用户名: 密码: 验证码:
基于磁流变阻尼器的高速动车组半主动控制与时滞分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速动车组技术是近年来发展最为迅速的前沿技术之一,我国已在高速动车组方面取得了巨大了成功,为我国轨道运输行业注入了新的活力。高速动车组开行以来,随着运行速度的不断提升,也提出了许多重要的课题。一方面,高速动车组的高运速、分散动力、成编组运行等显著特点使得现有的铁道机车车辆研究方法很难适用。仿真计算和现场试验的数据均表明,受车间耦合作用的影响,高速动车组同一编组内不同位置车辆的动力学行为相差很大,需要建立专门的列车动力学模型进行研究。
     另一方面,随着高速动车组运行速度的逐渐提高,车间耦合作用和轮/轨耦合作用不断加剧,高速动车组的运行平稳性指标和安全性能逐渐恶化。因此,必须采用有效手段抑制车体振动,提高系统性能。从提高系统性能和降低能耗的角度出发,半主动控制技术是近年来研究的热点,它以极少的能量消耗可以得到与主动控制接近的效果。在众多的阻尼器中,磁流变阻尼器(Magnetorheological damper)以出力大、范围宽、反应迅速等优点成为半主动控制技术比较理想的作动器。
     本文采用理论和数值仿真的方法,对高速动车组建模、磁流变阻尼器模型参数识别、半主动悬挂控制策略设计以及时滞对半主动控制效果的影响分析等方面进行了研究。论文的主要研究工作和创新性成果如下:
     (1)在对磁流变阻尼器进行力学特性试验的基础上,对磁流变阻尼器模型进行了参数识别。为了使选择阻尼力调控参数变得“有理有据”,提出一种独立参数调节法(Independently Parameter Adjust Method)。该方法减小了传统方法采用个人经验和试错法带来的误差,避免了参数识别过程中参数间耦合作用的影响。采用独立参数调节法成功地对Bouc-Wen模型和Bouc-Wen修正模型进行了参数识别。
     (2)采用多体动力学软件ADAMS/Rail建立了6动2拖的时速300公里高速动车组模型,该模型考虑了大量的非线性部件和弹性元件,使得它更接近实际情况。该模型共包含224个可移动部件和466个自由度。
     (3)采用数值仿真的方法对高速动车组单车、列车模型进行分析,考察高速动车组模型在不同运行速度、不同线路状况和轨道谱情况下的运动稳定性、运行平稳性、安全性以及曲线通过性能。研究了编组内车辆数量对列车动力学性能的影响情况。
     (4)基于天棚(Sky-Hook,SH)阻尼控制和加速度阻尼(Acceleration Driven Damping,ADD)控制,提出一种适用于高速动车组中的改进型半主动控制策略SH-ADD控制。为了考察几种半主动控制策略对高速动车组动力学性能的影响,搭建了由半主动控制器、磁流变阻尼器逆向模型、磁流变阻尼器正向模型、低通滤波器等组成的半主动控制系统。采用ADAMS-Matlab联合仿真的方法对高速动车组半主动控制进行了仿真分析,仿真计算了横向平稳性指标、脱轨系数、轮重减载率及轮轨作用力等指标。研究结果表明:与SH控制和ADD控制相比,作者提出的SH-ADD控制无论在平稳性还是安全性方面均能取得非常理想的控制效果。
     (5)根据时滞产生的机理,将半主动控制系统中的时滞分为采集时滞和执行时滞两类。提出一种两类时滞的分析方法,即根据两类时滞对系统性能的影响情况得出半主动控制有效区域。当系统时滞量处于此有效区域内时,表示半主动控制效果虽然受到时滞的影响,但仍能发挥作用。否则,表明半主动控制失效。研究结果表明:随着高速动车组运行速度的提高,半主动控制系统有效区域面积逐渐缩小,SH-ADD控制的抗时滞能力明显优于其他控制策略。因此,在高速动车组中采用时滞较小的磁流变阻尼器和恰当的半主动控制策略可以明显提高系统的平稳性与安全性。
At present, high-speed Electric Multiple Units (EMUs) technology is one of the most quickly developed leading techniques. The great success of high-speed EMUs is achieved in China, and high-speed EMUs have put the new vigor into railway transportation industry. With increasing of running speed of EMUs, a lot of important research subjects have been proposed.
     On the one hand, due to the characteristics of high-speed EMUs, high speed, decentralized motors and groupage system, traditional study methods of locomotives and vehicles are no longer effective for high-speed EMUs. Numerical simulations and experimental results show that the vehicles in a same train have different dynamic performances due to intercoupling effect. Thus, it is necessary to build a whole train model for studying the dynamic performance of the high-speed EMUs.
     On the other hand, since the intercoupling effect of vehicles and that of wheel/rail increase sharply with the increase of the speed, ride index and safety of high-speed EMUs become worse gradually. In order to reduce vibrations of car body and improve system performance, semi-active control is adopted in the view of improving performance and saving consumed energy. The performance of semi-active control is close to active control, but its consumed energy is significantly less. In many kinds of dampers, Magnetorheological (MR) damper is one of the best actuators for its large damping force, wide workspace, responding quickly and so on.
     This work deals with building high-speed EMUs model, identifying parameters of MR damper model, designing of semi-active control strategies, analyzing the effect of time delay on semi-active control performance and so on. The main work and innovative contributions of this dissertation are as follows:
     (1) On the basis of mechanical characteristic experiment of MR damper, the parameters of MR damper models are identified. A new method, Independently Parameter Adjust Method (IPAM), is proposed to make the choice of damping force adjustment parameters well-founded. The error due to traditional identification method, which relies on experience and try-error method, is reduced greatly, and the effect of coupling among parameters is avoided by using IPAM. And the parameters of Bouc-Wen model and Bouc-Wen modified model are identified successfully.
     (2) A 300 km/h high-speed EMUs model with six motor and two trailer vehicles is built using a multi-body dynamic software ADAMS/Rail in this study. In order to approach actual case, the EMUs model includes a lot of elements, which involve 224 movable parts and 466 degrees of freedom. And the nonlinear effects of many elements are also considered.
     (3) Numerical simulations of high-speed EMUs model with single vehicle and that with a train model are performed, whose dynamic performances, such as stability, ride comfort, safety and curve passing, are evaluated under various conditions such as running speed, railway line conditions and track spectrum. Then, the influence of the number of vehicles in the train model on the dynamic performance of the system is investigated.
     (4) Inspired by Sky-Hook (SH) damping control and Acceleration Driven Damping (ADD) control, a modified semi-active control strategy, SH-ADD control, is proposed and applicable to high-speed EMUs. The semi-active control system consisting of semi-active controller, inverse model, forward model of MR damper and low-pass-filter is established in order to investigate the effect of several control strategies on the dynamic performances of high-speed EMUs. Using ADAMS-Matlab co-simulation, semi-active control performances such as lateral ride index, derailment quotient, unloading rate and wheel/rail forces are evaluated. The simulation shows that the performance of SH-ADD control is better than SH control and ADD control in ride comfort and safety.
     (5) Time delay in semi-active control system is divided into two kinds of cases, acquisition time delay and actuation time delay, according to the mechanism of time delay occurrence. A new method is proposed to analyze the two kinds of time delays. By using this method, the effective region of semi-active control is obtained according to the effects of two kinds of time delays on the semi-active control performance. When the time delays are within this effective region, the performance of semi-active control works well. Otherwise, the semi-active control fails. The results show that the effective region of semi-active control is shrank with the increase of running speed of high-speed EMUs. The performance of SH-ADD control is better than other controls when considering the effects of time delays. Thus, it is a great benefit to use MR damper with less time delay and better semi-active control strategy in high-speed EMUs.
引文
[1]张曙光.高速列车设计方法研究[M].北京:中国铁道出版社,2009.
    [2]Stanway R. Sproston JL, Stevens NG. Non-linear Identification of an Electrorhelological Vibration Damper[J]. IFAC Identification and System Parameter Estimation,1985,195-200.
    [3]Gamota DR, Filisko FE. Dynamic Mechanical Studies of Electroheological Materials: Moderate Frequencies[J]. Journal of Rheology,1991(35):399-425.
    [4]Li P, Kamath GM, Wereley NM. Dynamic Characterization and analysis of magnetorheological damper behavior[C]. Proceedings of SP IE-International Society Optical Engineering, Washington:SPIE,1998,284-302.
    [5]汪建晓,孟光.磁流变阻尼器用于振动控制的理论及试验研究[J].振动与冲击,2001,20(2):39-46.
    [6]Yang GQ. Large-scale Mageotrheological Fluid Damper for Vibration Mitigation:Modelling, Testing and Control [Dissertation]. University of Notre Dame, Indiana, USA,2001.
    [7]Li pang, Gopalakrshna M Kamath, Norman M. Wereley. Dynamic characterization and analysis of magnetorheogical dampers behavior[J]. SPIE 1998(3327):284-302.
    [8]Yang SP, Li SH, Wang XJ, et al. A hysteresis model for magneto-rheological damper[J]. International Journal of Nonlinear Sciences and Numerical Simulation,2005,6(2):139-144.
    [9]Guo SQ, Yang SP, Pan CZ. Dynamic modeling of magnetorheological damper behaviors[J]. Journal of Intelligent Material Systems and Structures,2006,17((1):3-14.
    [10]Guo SQ, Yang SP, Pan CZ. Analysis of an Isolation System with Magnetorheological Damper[J]. International Journal of Nonlinear Sciences and Numerical Simulation,2005,6(1), 75-80.
    [11]Pan CZ, Yang SP, Shen YJ. An electro-mechanical coupling model of magnetorheological damper[J]. International Journal of Nonlinear Sciences and Numerical Simulation,2005,6(1): 69-73.
    [12]潘存治,杨绍普.磁流变阻尼器及其控制系统动态响应试验研究[J].石家庄铁道学院学报,2005,18(4):1-4.
    [13]李韶华,杨绍普.滞后非线性模型的研究进展[J].动力学与控制学报,2006,4(1):8-15.
    [14]高国生,杨绍普,陈恩利.汽车悬架磁流变阻尼器的试验建模[J].汽车工程,2004,26(6):683-685.
    [15]Bouc R. Forced vibration of mechanical systems with hysteresis[C]. Proceedings of the Fourth Conference on Non-linear Oscillation, Prague, Czechoslovakia,1967.
    [16]Wen Y K. Method of Random Vibration of Hysteretic Systems. Journal of Engineering Mechanics Division[J]. ASCE,1976,102(EM2):249-263.
    [17]Wen Y K. Equivalent linearization for hysteretic systems under random excitation[J]. Journal of Applied Mechanics,1980,47(1):150-154.
    [18]Spencer B F, Dyke S J, Sain M K, et al. Phenomenological Model of a Magnetorheological Damper[J]. Journal of Engineering Mechanics,1997,123(3):230-238.
    [19]邓志党,高峰,刘献栋,等.磁流变阻尼器力学模型的研究现状[J].振动与冲击,2006, 25(3):121-126.
    [20]Spencer B F, Dyke S J, Sain M K, et al. Nonlinear identification of semi-active control devices[C].11 th ASCE Engineering Mechanics Conference,1996, Lauderdale, Florida.
    [21]Dyke S J. Active and semi-active control systems:modeling, algorithm development, and experimental verification[Dissertation]. University of Notre Dame,1996.
    [22]Dyke S J, Spencer B F, Sain M K, et al. On the efficacy of magnetorheological dampers for seismic response reduction[C].1997 ASME Design Engineering Technical Conferences,1997, Sacramento, California..
    [23]Dyke S J, Spencer B F, Sain M K, et al. An experimental study of MR dampers for seismic protection[J]. Smart Materials and Structures,1998,7(5):693-703.
    [24]Yao G Z, Yap F F, Chen G, et al. MR damper and its application for semi-active control of vehicle suspension system[J]. Mechatronics,2002(12):963-973.
    [25]Yang G Q, Spencer B F, Jung H J, et al. Dynamic modeling of large-scale magnetorheological damper systems for civil engineering applications[J]. Journal of Engineering Mechanics,2004, 130(9):1107-1114.
    [26]Li Z X, ASCE M, Xu L H. Performance tests and hysteresis model of MRF-04K damper[J]. Journal of Structural Engineering,2005,131(8):1303-1306.
    [27]Sergio M S, Sergio B, Mauro M. Identification of semi-physical and black-box non-linear models:the case of MR-dampers for vehicles control[J]. Automatica,2005(41):113-127.
    [28]Yoshida O, Dyke S J. Response control of full-scale irregular buildings using magnetorheological dampers[J]. Journal of Structural Engineering,2005,131(5):734-742.
    [29]Boada M J L, Calvo J A, Boada B L, et al. Modeling of a magnetorheological damper by recursive lazy learning[J]. International Journal of Non-Linear Mechanics,2009(1):1-7.
    [30]关新春,欧进萍.磁流变耗能器的阻尼力模型及其参数确定[J].振动与冲击,2001,20(1):5-8.
    [31]欧进萍.结构振动控制——主动、半主动和智能控制[M].北京:科学出版社,2003.
    [32]杨万庆.大型磁流变阻尼器的研究及其工程应用[学位论文].武汉理工大学土木工程与建筑学院,2008.
    [33]Ikhouane F, Rodellar J. On the hysteretic Bouc-Wen model. Part I:Forced limit cycle characterization[J]. Nonlinear Dynamics,2005(42):63-78.
    [34]Ikhouane F, Rodellar J. On the hysteretic Bouc-Wen model. Part II:Robust parameter identification[J]. Nonlinear Dynamics,2005(42):79-95.
    [35]Ikhouane F, Rodellar J. Systems with hysteresis:analysis, identification and control using the Bouc-Wen model[M]. John Wiley & Sons, Ltd,2007.
    [36]Ikhouane F, Manosa V, Rodellar J. Dynamic properties of the hysteretic Bouc-Wen model[J]. Systems & Control Letters,2007,56:197-205.
    [37]Ikhouane F, Hurtado J E, Rodellar J. Variation of the hysteresis loop with the Bouc-Wen model parameters[J]. Nonlinear Dynamics,2007(48):361-380.
    [38]Charalampakis AE, Koumousis VK. On the response and dissipated energy of Bouc-Wen hysteretic model[J]. Journal of Sound and Vibration,2008(309):887-895.
    [39]Sireteanu T, Giuclea M, Serban V, et al. On the fitting of experimental hysteretic loops by Bouc-Wen model[C]. SISOM 2008 and Session of the Commission of Acoustics, May,2008, Bucharest.
    [40]Sireteanu T, Giuclea M, Mitu AM. An analytical approach for approximation of experimental hysteretic loops by Bouc-Wen model[J]. Proceedings of the Romanian Academy, Series A, 2009,10(1):1-12.
    [41]Ismail M, Ikhouane F, Rodellar J. The hysteresis Bouc-Wen model, a survey[J]. Archives of Computational Methods in Engineering,2009(16):161-188.
    [42]王唯,夏品奇,刘朝勇.基于Bouc-Wen方程的磁流变阻尼器实验建模[J].振动工程学报,2006,19(3):296-301.
    [43]Giuclea M, Sireteanu T, Stancioiu D, et al. Modelling of magnetorheological damper dynamic behaviour by genetic algorithms based inverse method[J]. Proceedings of the Romanian Academy, Series A,2004,5(1):55-63.
    [44]Giuclea M, Sireteanu T, Stancioiu D, et al. Model Parameter Identification for Vehicle Vibration Control with Magnetorheological Dampers using Computational Intelligence Methods[J]. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering,2004,218(1):569-581.
    [45]Ghita G, Giuclea M. Sireteanu T. Modelling of dynamic behaviour of magnetorheological fluid damper by genetic algorithms based inverse method[C]. The 6th International Conference on Hydraulic Machinery and Hydrodynamics,2004, Timisoara, Romania.
    [46]Miyamori Y, Obata T. Study on applicability of semi-active variable damping control on bridge structures under the large earthquake motion[C]. The 13th World Conference on Earthquake Engineering,2004, Vancouver, Canada.
    [47]Liu P, Liu HJ, Teng J, et al. Parameters identification for smart dampers based on simulated annealing and genetic algorithm[C]. Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation,2006, Luoyang, China.
    [48]Kwok NM, Ha QP, Nguyen MT, et al. Bouc-Wen model parameter identification for a MR fluid damper using computationally efficient GA[J]. ISA Transactions,2007(46):167-179.
    [49]Soeiro F J C P, Stutz L T, Tenenbaum R A, et al. Stochastic and hybrid methods for the identification in the Bouc-Wen model for magneto-rheological dampers[C]. The 6th International Conference on Inverse Problems in Engineering:Theory and Practice, June,2008, Dourdan, Paris, France.
    [50]Charalampakis A E, Koumousis V K. Identification of Bouc-Wen hysteretic systems by a hybrid evolutionary algorithm[J]. Journal of Sound and Vibration,2008(314):571-585.
    [51]Giorgio M, Giuseppe Q, Giuseppe CM. Genetic-Algorithm-Based strategies for dynamic identification of nonlinear systems with noise-corrupted response[J]. Journal of Computing in Civil Engineering,2010,24(2):173-187.
    [52]周晓宏,刘红军,刘鹏.基于遗传算法的磁流变阻尼器模型参数识别[J].功能材料,2006,37(6):1016-1017.
    [53]池茂儒,张卫华,曾京,等.长大列车动力学建模的一种新方法[J].铁道车辆,2007,45(3):1.4.
    [54]Mohammad Durali, Baabak Shadmehri. Nonlinear Analysis of Train Derailment in Severe Braking[J]. Journal of Dynamic Systems, Measurement,and Control,2003(125):48-53.
    [55]刘宏友,曾京.列车系统运行平稳型研究[J].中国铁道科学,2004,25(5):20-25.
    [56]周劲松,任利慧,沈刚.高速列车运行平稳性研究[J].机械科学与技术,2003,22(6):900-903.
    [57]沈刚,周劲松,任利慧.列车动力学模型的研究[J].铁道机车车辆,2004,24(增刊):1-5.
    [58]千开云,封全保,孟宏,等.时速140 km轨道车动力学性能仿真分析[J].铁道车辆,2004,42(5):1-4.
    [59]Jan Matei, Jerzy Piotrowski. An Application of the ADAMS/Rail Module to Modelling and Examination the Bimodal Train[C]. International ADAMS Users’Conference, Berlin, November 17-19,1999.
    [60]Monika Podworna. Determination of the design model for simulating vibrations of steel beam bridges under moving trains[J]. Archives of Civil and Mechanical Engineeering,2004,4(1): 57-69.
    [61]Polach O. Influence of locomotive tractive effort on the forces between wheel and rail[J]. Vehicle System Dynamics Supplement,2001(35):7-22.
    [62]He YP, Mcphee J. Optimization of the lateral stability of rail vehicles[J]. Vehicle System Dynamics,2002,38(5):361-390.
    [63]He YP, Mcphee J. Optimization of curving performance of rail vehicles[J]. Vehicle System Dynamics,2005,43(12):895-923.
    [64]Wei QC, Wang YJ, Zhang Y, et al. A dynamic simulation model of linear metro system with ADAMS/Rail[C]. Proceedings of the 2007 IEEE International Conferences on Mechatronics and Automation, August 5-8,2007, Harbin, China.
    [65]Xia FJ, Fang J, Gong ZQ, et al. Dynamic analysis of the electric locimotive SS7CG with ADAMS/Rail[C]. Proceedings of 4th ADAMS/Rail Users'Conference, Utrecht, Holland, 1999.
    [66]Kraus V, Rans M. Dynamic analysis of high-speed electric locomotive.16th European Mechanical[C]. Dynamics Users’Conference, Berchtesgaden, Germany, November,14-15, 2001.
    [67]卜继玲,刘友梅,李芾.机车系统动力学仿真模型研究[J].机车电传动,2004(4):3-6,33.
    [68]廖双晴.基于虚拟样机技术的机车粘着控制仿真平台研究[学位论文].成都:西南交通大学,2005.
    [69]李芾,傅茂海,卜继玲.200km/h提速客车自导向径向转向架动力学性能研究[J].铁道学报,2004,26(1):22-27.
    [70]嘎尼.用主动控制技术改善提速机车车辆的横向振动性能[学位论文].北京:铁道科学院,2000.
    [71]Sharma S, Singh A, Bhushan R. Design development of meter gauge bogie.16th European Mechanical Dynamics Users’Conference, Berchtesgaden, Germany, November,14-15,2001.
    [72]Lu ZG, Hecht M. Dynamic analysis of a new double-deck passenger vehicle with bogie PW200[C].4th ADAMS/Rail Conference, Netherland,1999.4.
    [73]Durali M, Shadmehri B. Nonlinear analysis of train derailment in severe braking[J]. Journal of Dynamics Systems, Measurement, and Control,2003(125):48-53.
    [74]Garcia E, Chiva J. Dynamic simulations of Talgo track-inspection trainset[C]. MDI European Users Conference, Berchtesgaden, Germany,15-Nov-01,2001.
    [75]王成国,藤本裕,石田宏明.200km/h动车组动力学性能的仿真研究[J].铁道科学技术新 进展—铁道科学院55周年论文集,290-297.
    [76]贾春泽.高速列车交会安全性研究[学位论文].北京:北京交通大学,2008.
    [77]张波,陆阳,孙剑芳,等.高速试验列车牵引试验的仿真研究[J].中国铁道科学,2004,25(3):6-11.
    [78]史显坤,王开文.摆式动车组主动控制受电弓系统的研究[J].西南交通大学学报,2000,35(6):679-683.
    [79]卜继玲,傅茂海,李芾.摆式动车组横向动力学模型研究[J].中国铁道科学,2004,25(6):15-20.
    [80]刘金栋.摆式电动车组拖车转向架结构优化设计[学位论文].成都:西南交通大学,2003.
    [81]李晓燕.200km/h摆式电动车组拖车转向架设计及动力学性能研究[学位论文].成都:西南交通大学,2003.
    [82]张易红.摆式电动车组受电弓倾摆系统研究[学位论文].成都:西南交通大学,2004.
    [83]高常君.摆式电动车组拖车动力学性能研究[学位论文].成都:西南交通大学,2003.
    [84]罗仁.摆式列车机电耦合系统动力学及控制研究[学位论文].成都:西南交通大学,2007.
    [85]Pombo J, Ambrosio J, Figueiras L, et al. Models development for applications in railway dynamics[C]. The 5th ADAMS/Rail Users Conference, Haarlem, The Netherlands, May 10-11, 2000.
    [86]曾京.车辆系统的蛇行运动分岔及极限环的数值计算[J].铁道学报,1996,18(3):13-19.
    [87]曾京,徐涛,邬平波.非线性车辆系统的横向稳定性研究[J].铁道车辆,1996,34(8):9-12.
    [88]曾京,王勇.货车系统的非线性动力学分析[J].西南交通大学学报,2000,35(4):399-403.
    [89]刘宏友,曾京,吕可维.高速客车蛇行运动Hopf分岔的研究[J].工程力学,2005,22(6):224-228.
    [90]高学军,李映辉,高庆.高速客车蛇行运动稳定性及分岔研究[J].动力学与控制学报,2008,6(3):202-207.
    [91]曾京,邬平波.高速列车的稳定性[J].交通运输工程学报,2005,5(2):1-4.
    [92]刘宏友.高速列车中的关键动力学问题研究[J].中国铁道科学,2004,25(1):136-138.
    [93]Diomin YV.高速铁道车辆的稳定性[J].国外铁道车辆,1997(4):9-12.
    [94]Lee SY, Cheng YC. Hunting stability analysis of high-speed railway vehicle trucks on tangent tracks[J]. Journal of Sound and Vibration,2005(282):881-898.
    [95]Cheng YC, Lee SY, Chen HH. Modeling and nonlinear hunting stability analysis of high-speed railway vehicle moving on curved tracks[J]. Journal of Sound and Vibration,2009(324): 139-160.
    [96]Lee SY, Cheng YC. Nonlinear analysis on hunting stability for high-speed railway vehicle trucks on curved tracks[J]. Journal of Vibration and Acoustics,2005(127):324-332.
    [97]王开云,翟婉明,蔡成标.机车车辆横向动力学性能仿真—车辆-轨道耦合模型与传统车辆模型的比较[J].西南交通大学学报,2003,38(1):17-21.
    [98]李瑰贤,王伟.机车车轮超非线性临界速度跳轨机理分析[J].振动与冲击,2007,26(6):93-95,124.
    [99]黄成荣,詹斐生.机车非线性横向稳定性分析的数值分岔方法[J].铁道学报,1994,16(2):1-6.
    [100]王钰,李治.机车蛇行运动的动力学仿真报告[J].铁道机车车辆,2003,23(6):24-27.
    [101]刘献栋,杨绍普,中永军,等.机车蛇行运动主动控制初探[J].非线性动力学学报,2001, 8(3):252-256.
    [102]罗仁,曾京.列车系统蛇行运动稳定性分析及其与单车模型的比较[J].机械工程学报,2008,44(4):184-188.
    [103]刘宏友,曾京.列车系统蛇行运动稳定性研究[J].铁道学报,2004,26(5):41-45.
    [104]Ahmadian M, Yang SP. Effect of system nonlinearites on locomotive bogie hunting stability[J]. Vehicle System Dynamics,1998(26):365-384.
    [105]Yang SP, Ahmadian M. The Hopf Bifurcation in a Railway Wheelset with Nonlinear Damping. Rail Transportatio[J]. ASME,1996(12):113-119.
    [106]Ahmadian M, Yang SP. Effect of Suspension Nonlinearities on Rail Vehicle Bifurcation and Stability[J]. Rail Transportation, ASME,1997(13):97-106.
    [107]Ahmadian M, Yang SP. Effect of System Nonlinearities on Locomotive Bogie Hunting Stability[J]. Vehicle System Dynamics,1998(29):365-384.
    [108]Yabuno H, Okamoto T, Aoshima N. Effect of lateral linear stiffness on nonlinear characteristics of hunting motion of a railway wheelset[J]. Meccanica,2002(37):555-568.
    [109]Nath Y, Jayadev K. Influence of yaw stiffness on the nonlinear dynamics of railway wheelset[J]. Communications in Nonlinear Science and Numerical Simulation,2005(10): 179-190.
    [110]Lee SY, Cheng YC. Influences of the vertical and the roll motions of frames on the hunting stability of trucks moving on curved tracks[J]. Journal of Sound and Vibration,2006(294): 441-453.
    [111]曾京,邬平波.减振器橡胶节点刚度对铁道客车系统临界速度的影响[J].中国铁道科学,2008,29(2):94-98.
    [112]倪平涛,王开文,陈健,等.抗蛇行减振器对磁流变耦合轮对车辆的临界速度与高速曲线通过性能的影响[J].铁道学报,2007,29(3):35-39.
    [113]卜继玲,樊友权.抗蛇行减振器对机车运行品质的影响[J].电力机车与城轨车辆,2004,27(6):6-8.
    [114]黄成荣.抗蛇行减振器及电机转矩对机车运动稳定性的影响[J].铁道机车车辆,1994(4):26-29.
    [115]万鹏,翟婉明,王开云.考虑轮对弹性时车辆运动稳定性分析[J].铁道车辆,2008,46(6):8-10.
    [116]罗世辉.轨距对机车车辆稳定性影响的研究[J].中国铁道科学,2010,31(2):56-60.
    [117]Watanabe T, Sogabe M, Yamazaki T. A study of running safety and ride comfort of floating tracks for high-speed train[J]. Journal of Mechanical Systems for Transportation and Logistics, 2008,1(1):22-30.
    [118]Ishida H, Matsuo M, Fujioka T. Safety assessment method of railway vehicle under oscillatory wheel load fluctuation[J]. Journal of Environment and Engineering,2007,2(2): 407-418.
    [119]千开云,刘建新,翟婉明,等.铁路行车安全性及舒适性仿真[J].交通运输工程学报,2006,6(3):9-12.
    [120]华强.高速车辆运行的平稳性与舒适性[J].四机科技,2004(4):74-78.
    [121]周劲松,任利惠,沈刚.高速列车运行平稳性研究[J].机械科学与技术,2003,22(6):900-903.
    [122]刘宏友,曾京.列车系统运行平稳性研究[J].中国铁道科学,2004,25(5):20-25.
    [123]张洪,周劲松,任利惠,等.基于运行模态参数识别的客车运行平稳性研究[J].铁道学报,2007,29(1):31-35.
    [124]刘建新,王开云.抗蛇行减振器对机车运行平稳性的影响[J].交通运输工程学报,2006,6(4):1-4.
    [125]张兵,林建辉,伍川辉,等.列车舒适度和平稳性测试仪的设计与实现[J].中国铁道科学,2008,29(1):134-138.
    [126]马卫华,罗世辉,王自力.提速列车横向振动问题分析[J].铁道学报,2006,28(3):32-37.
    [127]刘李莹,周文祥,徐娜.铁路车辆运行平稳性指标的测试精度分析[J].电力机车与城轨车辆,2008,31(1):38-40.
    [128]丁问司,卜继玲,刘友梅.我国高速列车横向半主动悬挂系统控制策略及控制方式[J].中国铁道科学,2002,23(4):1-7.
    [129]Chen CJ, Li HC, Gao HL. Study on self-optimizing integrated skyhook control algorithm of semi-active suspension system[C]. Proceedings of the 6th World Congress on Intelligent Control and Automation,2006, June 21-23, Dalian, China.
    [130]Yoshiki SUGAHARA, Tadao TAKIGAMI, Mitsuji SAMPEI. Suppressing Vertical Vibration in Railway Vehicles through Primary Suspension Damping Force Control[J]. Journal of System Design and Dynamics,2007,1(2):224-235.
    [131]Y.Shen, M.F. Golnaraghi, G.R. Heppler. Semi-active Vibration Control Schemes for Suspension Systems Using Magnetorheological Dampers[J]. Journal of Vibration and Control, 2006,12(1):3-24.
    [132]Masakazu Adachi, Takayuki Shimomura. Study on the Effect of Semi-Active Control for Equivalent Conicity[C]. Proceedings of the 2007 IEEE International Conference on Robotics and Biomimetics,2007, Sanya, China.
    [133]S.B. Choi, H.K. Lee, E.G. Chang. Field test results of a semi-active ER suspension system associated with skyhook controller[J]. Mechatronics,2001(11):345-353.
    [134]Sergio M.Savaresi, Cristiano Spelta. A Single-Sensor Control Strategy for Semi-active Suspensions[C]. IEEE Transactions on Control Systems Technology,2009,17(1):143-152.
    [135]陈健,王开文.半主动悬挂机车平稳性和曲线通过动力学性能仿真研究[J].机车电传动,2006(3):4043.
    [136]刘少军,蔡丹,朱浩.高速列车横向半主动减振器的天棚阻尼控制仿真研究[J].机床与液压,2006(10):70-72,85.
    [137]熊勇刚,谢勇,丁问司,等.机车车辆半主动悬挂控制系统的研究[J].中南大学学报(自然科学版),2005,36(4):678-682.
    [138]曾京,戴焕云,邬平波.基于开关阻尼控制的铁道客车系统的动力学性能研究[J].中国铁道科学,2004,25(6):27-31.
    [139]丁问司,卜继玲.铁道车辆横向开关半主动悬架系统研究[J].机械工程学报,2004,40(9):161-170.
    [140]杨明辉.半主动悬挂机车横向动力学性能研究[学位论文].成都:西南交通大学,2005.
    [141]Shen YJ, Yang SP, Pan CZ, et al. Semi-Active Control of Hunting Motion of Locomotive Based on Magnetorheological Damper[J]. International Journal of Innovative Computing, Information and Control,2006,2(2):323-329.
    [142]Gao GS, Yang SP. Semi-active Control Performance of Railway Vehicle Suspension Featuring Magnetorheological Dampers[C]. The 1st IEEE Conference on Industrial Electronics and Applications, May 24-27,2006, Singapore.
    [143]高国生,杨绍普,郭京波.轮对蛇行运动Hopf分岔的非线性控制[J].铁道学报,2002,24(3):23-26.
    [144]郭京波,杨绍普,高国生.高速机车主动控制受电弓研究[J].铁道学报,2004,26(4):41-45.
    [145]高国生,杨绍普,陈恩利.高速机车悬架系统磁流变阻尼器试验建模与半主动控制[J].机械工程学报,2004,40(10):87-91.
    [146]刘献栋,杨绍普,申永军,邢海军.机车蛇行运动主动控制初探[J].非线性动力学学报,2001,8(3):252-256.
    [147]申永军,杨绍普,潘存治.基于磁流变阻尼的机车蛇行运动半主动控制[J].东北大学学报(自然科学版),2004,25(S1):32-34.
    [148]Ryuichi UMEHARA, Masatsugu OTSUKI, Kazuo YOSHIDA. Bilinear Robust Control for Vertical Vibration in Railway Vehicle with Semi-Active Suspensions[J]. Journal of System Design and Dynamics,2007,1(1):2-13.
    [149]Yoshiki SUGAHARA, Tadao TAKIGAMI,Akihito KAZATO. Suppression of Vertical Vibration in Railway Vehicles by Damping Force Control of Primary Suspension Using an LQG Controller[J]. Journal of System Design and Dynamics,2008,2(1):251-262.
    [150]Yoshiki SUGAHARA, Akihito KAZATO. Suppression of Vertical Vibration in Railway Vehicles by Controlling the Damping Force of Primary and Secondary Suspensions[J]. QR of RTRI,2008,49(1):7-15.
    [151]Jong-moon Kim, Choon-kyung Kim, Min-kook Park, et al. A Robust Control of a Magnetic Suspension System with a Flexible Rail[C]. ISIE 2001, Pusan, Korea.
    [152]Haiping Du, Kam Yim Sze, James Lam. Semi-active Hoo control of vehicle suspension with magneto-rheological dampers[J]. Journal of Sound and Vibration,2005(283):981-996.
    [153]董仲美,千白力,蒋海波.基于LQR的半主动悬挂机车车辆控制策略的研究[J].铁道机车车辆,2007,21(Suppl.1):86-89.
    [154]张开林,金鼎吕.车辆横向主动悬挂试验对比研究[J].铁道学报,1998,20(5):35-39.
    [155]Mohammad Biglarbegian, William Melek, Farid Golnaraghi. A novel neuro-fuzzy controller to enhance the performance of vehicle semi-active suspension systems[J]. Vehicle System Dynamics,2008,46(8):697-711.
    [156]Young-Guk Kim, Chan-Kyoung Park, Hee-Soo Hwang, et al. Design Optimization for Suspension System of High Speed Train Using Neural Network[J]. JSME International Journal, Series C,2003,46(2):727-735.
    [157]丁问司,卜继玲.基于非线性神经网络的列车半主动悬挂系统fJ].华南理工大学学报(自然科学版),2005,33(12):75-77,91.
    [158]Chunjun Chen, Huachao Li, Hongli Gao. Study on Self-Optimizing Integrated Skyhook Control Algorithm of Semi-active Suspension System[C]. Proceedings of the 6th World Congress on Intelligent Control and Automation,2006, Dalian, China.
    [159]陈春俊,千开云.高速列车横向半主动悬挂系统建模研究及分析[J].振动与冲击,2006,25(4):151-154,169.
    [160]杨建伟,黄强.基于模糊控制的高速车辆横向半主动悬挂仿真[J].系统仿真学报,2006,18(22):3542-3546.
    [161]朱浩,刘少军,邬平波,等.基于柔性车体的铁道车辆主动悬挂的模糊控制研究[J].中国机械工程,2006,17(18):1883-1887.
    [162]王月明,曾京.车辆横向半主动悬挂的神经网络自适应控制[J].铁道学报,2002,24(4):34-37.
    [163]Sasaki, Ko., et al. Active tilting control of series E991 e.m.u. experimental train[C]. Proceedings of the STECH'96,1996, C511/055, IMechE,159-166.
    [164]Nakazato, M., et al. Semi-active suspension system for Shinkansen vehicle[J]. KAYABA Technical Report,1996(13):23-30.
    [165]Norinao, H. Semi-active suspension system of Series 500 Shinkansen vehicle[J]. Journal of JHPS,1997,28(2):147-151.
    [166]Inui M., et al. Development of the semi-active vibration control system for the 300 Series Shinkansen[Dissertation]. Proceedings of the J-RAIL'95, IEEJ,1995.
    [167]Konishi T, et al. Development of the semi-active vibration control system for the 300 Series Shinkansen [C]. Proceedings of the J-RAIL'96, JSCE,1996:273-274.
    [168]Maki H, et al. Semi-active suspension system for Series 700 Shinkansen vehicle[J]. KAYABA Technical Report,1996(19):43-47.
    [169]姚建伟,孙琼,章润鸿,等.铁路机车车辆半主动控制减振器的理论研究和产品研制[J].铁道机车车辆,2004,24(B12):6-9.
    [170]陈建,王开文,倪平涛,等.控制时滞对半主动悬挂车辆动力学性能的影响[J].铁道机车车辆,2006,26(4):9-11,62.
    [171]曾京,戴焕云,邬平波.基于开关阻尼控制的铁道客车系统的动力学性能研究[J].中国铁道科学,2004,25(6):27-31.
    [172]翁建生,张文丰,胡海岩,等.时滞‘天棚’阻尼控制的车辆悬架系统特性研究[J].南京建筑工程学院学报,1999(3):1-6.
    [173]Nader Jalili, Ebrahim Esmailzadeh. Optimum Active Vehicle Suspensions with Actuator Time Delay[J]. Transactions of the ASME,2001(123):54-61.
    [174]Evesque S, Annaswamy AM, Niculescu S, et al. Adaptive control of a class of time-delay systems[J]. Journal of Dynamics, Systems, Measurement, and Control,2003,125(2):186-193.
    [175]Triantafyllou MS, Grosenbaugh MA. Robust control for underwater vehicle systems with time delays[J]. Journal of Oceanic Engineering,1991,16(1):146-151.
    [176]李欣业,张振民,张华彪,等Duffing-van der Pol振子的时滞反馈控制研究[J].振动与冲击,2010,29(10):118-121.
    [177]陈敏.动力系统的时滞输出反馈控制及其应用[学位论文].哈尔滨工业大学航天学院,2007.
    [178]王怀磊.时滞状态反馈下Duffing系统全局动力学分析[学位论文].南京航空航天大学,2003.
    [179]张文丰,胡海岩.含反馈时滞的非线性动力系统参数辨识[J].振动工程学报,2001,14(3):314-318.
    [180]王在华,胡海岩,王怀磊.一个时滞反馈受控机电系统中的暂态混沌[J].动力学与控制学报,2004,2(4):24-28.
    [181]徐鉴,陈予恕.时滞速度反馈对强迫自持系统动力学行为的影响[J].应用数学和力学,2004,25(5):455-466.
    [182]赵艳影,徐鉴.时滞反馈控制在白参数动力吸振器中的作用[J].固体力学学报,2007,28(4):347-354.
    [183]赵艳影.时滞反馈控制对振动系统减振的影响[学位论文].同济大学航空航天与力学学院,2007.
    [184]曹登庆.不确定变时滞线性系统的镇定条件[J].控制理论与应用,1997,14(1):85-89.
    [185]曹登庆,张克跃.不确定线性时滞系统的稳定性准则[J].西南交通大学学报,1997,32(1):16-22.
    [186]曹登庆,张克跃.多参数线性时滞系统的稳定性准则[J].控制与决策,2000,15(1):101.103.
    [187]曹登庆,张克跃.不确定多时滞线性系统的稳定性[J].西南交通大学学报,2004,39(2):176-180.
    [188]王在华.高维时滞动力系统的稳定性[学位论文].南京航空航天大学,2000.
    [189]Wang ZH, Hu HY. Stability switches of time-delayed dynamic systems with unknown parameters[J]. Journal of Sound and Vibration,2000,233(2):215-233.
    [190]Wang ZH, Hu HY Dimensional reduction for nonlinear time-delayed systems composed of stiff and soft substructures [J]. Nonlinear Dynamics,2001(25):317-331.
    [191]张文丰,胡海岩.含时滞的LQ控制车辆悬架的研究[J].应用力学学报,2003,20(1):37-42.
    [192]张文丰,翁建生,胡海岩.时滞对车辆悬架‘天棚’阻尼控制的影响[J].振动工程学报,1999,12(4):486-491.
    [193]汪若尘.基于大系统理论的时滞半主动悬架研究[!学位论文].江苏大学,2006.
    [194]陈龙,汪若尘,江浩斌,等.含时滞半主动悬架及其控制系统[J].机械工程学报,2006,42(1):130-133.
    [195]徐鉴,陆启韶.时滞Lienard非线性系统的Hopf分岔[J].非线性动力学学报,1 998,5(4):290-294.
    [196]徐鉴,陆启韶,黄玉盈Van der Pol型时滞系统的两参数余维-Hopf分岔及其稳定性[J].固体力学学报,1999,20(4):297-302.
    [197]徐鉴,陆启韶,王乘. Van der Pol-Duffing时滞系统的稳定性和Hopf分岔[J].力学学报,2000,32(1):112-116.
    [198]刘永强,杨绍普,申永军.基于磁流变阻尼器的汽车悬架半主动相对控制[J].振动与冲击,2008,27(2):154-156,161.
    [199]刘永强,杨绍普,廖英英.高速动车组悬挂系统横向半主动控制仿真分析[J].振动与冲击,2010,29(9):51.54,96.
    [200]邢海军,杨绍普,申永军,等.孔隙阀式磁流变阻尼器准静力分析[J].振动、测试与诊断,2009,29(4):454-456.
    [201]邢海军,杨绍普,申永军.旁置孔隙阀式磁流变阻尼器阻尼力解析解[J].振动与冲击,2009,28(5):176-179.
    [202]邢海军,杨绍普,郭树起,等.一种磁流变阻尼器动态阻尼力模型[J].振动与冲击,2010,29(7):105-108.
    [203]马新娜,杨绍普.基于磁流变阻尼器的高速机车横向半主动振动控制研究[J].振动与冲 击,2009:28(7):126-130.
    [204]郭树起,杨绍普,郭京波.1/4车辆磁流变悬架非线性振动分析[J].北京交通大学学报,2006,30(1):83-86.
    [205]马新娜,杨绍普,刘晨晨.磁流变阻尼器半主动控制系统的特性分析[J].微计算机信息2010(22):8-1.
    [206]邢海军,杨绍普,中永军.磁流变阻尼器阻尼力计算[J].机械设计,2008,25(9):7-10.
    [207]刘永强,杨绍普,廖英英,等.基于MR阻尼器的高速动车组悬挂系统半主动控制仿真[J].振动与冲击,2010,29(12):97-101.
    [208]Guo SQ, Xu BQ, Xing HJ, et al. Skyhook Isolation with Magnetorheological Damper[C]. The 6th World Congress on Intelligent Control and Automation,2006, Dalian, China.
    [209]Liu YQ, Liao YY, Ma XN, Yang SP, et al. Dynamics simulation of high speed electric multiple units with semi-active suspension[C]. Proceedings of The Third International Conference on Modeling and Simulation,2010(1):260-264.
    [210]Liao YY, Liu YQ, Liu JX, Yang SP, et al. Stability analysis of skyhook damper suspension system with time delay for high-speed railway vehicle[C]. Proceedings of The Third International Conference on Modeling and Simulation,2010,(3):260-263.
    [211]Ma XN, Yang SP. Self-adapt fuzzy control of a semi-active suspension of high-speed locomotive with MR dampers[C]. Machine Learning and Cybernetics,2008,7, Kunming, China.
    [212]Shen YJ, Yang SP, et al. Application of Magnetorheological Damper in Vibration Control of Locomotive[C]. The 6th World Congress on Intelligent Control and Automation,2006,6, Dalian, China.
    [213]Coleman T, Branch MA, Grace A. Optimization Toolbox for use with Matlab, User's Guide(Version 2) [M]. The Math Works Inc,1999.
    [214]Shen Y, Golnaraghi MF, Heppler GR. Load-leveling suspension system with a magnetorheological damper[J]. Vehicle System Dynamics,2007,45(4):297-312.
    [215]Jansen LM, Dyke SJ. Semi-active control strategies for MR dampers:a comparative study[J]. Journal of Engineering Mechanics,2000,126(8):795-803.
    [216]Liu YQ, Matsuhisa H, Utsuno H, et al. Variable Damping and Stiffness Vibration Control with Magnetorheological Fluid Dampers for Two Degree-of-Freedom System[J]. JSME International Journal Series C,2006,49(1):156-162.
    [217]陈立平,张云清,任卫群,等.机械系统动力学分析及ADAMS应用教程[M].北京:清华大学出版社,2005.
    [218]Negrut D, Harris B. ADAMS Theory in a Nutshell [M]. MDI Inc.,2001.
    [219]宋颖.高速车轮失圆对轮轨动力作用的影响及其监测方法研究[学位论文].北京交通大学,2010.
    [220]董锡明.高速动车组工作原理与结构特点[M].北京:中国铁道出版社,2007.
    [221]MDI Inc. Getting started using ADAMS/Rail[Z]. Part number:120RLGS-01.
    [222]王成国. MSC.ADAMS/Rail基础教程[M].北京:科学出版社,2005.
    [223]翟婉明.车辆—轨道耦合动力学[M].北京:中国铁道出版社,1997.
    [224]王福天.车辆系统动力学[M].北京:中国铁道出版社,1994.
    [225]陈果,翟婉明.铁路轨道不平顺随机过程的数值模拟[J].西南交通大学学报,1999,34(2): 138-142.
    [226]中国铁道科学院.时速300-350公里动车组试验研究报告[R].中国铁道科学院,2008.
    [227]GB 5599-85.铁道车辆动力学性能评定和试验鉴定规范[S].国家标准局.
    [228]E200sJz8.高速动车组整车试验规范[S].国家标准局.
    [229]张卫华,黄丽湘,马启文,等.机车车辆动力性能的动态模拟[J].机械工程学报,2007,43(12):114-119.
    [230]张卫华,沈志云.车辆系统非线性运动稳定性研究[J].铁道学报,1996,18(1):29-34.
    [231]严隽耄.车辆工程(第二版)[M].北京:中国铁道出版社,1999.
    [232]Karnopp D. Design principles for vibration control systems using semi-active dampers[J]. Journal of Dynamic Systems, Measurement, and Control,1990(112):448-455.
    [233]Savaresi SM, Silani E, Bittanti S. Acceleration-Deriven-Damper(ADD):An optimal control algorithm for comfort-oriented semiactive suspensions[J]. Journal of Dynamic Systems, Measurement, and Control,2005(127):218-229.
    [234]Savaresi SM, Spelta C. Mixed Sky-Hook and ADD:Approaching the filtering limits of a semi-active suspension[J]. Journal of Dynamic Systems, Measurement, and Control, 2007(129):382-392.
    [235]Carlson JD, Weiss K D. A Growing Attraction to Magnetic Fluids[J]. Machine Design, 1994(14):61-64.
    [236]Paolacci F. and Serino G. Experimental characterization of a semi-active MR damper[J]. Proceedings of the 3rd World Conference on Structural Control,7-12 April,2002, Como, Italy.
    [237]Spizzuoco M, Occhiuzzi A, Serino G.. Performance of a semi-active MR contro system for earthquatke protection[C]. The 13th World Conference on Earthquake Engineering, August 1-6,2004, Vancouver, B.C., Canada.
    [238]Eslaminasab N, Golnaraghi MF. The effect of time delay of the semi-active dampers on the performance of on-off control schemes[C].2007 ASME International Mechanical Engineering Congress and Exposition, November 11-15,2007, Seattle, Washington, USA.
    [239]Eslaminasab N. Development of a semi-active intelligent suspension system for heavy vehicles [Dissertation]. University of Waterloo, Waterloo, Canada,2008.
    [240]Symans MD, Constantinou MC. Semi-active control earthquake induced vibration[C]. Eleventh World Conference on Earthquake Engineering, Acapulco, Mexico, June,1996.
    [241]Spelta C, Savaresi SM, Fabbri L. Experimental analysis of a motorcycle semi-active rear suspension[J]. Control Engineering Practice,2010,18(11):1239-1250.
    [242]Kitching KJ, Cole DJ, Cebon D. Performance of a semi-active damper for heavy vehicles[J]. Journal of Dynamic systems, Measurement, and Control,2000,122(3):498-506.
    [243]Neill HRO, Wale GD. Semi-active suspension improves rail vehicle ride[J]. Computing & Control Engineering Journal,1994,5(4):183-188.
    [244]Carrion JE, Spencer BF. Real-time hybrid testing using model-based delay compensation[C]. 4th International Conference on Earthquake Engineering, October 12-13,2006, Taipei, China.
    [245]Loh CH, Lu KC. Discussion on the application of wireless active sensing unit for structural control[C].4th World Conference on Structural Control and Monitoring, San Diego, USA, July 11-13,2006.
    [246]Niemz T, Winner H. Improving braking performance by control of semi-active suspension[R], VDI-Verlag, Dusseldorf,2007.
    [247]Sarami S. Development and evaluation of a semi-active suspension system for full suspension tractors[Dissertation]. University of Berlin,2009.
    [248]Dyke SJ. Acceleration feedback control strategies for active and semi-active control systems: modeling, algorithm development, and experimental verification [Dissertation]. University of Notre Dame, Department of Civil Engineering and Geological Sciences, Notre Dame, Indiana, 1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700