高分辨率圆迹合成孔径雷达成像机理及方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合成孔径雷达(SAR)是一种可以工作在全天候、全天时条件下,能够进行目标区域高分辨率微波成像的雷达。高分辨率一直是SAR研究的重要目标。经过条带SAR和聚束SAR的发展,SAR成像分辨率不断提高,但由于这两种模式的雷达是在直线路径上观测目标区域,限制了空间频率范围的扩展,进而成像分辨率受到局限。圆迹SAR利用圆周路径突破直线路径观测对空间频率范围的限制,从而实现在条带SAR和聚束SAR这两种直线SAR模式基础上继续提高雷达成像分辨率的目标。
     本文重点研究了圆迹SAR高分辨率成像的相关理论和技术问题,并从空间分辨率和空间频率范围的对应关系入手,从信号处理的角度讨论SAR高分辨原理。以一维的利用雷达信号带宽的距离向成像和利用合成孔径的方位向成像的基本原理的讨论作为开始,进而针对条带SAR与聚束SAR的构成合成孔径的不同点,指出聚束SAR在观测过程中利用波束始终照射成像区域从而获得较长的合成孔径,进而使得方位向空间频率范围大于依靠波束宽度获得合成孔径的条带SAR的方位向空间频率范围,最终获得较条带SAR方位向分辨率高的成像结果。文中总结了直线SAR的信号带宽决定距离向分辨率,合成孔径长度决定方位向分辨率的规律。
     对比直线SAR成像,分析圆迹SAR在距离向和方位向都获得更高分辨率的原理,并针对圆迹SAR与计算机断层成像(CT)的异同,借鉴CT成像的滤波逆投影法展开对圆迹SAR成像机理及算法的研究。通过时域相关法、逆投影法以及分段直线近似圆周轨迹法的算法实现,发现圆迹SAR成像的特点:在圆迹SAR全视角(360o)观测的条件下,对于聚焦区域内的理想点目标,其距离向和方位向的分辨率基本相同;圆迹SAR分辨率取决于信号波长,波长越短分辨率越高;圆迹SAR在最大信号频率不变时,信号带宽增加反而降低分辨率,并且信号带宽的作用更大程度上表现在降低副瓣上。
     圆迹SAR的圆周合成孔径使其能够在信号为单频的情况下也能对目标区域高分辨率成像,这种能力是其他形式的SAR所不具备的。论文在对圆迹SAR单频成像进行理论分析的基础上,研究信号带宽对圆迹SAR成像的影响,从而从理论上证明圆迹SAR成像特点的正确性。圆周合成孔径还使得圆迹SAR具备了三维分辨能力,这也是普通合成孔径雷达所不具备的,文中分析了圆迹SAR的这种特殊能力。
     另外,文中还考虑了圆迹SAR的降低副瓣、运动补偿、动目标特征等与其性能相关的问题。最后给出圆迹SAR的地面实验方案,阐述了临近空间、星载平台应用的可行性。
Synthetic Aperture Radar (SAR) is a kind of radar in microwave remote sensing which can obtain high-resolution image of target area with the capability of all-weather and all-time operations. High resolution imaging is one of the important goals during the development of SAR. With the advancement of Stripmap SAR and Spotlight SAR, the resolution of SAR imaging is continuously improved. However, because of the straight observing path of Stripmap SAR and Spotlight SAR, the extent of spatial spectrum is limited, and thus the resolutions of both range and azimuth are restricted. Circular SAR breaks up this restriction on the extent of spatial spectrum with circular observing path and realizes the objective of improving the resolution further.
     The dissertation focuses on theoretical and technical problems of high-resolution Circular SAR. According to the relationship between spatial resolution and the extent of spatial spectrum, the principle of high resolution imaging of SAR is discussed from the perspective of signal processing. The discussion about resolution in range and azimuth makes a beginning for understanding SAR. From the difference of constructing the synthetic aperture between Stripmap SAR and Spotlight SAR, the dissertation explains the reason why Spotlight SAR gets finer resolution in azimuth than that of Stripmap SAR. For Stripmap SAR and Spotlight SAR, wider azimuth spectrum leads to higher azimuth resolution while range resolution keeps almost invariant. The dissertation summarizes the conclusion that signal bandwidth determines the range resolution and length of synthetic aperture determines the azimuth resolution in linear SAR.
     Based on the analysis of linear SAR, the principle of Circular SAR getting higher resolution in both directions is examined. Using Computerized Tomography (CT) and its Filtered Backprojection algorithm as references, the imaging mechanism and algorithms of Circular SAR are studied. The procedures and results of algorithms of Time Domain Correlation, Backprojection and Circular path approximated by linear subpaths are demonstrated. The characteristics of Circular SAR imaging are observed through the study of imaging algorithms as follows:under condition of ideal point target in focusing plane with full aspect angle(360o) observation, the resolutions of range and azimuth obtained by Circular SAR are almost equal. The resolutions are determined by the wavelength of signal rather than bandwidth of signal. When the maximum frequency of signal is fixed, the increase of signal bandwidth decreases the resolution and the main effect of signal bandwidth is to reduce the sidelobe.
     Circular synthetic aperture makes Circular SAR with single frequency signal possess the ability to get high-resolution image of target area. Theoretical analysis of this ability provides a good basis for deriving the formulation of system response of Circular SAR with certain signal bandwidth. Therefore, the characteristics of Circular SAR imaging are verified from the aspect of mathematics. Another ability of Circular SAR is to distinguish targets with different heights. Compared with linear SAR, these particular features of Circular SAR are studied.
     The problems of sidelobe reduction, motion compensation and moving target imaging are also considered in the dissertation. In the end, the experiment schemes for testing the performances of Circular SAR are presented and the applications on near space platform and space platform are discussed.
引文
[1] John C. Curlander and Robert N. McDonough. Synthetic Aperture Radar: System and Signal Processing. Wiley, New York, 1991.
    [2] Giorgio Franceschetti, Riccardo Lanari. Synthetic Aperture Radar Signal Processing. CRC Press. 1999
    [3] Charles V.Jakowatz, Daniel E.Wahl, etc. Spotlight-mode Synthetic Aperture Radar: A Signal Processing Approach. KLUWER ACADEMIC PUBLISHERS. 1996
    [4] Mehrdad Soumekh. Synthetic Aperture Radar Signal Processing with MATLAB Algorithm. John Wiley &Sons,Inc. 1999
    [5] 张澄波,综合孔径雷达原理、系统分析与应用,科学出版社,1989
    [6] 刘永坦, 雷达成像技术,哈尔滨工业大学出版社,1999
    [7] 魏钟铨等,合成孔径雷达卫星,科学出版社,2001
    [8] 张直中,机载和星载合成孔径雷达导论,电子工业出版社,2004
    [9] 袁孝康,星载合成孔径雷达导论,国防工业出版社,2003
    [10] 保铮等,雷达成像技术,电子工业出版社,2006
    [11] 王超等,星载合成孔径雷达干涉测量,科学出版社,2002
    [12] 张云华,星载三维成像雷达高度计关键技术,中国科学院空间科学与应用研究中心,2001
    [13] 张云华,成像高度计校飞试验报告,中国科学院空间科学与应用研究中心,2002
    [14] 张云华,干涉成像雷达高度计,中国科学院空间科学与应用研究中心,2003
    [15] 杰里 L.伊伏斯,爱德华 K. 里迪 编,卓荣邦等译,现代雷达原理。电子工业出版社。1991
    [16] 郑君里,杨为理,应启珩,信号与系统,高等教育出版社。1981
    [17] Cafforio, C. Prati, F. Rocca. Full resolution focusing of SEASAT SAR images in the frequency-wave number domain. International Journal of Remote Sensing, VOL. 12, NO. 3, pp. 491-510 1991
    [18] Richard Bamler. A Comparison of Range-Doppler and Wavenumber Domain SAR Focusing Algorithms. IEEE Transactions on Geoscience and Remote Sensing, 30(4):706-713, July 1992
    [19] R. P. Perry and L. W. Martinson. Radar matched filtering in Radar Technology, E. Brookner, Ed. Boston: Artech House, 1978.
    [20] Soumekh, M. Choi, J. Phase and amplitude phase restoration in synthetic aperture radar imaging. IEEE Transactions on Image Processing, vol. 1, no. 2, April 1992, p. 229-242.
    [21] R.Keith Raney, H.Runge, etc. Precision SAR Processing Using Chirp Scaling. IEEE TRANSACTOINS ON GEOSCIENCE AND REMOTE SENSING. VOL.32. NO.4.P786-799 JULY 1994
    [22] Richard Bamler. A Systematic Comparison of SAR Focussing Algorithms. In IGARSS '91, International Geoscience and Remote Sensing Symposium, volume 2, pages 1005-1009, 1991
    [23] Mehrdad Soumekh. Reconnaissance with ultra wideband UHF synthetic aperture radar. IEEE SIGNAL PROCESSING MAGZINE. P21-40 JULY 1995.
    [24] Fowler C., Entzinger J., and Corum J. Assessment of ultra-wideband UWB technology. IEEE transaction on aerospace and electronics systems, pages 45-49, Novemember 1990.
    [25] Hoff L.E. and Stotts L.B. ARPA surveillance technology for the detection of targets hidden of foliage. SPIE, 2093:403-426, 1994.
    [26] Engler H.F. Technical issues in ultra-wideband radar. Journal of electronic defense, pages 54-59, January 1995.
    [27] VandenBerg N. and etc. P-3 ultra-wideband SAR: system applications to foliage penetration. SPIE, 2757:130-135, 1996.
    [28] Ranney, K.; Soumekh, M. Adaptive change detection in coherent and noncoherent SAR imagery. RadarConference, 2005 IEEE International Volume , Issue , 9-12 May 2005 Page(s): 195 – 200
    [29] Soumekh, M. Array imaging with beam-steered data. IEEE Transactions on Image Processing, Jul 1992 ,Volume: 1, Issue: 3,On page(s): 379-390
    [30] Soumekh, M. Depth-focused interior echo imaging. IEEE Transactions on Image Processing, Volume 8, Issue 11, Nov 1999 Page(s):1608 – 1618
    [31] Toups M.F., Bessette L.A., and etc. Foliage penetration data collections and inverstigations utilizing the P-3 UWB SAR. SPIE, 2757:136-144, 1996.
    [32] Fleischman J.G., Adams E.M., and Gosselin D.R. Foliage penetration experiment: Part I: foliage attenuation and backscatter analysis of SAR imagery. IEEE transaction on aerospace and electronics systems, 32(1):134-164, January 1996.
    [33] Toups M.F., Yasli S.A., and Fleischman G. Foliage penetration experiment: Part II: analysis of foliage-induced synthetic pattern distortions. IEEE transaction on aerospace and electronics systems, 32(1):134-164, January 1996.
    [34] Vickers R.S., Gonzalez V.H., and Ficklin R.W. Results from a VHF impulse synthetic aperture radar. SPIE, 1631:219-225, 1992.
    [35] Walker B., Sander G., Thompson M., Burns B., Fellerhoff R., and Dubbert D. A high-resolution, four-band SAR tested with real time image formation. IEEE Geoscience remote sensing symp. IGARSS'96, (3):1881-1885, June 1996.
    [36] Gustavsson A., Ulander L.M.H., Martineau P., Plessis O.du, Foolind P.O., Jonssons T., Larsson B. Le Coz D., and Stenstrom. Some results on detection of targets deployed in hide under foliage. EuSAR 2002, pages 57-60, June 2002.
    [37] Pastore L., Cantalloube H., and Priou. Under foliage observation of corner reflectors and commodity trucks with a full polarimetric UHF SAR. EuSAR 2002, pages 61-64, June 2002.
    [38] Pascale Dubois-Fernanden et al. The ONERA RAMSES SAR system. EuSAR 2002, pages 507-510, June 2002.
    [39] Alan Di Cenzo. A new look at nonseparable synthetic aperture processing. IEEE transaction on aerospace and electronics systems, 24(3):218-224, May 1988.
    [40] Jin M.Y. and Wu C. A SAR correction algorithm which accommodates large-range migration. IEEE Trans. On Geoscience and Reote Sensing, GE-22(6):592-597, Nov 1984.
    [41] Ron Goodman, Sreenidhi Tummala, and Walter Carrara. Widebeam SAR image formation. Proc. IEEE International Radar Conference, pages 479-485, 1995.
    [42] Wu Chialin, Liu K.Y., and Jin Michael. Modeling and a correlation algorithm for spaceborne SAR signals. IEEE transactions on aerospace and electronic systems, AES 18(5):563-574, September 1982.
    [43] C.Cafforio, C.Prati, and F.Rocca. SAR data focusing using seismic migration techniques. IEEE transaction on aerospace and electronics systems, 27(2):194-207, March 1990.
    [44] Claudio Prati, Fabil Rocca, Andrea Monti Guarnieri, and Elvio Damonti. Seismic migration for SAR focusing. Interferometrical Applications, IEEE Transactions on GRS,28(4):627-640, 1990.
    [45] Richard Bamler. A comparison of range-doppler and wavenumber domain SAR focusing algorithms. IEEE transactions on geoscience and remote sensing, 1992(4):706-713,July 30.
    [46] Sack E. et al. Application of efficient linear FM matched filtering algorithms to synthetic aperture radar processing. IEE proceedings, 132(F), 1985.
    [47] B.Barber. Theory of digital imaging from orbital synthetic aperture radar. Int. Journal Remote Sens., 6:1009-1057, 1985.
    [48] John W.McCorkle. Focusing of synthetic aperture ultra wideband data. Proc.IGARSS, ProceedingVancouveer, pages 1-5, 1989.
    [49] Bennett L.R., I.G. Cumming, and R.A. Deane. The digital processing of seasat synthetic aperture radar data. IEEE international radar conference, 1980.
    [50] A. Potsis, A. Reigber, A. Moreira, L. Ferrp-Famil, and N. Uzunoglou. Comparison of chirp scaling and wavenumber domain algorithm for airborne low frequency SAR data processing. EUSAR 2002, pages 69-72, Jun. 2002.
    [51] Arnold Barmettler, Erich Merier, and Daniel Nesch. Development of an ultra-wideband SAR processing. CEOS SAR Workshop 2001, pages 1-4, April 2001.
    [52] Soumekh M.A system model and inversion for synthetic aperture radar imaging. IEEE Trans on Image Processing,1992,1(1):64-76
    [53] Soumekh M. Bistatic synthetic aperture radar inversion with application in dynamic object imaging. IEEE Trans on Image Processing,1991,39(9):2044-2055
    [54] Mehrdad Soumekh. Range stacking: An interpolation-free SAR reconstruction algorithm. SPIE Conference on algorithm for Synthetic Aperture Radar Imaging V,3370:13-19, April 1998.
    [55] Gordon W. Davidson, Ian Cummiug, and Mabo Robert Ito. A chirp scaling approach for processing squint mode SAR data. IEEE transactions on aerospace and electronics systems, 32(1):121-133, Junuary 1996.
    [56] R.Keith Raney, H. Runge, Richard Barner, G.Cumming, and Frank II. Wong. Precision SAR processing using chirp scaling. IEEE transactions on geoscience and remote sensing, 32(4):786-799, July 1994.
    [57] Cordon W. Davidson, Frank Wong, and Inn Cumming. The effect of pulse phase errors on the chirp scaling SAR processing algorithm. IEEE transactions on geoscience and remote sensing, 34(2):471-478, March 1996.
    [58] Runge H. and Bamler R. A novel processing SAR focussing algorithm based on chirp scaling. Proc. of IGARSS'92, pages 372-375, 1992.
    [59] Alberto Moreira,Member IEEE and Yanghong Huang. Airborne SAR processing of highly squinted data using a chirp scaling approach with integrated motion compensation. IEEE Transactions on Geoscience and Remote Sensing, 32(5):1029-1040, September 1994.
    [60] Alberto Moreira, Josef Mittermayer, and Rolf Scheiber. Extended chirp scaling algorithm for air- and spacebore SAR data processing in stripmap and scanSAR imaging modes. IEEE transactions on geoscience and remote sensing, 34(5):1123-1136, September 1996.
    [61] Josef Mittermayer, Alberto Moreira, and Rolf Scheiber. Reduction of phase errors arising from the approximation in the chirp scaling algorithm. Proceedings of IGARSS'93,2:1180-1182, July 1998.
    [62] Walter G. Carrara, Ron S. Goodman, and Ronald M. Majewsk. Spotlight Synthetic Aperture Radar Signal Processing Algorithms, volume 02062. Artech House Boston. London, British Library Catalogoing in Publication Data, 1995.
    [63] Josef Mittermayer, Albert Moreira. Spotlight SAR processing using frequency scaling algorithm. IEEE transactions on geoscience and remote sensing, 37(5):2198-2213, September 1999.
    [64] B.L. Burns and J.T. Cordaro. A SAR image-formation algorithm that compensates for the spatially-variant effects of antenna motion. SPIE, 2230:14-24, 1994.
    [65] Elachi C er al. Spaceborne synthetic aperture imaging radar: applications, techniques, and technology. Proc. of IEEE, 70(10), 1982.
    [66] K.H. Wu and M.R. Vant. Extensions to the step-transform SAR processing techniques. IEEE transactions on Aeraspace and Electronic Systens, AES-21, May 1985.
    [67] Andrew D. Mc Geey-Smith and Malcolm R.Vant. Modification of the SAR step transform algorithm. IEEE Trans. on AES, 28(3):666-673, July 1992.
    [68] S.I.Tsunoda, F.Pace, J.Stence, M.Woodring, W.H.Hensley, A.W.Doerry, and B.C.Walker. Lynx: A high-resolution synthetic aperture radar. SPIE Aerosense, 1999
    [69] Robert C. DiPietro, Ronald L. Fante, Richard P. Perry, Mehrdad Soumekh, and Lautens D. Tromp. Multi-resolution FOPEN SAR image formation. SPIE conference on algorithms for Synthetic Aperture Radar Imagery VI, 3721:170-188, 1999.
    [70] Michael Y.Jin and Wu Chialiu. A SAR correlation algorithm which accommodates large-range migration. IEEE transactions on geoscience and remote sensing, GE22(6):592-597, November 1984.
    [71] Riccardo Lanari. A new method for the compensation of the SAR range cell migration based on the chirp z-transform. IEEE Transactions on Geoscience and Remote Sensing, 33(5):1296-1299, Sep. 1995.
    [72] Riccardo Lanari and Gianfranco Fornaro. A short discussion on the exact compensation of the SAR range-dependent range cell migration effect. IEEE transactions on geoscience and remote sensing, 35(6):1446-1452, Novemember 1997.
    [73] D.C.Munson, J.D.O.Breiu, and W.K.Jenkins. A tomographic formulation of spotlight mode synthetic aperture radar. Processing of the IEEE, 72(8):917-925, August 1983.
    [74] Amir Boag,Senior Member IEEE, Yoram Bresler, Fellow IEEE, and Eric Michielsson , Senior Member IEEE. A multilevel domain decomposition algorithm for fast O(N2logN) reprojection of tomopraphic images. IEEE Transaction on Image Processing, 9(9):1573-1581, September 2000.
    [75] Samit Basu,Member IEEE and Yorram Bresler,Fellow, IEEE. Error analysis and performance optimization of fast hierarchical backprojection algorithms. IEEE Transactions on Image Processing, 10(7):1103-1117, July 2001.
    [76] Malin Ingerhed and Per-Erik Danielsson. Implementation of backprojection in O(N2logN) time. SSAB'98, Uppsala, Sweden, pages 1-9, March 1998.
    [77] John McCorkle and Martin Rofheart. An order N2log(N) backprojection algorithem for focusing wide-angle wide-bandwidth arbitrary-motion synthetic aperture radar. SPIE, 2747:25-36, 1996.
    [78] S. Nilsson and L.E. Andersson. Application of fast backprojection techniques for some inverse problems of synthetic aperture radar. SPIE conference on algorithms for synthetic aperture radar imagey V, 3370:62-69, April 1998.
    [79] Lars M.H. Ulander, Hans Hellsten, and Gunnar Stenstr'om. Performance analysis of fast backprojection for synthetic aperture radar processing. Processing of SPIE, 4382:13-21, 2001.
    [80] Shu Xiao, David C.Munson. Jr., Samit Basu, and Yoram Bresler. An N2logN backprojection algorithm for SAR image formation. 34th Asilomar Conf. On Signals, systems, and Computers, Pacific Grove, CA:1-5, Oct.31-Nov.1 2000.
    [81] L.M.H. Ulander, H. Hellsten, and G. Stenstrom. Synthetic aperture radar processing using fast factorised backprojection. Euro SAR2000, pages 753-756, 2000.
    [82] Mehrdad Soumekh. A method of image reconstruction in fan beam tomography. Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP apos;85.Volume 10, Page(s): 1053 – 1056, Apr 1985
    [83] Demjanenko, V.; Valtin, R.A.; Soumekh, M.; Naidu, H.; Antur, A.; Hess, D.P.; Soom, A.; Tangri, M.K.; Park, S.Y.; Benenson, D.M.; Wright, S.E. A noninvasive diagnostic instrument for power circuit breakers.Power Delivery, IEEE Transactions on Volume 7, Issue 2, Page(s):656 – 663, Apr 1992.
    [84] Rischal,A.;Young,S.S.;Soumekh,M. A reconstruction method for helical computed tomography. Acousitcs, Speech and Signal processing, ICASS-97,Vol 4, Page(s): 2857-2860, Apr 1997.
    [85] Soumekh, M. Image reconstruction techniques in tomographic imaging systems. IEEE Transactions on Signal Processing, Volume: 34, Issue: 4, Aug 1986,page(s): 952- 962
    [86] Soumekh, M. Multiresolution dynamic image representation with uniform and foveal spiral scan data. IEEE Transactions on Image Processing,Volume 7, Issue 11, Nov 1998 Page(s):1627 – 1635
    [87] Yang, H.; Soumekh, M. Motion Estimation And Compensation In SAR/ISAR Imaging. Proceedings of the Seventh Workshop on Multidimensional Signal Processing. Sep 1991.
    [88] Mehrdad Soumekh. Reconnaissance with Slant Plane Circular SAR Imaging. IEEE TRANSACTOINS ON IMAGE PROCESSING. VOL.5. NO.8, P1252-1265 AUGUST 1996
    [89] Mehrdad Soumekh. Echo imaging using physical and synthesized arrays. OPTICAL ENGINEERING. VOL.29 NO.5,P545-554 MAY 1990
    [90] Tsz-King Chan, Yasuo Kuga,etc. Feasibility study on localized subsurface imaging using Circular Synthetic Aperture Radar and angular correlation function measurement. Geoscience and Remote Sensing, 1997. IGARSS '97. 'Remote Sensing - A Scientific Vision for Sustainable Development'., 1997 IEEE International P1138-1140
    [91] Michael Y.Jin, Ming Chen. Analysis and simulation for a spotlight-mode aircraft SAR in Circular flight path. Geoscience and Remote Sensing Symposium, 1993. IGARSS '93. 'Better Understanding of Earth Environment'., International P1777-1780
    [92] Michael L.Bryant, Lamar L.Gostin. 3-D E-CSAR Imaging of a T-72 tank and synthesis of its SAR reconstructions. IEEE TRANSACTOINS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL.39. NO.1, JAN 2003, P211-227
    [93] Broquetas, A.; De Porrata, R.; Sagues, L.; Fabregas, X.; Jofre, L., Circular synthetic aperture radar (C-SAR) system for ground-based applications. Electronics Letters.Volume 33, Issue 11, 1997:988 – 989
    [94] Hans Rudolf, Dario Tarchi, and Alois J. Sieber. A parallelogram shaped arm for improving circular SARs, Pages 553-555 vol.1, In International Geoscience and Remote Sensing Symposium, IGARSS’97,1999
    [95] Akira Ishimaru,Tsz-King Chan, Yasuo Kuga, An imaging technique using confocal circular synthetic aperture radar. IEEE Trans. Geoscience and Remote Sensing, 36:5, 1524-1530, September 1998.
    [96] Tsz-King Chan, Yasuo Kuga, Akira Ishimaru, Experimental studies on circular SAR imaging in clutter using angular correlation function technique, IEEE Trans. Geoscience and Remote Sensing, 37:5, September 1999.
    [97] A. Dallinger, S. Schelkshorn, and J. Detlefsen, Efficient w-k algorithm for circular SAR and cylindrical reconstruction areas, Adv. Radio Sci., 4, 85–91, 2006
    [98] Zhang Xiangkun, Zhang Yunhua, Jiang Jingshan, High-resolution SAR imaging by general synthetic aperture processing of two observations. Poceedings of the Second IASTED international conference. 2005: 150-154
    [99] Paul Runkle,Lam H. Nguyen, James H. McClellan,and Lawrence Carin, Multi-aspect target detection for SAR imagery using hidden Markov models, IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 39, NO. 1, JANUARY 2001,46-55
    [100] 张云华,张祥坤,姜景山,空间虚拟探测技术及其发展趋势。系统工程与电子技术,2005,27(12):2006-2009.
    [101] Xiangkun Zhang,Yunhua Zhang, Jingshan Jiang. Circular SAR Imaging Approximated by Spotlight Processing. ISAPE2006, Guilin, China.
    [102] Lloyd D. and Longdtaff I.D. Ultra-wideband multi-static SAR for the detection and location of landmines. Euro SAR 2002, Pages 53-56, June 2002.
    [103] Soumekh, M. Signal subspace fusion of uncalibrated sensors with application in SAR, diagnostic medicine and video processing. Proceedings of International Conference on Image Processing. Volume 3,Oct 1997, Page(s):280 – 283
    [104] R.P.Perry, R.C.DiPietro, B.L.Johnson, A.Kozma, and J.J.Vaccaro. Planar subarray processing for SAR imaging. IEEE International Radar Conference, Pages 473-478, 1995.
    [105] Robert C. DiPietro, Ronald L. Fante, Richard P. Perry, Mehrdad Soumekh, and Laurens D. Tromp. FOPEN planar sub-array processing SAR image formation. EUSAR, Pages181-183, 2000.
    [106] Soumekh, M. Multistatic echo imaging in remote sensing and diagnostic medicine. Multidimensional Signal Processing Workshop, Volume 6, Sep 1989. Page(s):200
    [107] R.P. Perry, R.C. DiPictro, A. Kezma, and J.J. Vaccaro. SAR image formation processing using planar subarrays. SPIE, 2230:160-170, 1994.
    [108] Dean L.Mensa. High Resolution Radar Imaging. Artech House, INC. 1981
    [109] Graham, L. C. Synthetic Interferometer Radar for Topographic Mapping, Proc. of the IEEE, 62(2), 763-768,1974
    [110] 苏志刚, 彭应宁, 王秀坛,曲线合成孔径雷达中散射点三维特征提取方法,清华大学学报,第 45卷,第 7 期,pp22-38,2005
    [111] 张安学,蒋延生,汪文秉,圆周探地雷达测量和成像方法的研究,电子学报,Vol.30, No.6, pp853-856, 2002
    [112] David G. Falconer, George J. Moussally. Tomographic imaging of radar data gathered on a circular flight path about a three-dimensional target zone. Proceedings of SPIE 2487, 2 , 1995
    [113] Hans Rudolf, Dario Tarchi, and Alois J. Sieber. Combination of linear and circular SAR for 3-D features. In International Geoscience and Remote Sensing Symposium, IGARSS’97, volume 4, pages 1551~1553. IEEE, August 1997.
    [114] Nimrod Rooz ,Eric N. Johnson, Design and modelling of an airship station holding controller for low cost satellite operations,AIAA Guidance, Navigation, and Control Conference and Exhibit,August 2005
    [115] Goodyear Aerospace Corporation, Feasibility study of modern airships, NASA Contractor Report 2922, November 1977.
    [116] K. T. Nock, M. K. Heun, K. M. Aaron, Global stratospheric balloon constellations ,COSPAR 2000
    [117] Luke Brooke, High Altitude LTA Platforms: Capabilities and Possibilities, AIAA 5th Aviation, Technology, Integration, and Operations Conference, September 2005
    [118] Stephen T. Makrinos, High Altitude Airships for Homeland Security Commercial and Military Operations, white paper of CACI Technologies Incorporated.
    [119] Lewis Jamison, Geoffrey S. Sommer, Isaac R. Porche III, High-Altitude Airships for the Future Force Army, technical report of RAND corporation.
    [120] Anthony Colozza, James L. Dolce,High-Altitude, Long-Endurance Airships for Coastal Surveillance, NASA Report, February 2005
    [121] Lt Col Edward B. Tomme, D. Phil. , The Paradigm Shift to Effects-Based Space: Near-Space as a Combat Space Effects Enabler, Research Paper of Air University, 2005
    [122] 侯东兴,刘东红,浮空器在军事斗争中的应用及发展趋势,航空兵器,No.3,pp60-64,2006
    [123] 贾重任, 浮空器在武器装备信息化中的优势分析, 飞机设计,No.2,pp23-27,2004
    [124] 张晋平,美国高空军事飞艇计划和特点,国际航空,No.6,pp30-32,2005
    [125] 佟平,美国空军关注临近空间作战,国际航空,No.5, pp60-62,2006
    [126] 吕小红,世界军用飞艇发展新动向,飞航导弹,No.7, pp20-23,2003
    [127] 崔海英,张祥坤,姜景山,圆迹合成孔径雷达星载实现的可行性分析,第二届微波遥感技术研讨会,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700