optical imaing system, IEEE Tans. Med. Imaging, 2008, 27(1):58-63
    [60] S. H. Han and D. J. Hall, Estimating the depth and lifetime of a fluorescent inclusion in aturbid medium using a simple time-domain optical method, Opt.Lett., 2008, 33(9):1035-1037
    [61] A. Marjono, A. Yano, S. Okawa, et al., Total approach of time-domain fluorescence diffuse optical tomography, Opt. Exp. 2008,16(19):15268-15285.
    [62] B. Montcel, R. Chabrier and P. Poulet, A time-resolved, multi-wavelength, fluorescence diffuse optical tomography system for small animal imaging, SPIE and OSA,2005,5859:58590Y-1-9.
    [63]徐可欣,高峰,赵会娟,生物医学光子学,北京:科学出版社,2007
    [64]陈国珍等,荧光分析法,北京:科学出版社,1990
    [65] L. Wang, S. L. Jacques, L. Zheng, MCML-Monte Carlo modeling of light transport in multilayered tissues, Computer Methods and Programs in Biomedicine, 1995, 47:131-146
    [66] A.J. Welch, Craig Gardner, et al, Propagation of Fluorescent Light,Lasers in Surgery and Medicine, 1997, 21(2): 166-178
    [67] Y. Hasegawa, Y. Yamada, M. Tamura, et al, Monte-Carlo simulation of light transmission through living tissue, Appl. Opt., 1991, 30:4515-4520
    [68] T. Hayashi, Y .Kashio and E. Okada, Hybrid Monte Carlo-diffusion method for light propagation in tissue with a low-scattering region Appl. Opt., 2003, 42: 2888-2896
    [69]曾余庚等编著,电磁场有限单元法,北京科学出版社1982
    [70]李开泰,黄艾香,黄庆怀,有限元方法及其应用,西安:西安交通大学出版社,1992
    [71] S. R. Arridge and M. Schweiger, Photon measurement density functions: II. Finite element method calculations, Appl. Opt., 1995 , 34:8026–8037
    [72] S. R. Arridge, H. Dehghani, M. Schweiger , et al., The finite element model for the propagation of light in scattering media: a direct method for domains with nonscattering regions , Med. Phys., 2000, 27: 252–264
    [73]宋小磊,白净,近红外荧光散射层析成像的研究进展,国外医学生物医学工程分册,2005,28(2):70-75
    [74]刘立新,屈军乐,林子扬等,荧光寿命成像及其在生物医学中的应用,深圳大学学报理工版,2005,22(2):133-141
    [75] F. Gao, W. Liu and H. Zhao, Linear shceme for time-domain fluorescence molecular tomography, Chin. Opt. Lett. 2006, 4(10): 595-597.
    [76] E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, et al., Calibration techniques and datatype extraction for time-resolved optical tomography Rev. Sci. Instrum., 2000, 71: 3415–3427
    [77] E. M. C. Hillman, J. C. Hebden, M .Schweiger, et al., Time resolved optical tomography of the human forearm Phys. Med. Biol., 2001, 46: 1117–1130
    [78] A. Liebert, H. Wabnitz, D. Grosenick, et al., Evalutation of optical properties ofhighly scattering media by monments of distributions of times of flight of photons, Appl. Opt.,2003, 42(28):5485-5792.
    [79] F. Gao, H.J. Zhao, Y. Tanikawa and Y.Yamada,“A linear, featured-data scheme for image reconstruction in time-domain fluorescence molecular tomogrphy,”Opt. Express. 2006, 14(16): 7109-7124.
    [80] X.Y. Lin, Y. M. Chen., A generalized pulse-spectrum technique (GPST) for determininge quations.SIAM J .Sci. Stat. Comput., 1987, 8( 1):436-445
    [81] Y. M. Chen, Generalized pulse-spectrum technique, Geophysics, 1985, 50 :1664-16 75
    [82]韩波,刘家琦等,广义脉冲谱技术的一个新形式及其应用,计算物理,1995, 12( 3) :349-354
    [83] A. X. Cong and G. Wang, A finite-element-based reconstruction method for 3D fluorescence tomography, Opt. Express., 2005, 13(14):9847-9857.
    [84] S. R. Arridge, Optical tomography in medical imaging, Inverse Probl.,1999, 15: 41-93
    [85]黄卡码,赵翔编著,电磁场中的逆问题及应用,北京,科学出版社,2005
    [86] S. R. Arridge and J. C. Hebded, Optical imaging in medicine: II. Modeling and reconstruction, Phys. Med. Biol., 1997, 42:841-853
    [87] E. E. Graves, J. P. Culver, J. Ripoll, et al., Singular-value analysis and optimization of experimental parameters in fluorescence molecular tomography, J. Opt. Soc. Am. A, 2004, 21(2):231-241
    [88] C. Sanchez-Avila, A. R. Figueiras-Vidal, New POCS algorithms for regularization of inverse problem, J. Comput. Appl. Math, 1996,72: 21-39
    [89] D. C. Youla, H. Webb, Image reconstruction by the method of convex projections: Part I-theroy, IEEE Trans. Med. Imaging, 1982, 1:81-94
    [90] R. J. Gaudeet, D. H. Brooks, C. A. Dimarzia, et al., A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient, Phys. Med. Biol., 2000,45(4):1051-1070
    [91] K. T. Ladas and A. J. Devaney, Generalized ART algorithm for diffraction tomography, Inverse Problems, 1991,7:109-125
    [92] Gaudette RJ,Brooks DH,DiMarzio CA,et al.A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient.Phys.Med.Biol.,2000,45:1051-1070
    [93] J. R. Singer, F. A. Grünbaum, P. Kohn, et al, Image Reconstruction of the interior of bodies that diffuse radiation.Science, 1990, 248:990-993
    [94] J. Ripoll, M .Nieto-Vesperinas, S. R. Arridge, et al., Boundary conditions for light propagation in diffusive media with nonscattering regions.J.Opt.Soc.Am. A, 2000, 17:1671-1681
    [95] A. H. Hielscher, A. D. Klose and K. M. Hanson, Gradient-based iterative image reconstruction scheme for time-resolved optical tomography, IEEE T.Biomed.Eng., 1999,18:262-271
    [96] V. Noziachristos and R. Weissider,“Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation”, Opt. Lett. , 2001, 26: 893-895.
    [97] A. Soubret, J. Ripoll and V. Ntziachristos, Accuracy of Fluorescent Tomography in the presence of heterogeneities: study of the normalized Born Ratio, IEEE Tans. Med. Imaging, 2005, 24(10):1377-1386
    [98] D. Hyde, E. Miller, D. H. Brooks, et al., A statistical approach to inverting the Born Ratio, IEEE Tans. Med. Imaging, 2007, 26(7):893-905
    [99] R. Gordon, R.Bender and G.T. Herman, Algebraic Reconstruction Techniques (ART) for Three-dimensional Electron Microscopy and X-ray Photography, J.theor. Biol, 1970, 29:471-481
    [100]李建东,CT成像的ART重建算法和条状伪影的降低:[硕士学位论文],辽宁,东北大学,2001
    [101] K.T. Ladas and A. J. Devaney, Generalized ART algorithm for diffraction tomography, Inverse Problems, 1991, 7:109-125
    [102]刘晓,工业CT图像重建算法的计算机模拟研究:[硕士学位论文],四川,四川大学,2004
    [103] F. Bevilacqua, D. Piguet, P. Marquet, et al., In vivo local determination of tissue optical properties: applications to human brain, Appl. Opt. , 1999,38:4939-4950.
    [104] K. D. Paulsen, P. M. Meaney, M. J. Moskowitz, et al., A dual mesh scheme for finite element based reconstruction algorithms, IEEE Tans. Med. Imaging, 1995 ,14:504-514
    [105] J. H. Lee, A. Joshi and E. M. Sevick-Muraca, Full adaptive finite element based tomography using tetrahedral dual-meshing for fluorescence enchanced optical imaging in tissue, Opt. Exp. 2007,15(11):6955-6975.
    [106] A. Joshi, W. Bangerth and E. M. Sevick-Murace, Adaptive finite element based tomography for fluorescence optical imaging in tissue, Opt. Exp. 2004,12(22):5402-5417.
    [107] D. Wang, X. Song and J. Bai, Adaptive-mesh-based algorithm for fluorescence molecular tomography using an analytical solution, 2007, 15(15):9722-9730.
    [108] W. Bangerth and A. Joshi, Adaptive finite element methods for the soulution of inverse problems in optical tomography, Inverse Problem,2008, 24:1-22
    [109] B. Brooksby, H. Dehghani, B. W. Pogue , et al., Near infrared (NIR)tomography breast image reconstruction with a priori structural information from MRI: algorithm development for reconstructing heterogeneities IEEE J. Quantum Electron., 2003, 9: 199-209
    [110] J. Axellson, J. Sevensson and S. A. Engles, Spatially varying regularization based on spectrally resolved fluorescence emission in fluorescence molecular tomography, Opt. Exp. 2007,15(21):13574-13584.
    [111]肖飞,计算电磁学中时域有限差分方法的研究:[博士学位论文],四川,电子科技大学,2005
    [112]葛德彪,闫玉波编著,,电磁场时域有限差分方法,西安;西安电子科技大学出版社,2002
    [113]杨阳,电磁场时域有限差分数值方法的研究:[博士学位论文],江苏,南京理工大学,2005
    [114] A. Taflove, S. C. Hagness, Computational electrodynamics:the finite-difference time-domain method, London, Artech House,2000
    [115] F. Gao, H. Zhao, and Y. Yamada,“Improvement of image quality in diffuse optical tomography by use of full time-resolved data,”Appl. Opt. 2002, 41: 778-791.
    [116]薛媛,基于平板检测和有限差分方法的时域乳房扩散光学层析成像算法研究:[硕士学位论文],天津,天津大学,2007
    [117] M.S.Parterson,B.Chanee,and B.C.Wilson. Time resolved reflectance and transmittance of the noninvasive measurement of tissue optical properties [J]. Appl. Opt.,1989, 28(12):2331-2336
    [118]俞碧莺,生物组织的时间分辨光学分布特性及光学参数测量:[硕士学位论文],福建,福建师范大学,2006
    [119] V. Ntziachristos, X. Ma, B. Chance, Multichannel photon counting instrument for spatially resolved near infrared spectroscopy, Rev. Sci. Instrum., 1999, 70(1): 193-201
    [120]赵会娟,高峰,牛憨笨,医用光学成像综述I-直接法,激光与光电子学进展,1999,8(10):1-6
    [121]高峰,C.V. Zint,P. Poulet,时间分辨光学层析的实验研究,光学学报,2001,21(9): 1068-1072
    [122] C. J. M. Moes, M. J. C. van Gemert,W.M.Star et al,Measurements and calculations the energy fluence rate in a scattering and absorbing phantom at 633 nm Appl Opt,1989,28:2292-2296.
    [123] Hugo J.van Staveren,Christian J.M.Moes and Jan van Marie et al,Light scattering in Intralipid 10% in the wavelength range og 400-1100nm Appl Opt,1991,30: 4507-4514.
    [124]许棠,生物组织中的光传输及生物组织光学特性参数的测量的研究:[博士学位论文],天津,南开大学,2004
    [125] O. A. Andreev, A.D. Dupuy, M. Segala, et al., Mechanism and uses of a membrane peptide that targets tumors and other acidic tissues in vivo, PNAS, 2007, 104 (19) : 7893-7898
    [126]国飞,近红外荧光成像的新进展,实用肿瘤杂志学,2008,22(2):198-200
    [127] Z. Ma, H. Zhao, Y. Tanikawa, et al., An inverse Monte-Carlo method for determining tissue optical properties, Proc. SPIE, 2007, 6434: C4342-C4342
    [128] T.J. Farrell and M.S. Patterson, A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo, Med. Phys., 1992, 19(4): 879-888
    [129] M.S. Patterson, B. Chance, and B.C. Wilson, Time resolved reflectance and transimittance for the non-invasive measurement of tissue optical properties, Appl. Opt., 1989, 28 (12): 2331-2336
    [130] S.T. Flock, S.L. Jacques, B.C. Wilson, et al., Optical properties of Intralipid: A phantom medium for light propagation studies, Lasers in Surgery and Medicine, 1992, 12(5): 510-519
    [131] A, Li, Q, Zhang, J. P. Culver, et al., Reconstructing chromophore concentration images directly by continuous wave diffuse optical tomography Opt. Lett. , 2004, 29: 256-258
    [132] X. Intes, J. Ripoll, Y. Chen, et al., In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green Med. Phys., 2003, 30:1039-1047
    [133] R.B. Schulz, J. Ripoll, and V. Ntziachristos,“Experimental fluorescence tomography of tissues with noncontact measurements”, IEEE Trans. Med. Imaging 23, 2004, 492-500.
    [134] E. Ohmae, M. Oda, T. Suzuke, et al., Clinical evaluation of time-resolved spectroscopy by measuring cerebral hemodynamics during cardiopulmonary bypass surgery, 2007,12(6):062112-1-9
    [135] V. Ntziachristos and Ralph Weissleder, Experimental three-dimensional fluorescence reconstruction of diffused media by use of a normalized Born approximation, 2001, Opt. Lett., 26(12):893-895
    [136] F. Gao, HJ. Zhao, Y. Tanikawa, et al., Time-resolved diffuse optical tomography using a modified generalized pulse spectrum technique. IEICE Trans. Inf. & syst, 2002, E85-D (1):133-142.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700