三维地质建模与射线正演方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前勘探地震学的发展趋势是地震资料采集、处理、解释一体化。一体化过程的核心是三维地质模型。随着勘探的逐步深入,在已有地质、地球物理研究成果的基础上建立从区域到局部的不同分辨率、不同属性的三维地质模型是可能的。三维地质建模为建立三维地质模型提供了必要保障。将三维地质建模与地球物理应用相结合,可以促进相关学科的共同发展。本文通过对三维建模方法和射线正演方法进行联合研究,将构造地质建模研究成果成功引入射线正演中,分别完成了基于块状模型的三维快速两点射线追踪方法和基于射线坐标系中三角网拓扑描述的波前重建射线追踪方法两项研究内容。本文研究成果总结为如下几点:
     (1)对三维地质建模元素及相关核心技术进行分析总结,探讨常用含断层构造三维地质建模方法的特点与不足,利用现有软件模块对两个地区的资料进行建模。
     (2)在建模数据成果的基础上,实现基于块状模型和射线编码的针对目标层位的快速两点射线追踪。模型各个块体内速度为常速,块体之间以界面相联系,界面用三角网描述,能够较好地描述复杂地质构造。利用射线路径编码进行针对目的层的全路径迭代射线追踪。该编码方法可以方便地定性描述位于模型不同区域的射线,并能够适应复杂观测系统下常规P波、转换波、多次波的射线追踪要求。在复杂构造区通过射线冗余检查剔除不合理的射线,保留有效波的信息。利用C++语言编制了块状模型射线计算程序,给出VSP计算实例。
     (3)波前重建射线追踪方法中引入地质建模中三角网拓扑的思想构建射线坐标系中的波前面,模拟地震波在目标区域的传播过程。对处于射线管内的成像网格点利用四面体剖分和线性插值方法对其进行属性插值。传播过程中射线密度降低时通过分裂波前面上的三角形并直接从源点引入新射线以保证射线密度满足给定要求。利用C++语言编制程序,给出三维低速体模型中的计算示例。
     (4)结合射线具体应用改进了模型空间的搜索效率。在块状模型射线正演中,通过预先建立三角网分区索引结构和三角形外接矩形框等措施提高了插值时三角形搜索的效率,保证了在实际模型数据量大的情况下射线追踪方法的实用性;点与体关系判定时利用光线碰撞快速检测模型任一点所处的块,保证了块状模型中两点射线追踪方法对复杂观测系统的适应性。在波前重建射线追踪方法中,利用射线管外接包围盒快速排除了不需要做插值的网格,利用四面体剖分确定需要做插值的点,提高了插值效率。
Nowadays the development trend of exploration seismology is the integration of seismicdata acquisition, processing and interpretation. 3-D geological models are the key of this process.Along with the development of exploration and exploitation, it is possible to buildmulti-resolution geological models with different attributes from regional to local scale, based onthe previous geological and geophysical studies. Geological modeling provids necessaryguarantee for building different kind of models. The combination of geological modeling andgeophysical applications can prompt the development of related disciplines. In this article, thejoint study of 3-D geological modeling and ray tracing methods is carded out. The geologicalmodeling results are successfully introduced into seismic ray tracing studies. Two researchcontentses are completed respectively: 3D fast two-point ray tracing in block models andwavefront construction with triangulated surface in ray coordinates. The results of this paper areas follows:
     (1) The modeling elements and related core technology are analysised and concluded. TheCharacteristics and disadvantages of current fault modeling methods are discussed. Two real datamodeling examples are shown with geological modeling modules.
     (2) Based on model data from modeling process, a fast two point ray tracing algorithm inblock models is developed for geometry optimization in seismic data acquisition. The forwardmodel consists of serveral blocks, whose physical parameters are constant in it. The surface ofeach block is represented by TIN, which is suitable for complex geological models. Ray pathcode is used to discribe different types of rays and rays in different parts of the model. Wholepath iteration method is used for ray path calculations. Redundancy check is used to check thelegitimacy of traced rays in complex structrues. A ray tracing code is developed with C++.Examples of VSP ray tracing in different models are shown.
     (3) The topology of Tin structure is introduced into wavefront construction ray tracingstudies. Each wavefront is represented by triangle network in ray coordinates. Initiated fromsource, the wavefront can expand to the whole region of the model.The ray density on thewavefront is controlled by dynamic checking of triangle qualities. New rays are introduced bydirect ray tracing from source, which provides a higher accuracy. Kenematic and dynamicproperties of rays are interpolated on fine migration grids in ray tubes. A wavefront construction ray tracing code in C++ is developed and a low velocity model is tested.
     (4) Model space searching efficiency is improved in specific ray tracing applications. On raytracing for block models, regularly partition index of surface triangles and rectangle of eachtriangle are built for fast point positioning on surface. Collision detection is used for pointpositioning in block. The upon methods greatly improve ray tracing efficiency in models withlarge data sets. On wavefront construction ray tracing, rectangular box is used for fast excludingpoints from ray tubes. Tetrahedron is used for point positioning, and a linear method is used forfast interpolation of different kind of attributes in each tetrahedron.
引文
[1] 刘光鼎.雄关漫道真如铁-论中国油气二次创业.地球物理学进展,2002,17(2):185-190.
    [2] 张宝权,张少阳,尚卫忠等.松辽盆地深层区域地质特征及有利勘探方向.石油地球物理勘探,2006,41(增刊):70-74.
    [3] 马永生,蔡勋育,李国雄.四川盆地普光大型气藏基本特征及成藏富集规律.地质学报,2005,79(6):858-865.
    [4] 季玉新,王立歆,王军.综合地球物理技术在济阳坳陷潜山油藏勘探开发中的应用.勘探地球物理进展,2004,27(3):157-169.
    [5] 臧绍先.2020年中国地球物理学发展研究.见周光召主编,2020年中国科学和技术发展研究(下),2004,877—893.
    [6] 熊翥.我国物探技术的进步及展望.石油地球物理勘探,2003,38(6):701-706.
    [7] Mallet J L. Geomodeling. New York: Oxford University Press, 2002.
    [8] Aminzadeh F, Burkhard N, Nicoletis L, et al. SEG/EAEG 3-D modeling project: 2nd update. The Leading Edge, 1994, 13(9):949-952.
    [9] Aminzadeh F, Burkhard N, Kunz T, et al. 3-D Modeling Project: 3rd report. The Leading Edge, 1995, 14(2): 125-128.
    [10] 宫法明.三维地质建模[博士学位论文].北京:北京航空航天大学,2002.
    [11] 朱良峰.基于GIS的三维地质建模及可视化系统关键技术研究[博士学位论文].武汉:中国地质大学,2005.
    [12] Gong Jianya, Cheng Penggen, Wang Yandong. Three-dimensional modeling and application in geological exploration engineering. Computers & Geosciences, 2004, 300:391-404.
    [13] 侯恩科,吴立新.三维地学模拟几个方面的研究现状与发展趋势.煤田地质与勘探,2000,28(6):5-7.
    [14] 吴立新,沙从术.真三维地学模拟系统与水利工程应用.南水北调与水利科技,2003,1(2):20-25.
    [15] 吴立新.真3维地学构模的若干问题.地理信息世界,2004,2(3):13-18.
    [16] 郑贵洲,申永利.地质特征三维分析及三维地质模拟现状研究.地球科学进展,2004,19(2):218-223.
    [17] 武强,徐华.三维地质建模与可视化方法研究.地球科学,2004,34(1):54-60.
    [18] 吴德华,毛先成,刘雨.三维空间数据模型综述.测绘工程.2005,14(3):70-73.
    [19] 徐立明,牛新生.地质体三维可视化模拟的现状与展望.西南民族大学学报(自然科学版),2006,32(1):151-154.
    [20] 孟小红等编著.地质模型计算机辅助设计原理与应用.北京:地质出版社,2001.
    [21] http://www.essca.com/reservoir/Petrel2005.pdf.
    [22] http://www.gccgroupcorp.com.
    [23] http://www.roxar.com.
    [24] 许惠平,周云轩,孙运生等.全球地学断面(GGT)地理信思系统的编码技术.长吞科技大学学报,2000,30(2):190-193.
    [25] 张一伟,熊琦华,王志章.枣园油田油藏精细描述技术与方法.石油学报,1994,15(增刊):10-18.
    [26] 汪灏泓,宋继强,徐维秀等.三维地质数据可视化系统SLGRAPH的设计与实现.计算机研究与发展,1998,35(9):836-840.
    [27] 孟祥宾,陈世军.利用AVS软件实现复杂地质体深度成像软件CGOD的集成. http://www.visualsky.com/paper/lunwen2.htm.
    [28] 郭秋麟,宋国春,曾磊等.圈闭评价系统(TrapDEM2.0).石油勘探与开发,2001,28(3):41-45.
    [29] 刘军旗,毛小平,孙秀萍.基于GeoView三维地质建模的一般过程.工程地质计算机应用,2006,44:1-3.
    [30] http://www.mapgis.com.cn.
    [31] 介伟,韩训晓,蔡军.克浪(KLSEIS)软件在复杂地表平原区三维地震勘探中的应用.中国煤田地质,2005,17(1):49-51
    [32] http://www.igp.cn.
    [33] Karal F C, J R, Keller J B. Elastic Wave Propagation in Homogeneous and Inhomogeneous Media. J Acoustic Soc Am, 1959, 31(6):694-705.
    [34] Cerveny, Molotkov, Psencik. Ray method in seismology. Charles University Press, 1977.
    [35] Cerveny .Seismic ray theory. Cambridge University Press, 2001.
    [36] 张钋,刘洪,李幼铭.射线追踪方法的发展现状.地球物理学进展,2000,15(1):36-44.
    [37] Langan R T, Lerche I, Cutlers R T. Tracing of rays through heterogeneous media: an accurate and efficient procedure, Geophysics, 1985, 50(9): 1456-1465.
    [38] 杨长春,冷传波,李幼铭.适于复杂地质模型的三维射线跟踪方法.地球物理学报,1997,40(3):414-420.
    [39] 徐涛,徐果明,高尔根等.三维复杂介质的块状建模和试射射线追踪.地球物理学报,2004,47(6):1118-1126.
    [40] Pereyra V. Two-point ray tracing in general 3-D media. Geophysical Prospecting, 1992, 40(3):267-287.
    [41] Mao W J, Stuart G W. Rapid multi-wave-type ray tracing in complex 2-D and 3-D isotropic media. Geophysics, 1997, 62(1):298-308.
    [42] 徐果明,卫山,高尔根等.二维复杂介质的块状建模及射线追踪.石油地球物理勘探,2001,36(2):213-219.
    [43] 高尔根,席道瑛,曾昭发.三维结构下全路径迭代射线追踪方法.岩石力学与工程学报,2002,2l(11):1610-1614.
    [44] Vidale J E. Finite-difference calculation of traveltimes. Bull Seis Soc Am, 1988, 78(6): 2062-2076.
    [45] Vidale J E. Finite-difference calculation of traveltimes in three dimensions. Geophysics, 1990, 55(5): 521-526.
    [46] Vinje V, Iversen E, Gjoystdal H. Traveltime and amplitude estimation using wavefront construction. Geophysics, 1993, 58(8):1157-1166.
    [47] Vinje V, Iversen E, Astebol K, et al. Estimation of multivalued arrivals in 3D models using wavefront construction-Part Ⅰ:. Geophysical Prospecting, 1996, 44(5), 819-842.
    [48] Vinje V, Astebol K, Iversen E. 3-D ray modeling by wavefront construction in open models. Geophysics, 1999, 64(6):1912-1919.
    [49] Lambare G, Lucio P S, Hanyga A. Two-dimensional multi-valued traveltime and amplitude maps by uniform sampling of ray field. Geophys J Int, 1996, 125: 584-498.
    [50] Moser T J. Shortest path calculation of seismic rays. Geophysics, 1991, 56(1): 59-67.
    [51] Velis D R, Ulrych T J. Simulated annealing ray tracing in complex three-dimensional media. Geophys J Int, 2001, 145(2):447-459.
    [52] Sadeghi H, Suzuki S, Takenaka H. A two-point, three-dimensional seismic ray tracing using genetic algorithms. Physics of the Earth and Planetary Interiors, 1999, 113:355-365.
    [53] 王华忠,方正茂,徐兆涛等.地震波旅行时计算.石油地球物理勘探,1999,34(2):155-163.
    [54] Podvin P, Lecomte I. Finite-difference computation of traveltimes in very contrasted models: A massively parallel approach and its associated tools. Geophys J Int, 1991, 105(1): 271-284.
    [55] Qin Fuhao, Luo Yi, Olsen K B, et al. Finite-difference solution of the eikonal equation along expanding wavefronts. Geophysics, 1992, 57(3):478-487.
    [56] Schneider W A, Jr, Ranzinger K A.A dynamic programming approach to first arrival traveltime computation in media with arbitrarily distributed velocities. Geophysics, 1992, 57(1):39-50.
    [56] Van Trier J, Symes W. Upwind finite-difference calculation of traveltimes. Geophysics, 1991, 56(6):812-821.
    [58] Asakawa E, Kawanaka T. Seismic ray tracing using linear traveltime interpolation. Geophysical Prospecting, 1993, 41 (1):99-111.
    [59] 张霖斌,姚振兴,纪晨.地震初至波走时的有限差分计算.地球物理学进展,1996,11(4):47-52.
    [60] 赵改善,郝守玲,杨尔皓.基于旅行时线性插值的地震射线追踪算法.石油物探,1998:37(2):14-24.
    [61] 张赛民,周竹生,陈灵君等.对旅行时进行抛物型插值的地震射线追踪方法.地球物理学进展,2007,22(1):43-48.
    [62] Sethian, J A, Popovici A M. 3-D traveltime computation using the fast marching method. Geophysics, 1999, 64(2):516-523.
    [63] Alkhalifah T, Fomel S. Implementing the fast marching eikonal solver: spherical versus Cartesian coordinates. Geophysical Prospecting, 2001, 49(2): 165-178.
    [64] Rawlinson N, Sambridge M. Wave front evolution in strongly heterogeneous layered media using the fast marching method. Geophys J Int, 2004, 156(3):631-647.
    [65] Sava P, Formel S. 3-D traveltime computation using Huygens wavefront tracing. Geophysics, 2001, 66(3):883-889.
    [66] Coman R, Gajewski D. Traveltime computation by wavefront-orientated ray tracing, Geophysical Prospecting, 2005, 53(1): 23-36.
    [67] Bulant P, Klimes L. Interpolation of ray theory traveltimes within ray cells. Geophysical Journal Intemational, 1999, 139(2): 273-282.
    [68] Vanelle C, Gajewski D. Second-order interpolation of traveltimes. Geophysical Prospecting, 2002, 50(1): 73-83.
    [69] Vanelle C, Gajewski D. Determination of geometrical spreading from traveltimes. Journal of Applied Geophysics, 2003, 54: 391-400.
    [70] Vanelle C, Dettmer J, Gajewski D. Second-order interpolation of later-arrival traveltimes. Geophysical Prospecting, 2006, 54(2): 167-176.
    [71] 张钋,杨长春,李幼铭.三维多值走时地震波场重建及格林函数计算,地球物理学报,2000,43(2):241-250.
    [72] Geoltrain S, Brac J. Can we image complex structures with first-arrival traveltime? Geophysics, 1993, 58(4): 564-575.
    [73] Audebert F, Nichols D, Rekdal T, et al. Imaging complex geologic structure with single-arrival Kirchhoff prestack depth migration. Geophysics, 1997, 62(5): 1533-1543.
    [74] 徐升,Gilles Lambare.复杂介质下保真振幅Kirchhoff深度偏移.地球物理学报,2006,49(5):1431-1444.
    [75] Fischer R, Lees J M. Shortest path ray tracing with sparse graphs. Geophysics, 1993, 58(7): 987-996.
    [76] Kilmes L, Kvasnicka M. 3-D network ray tracing. Geophys J Int, 1994, 116 (3): 726-738.
    [77] 刘洪,孟繁林,李幼铭.计算最小走时和射线路径的界面网全局方法.地球物理学报,1995,38(6):823-832.
    [78] 许琨,吴律,王妙月.改进Moser法射线追踪.地球物理学进展,1998,13(4):60-66.
    [79] 王辉,常旭.基于图形结构的三维射线追踪方法.地球物理学报,2000,43(4):534-541.
    [80] Harm J A. Van Avendonk. Hybrid shortest path and ray bending method for traveltime and raypath calculations. Geophysics, 2001, 66(2): 648-653.
    [81] 卞爱飞,於文辉.三维最短路径法射线追踪及改进.天然气工业,2006,26(5):43-45.
    [82] 赵爱华,张中杰,王光杰等.非均匀介质中地震波走时与射线路径快速计算技术.地震学报,2000,22(2):151-157.
    [83] 张建中,陈世军,徐初伟.动态网.络最短路径射线追踪.地球物理学报,2004,47(5):899-904.
    [84] 张美根,程冰洁,李小凡等.一种最短路径射线追踪的快速算法.地球物理学报,2006,49(5):1467-1474.
    [85] Cerveny V. Synthetic body-wave seismograms for laterally varying layered structures by the Gaussian beam method. Geophys J Roy Astr Soc, 1983, 73: 389-426.
    [86] Chapman C H. Ray theory and its extensions: WKBJ and Maslov seismograms. J Geophs, 1985, 58: 27-43.
    [87] Iversen E. Reformulated kinematic and dynamic ray tracing systems for arbitrarily anistropic media. Stud Geophys Geod, 2004, 48, 1-20.
    [88] Psencik I, Farra V. First-order ray tracing for qP waves in inhomogeneous, weakly anisotropic media. Geophysics, 2005, 70(6): D65-D75.
    [89] 赵爱华,张美根,丁志峰.横向各向同性介质中地震波走时模拟.地球物理学报,2006,49(6):1762-1769.
    [90] Chapman C H, Keers H. Application of the Maslov seismogram method in three dimensions. Stud Geophys Geod, 2002, 46: 615-649.
    [91] 李瑞忠,杨长春,陈辉国.高斯束方法及其应用.地球物理学进展,2006,2l(3):739-745.
    [92] Bucha V. Ray tracing Computations in the smoothed SEG/EAGE Salt Model. SEG Expanded Abstracts, 2004, 1861-1864.
    [93] Ruger A, Hale D. Meshing for velocity modeling and ray tracing in complex velocity fields. Geophysics, 2006, 71(1): U1-U6.
    [94] 熊英,胡于进.基于映射法和Delaunay方法的曲面三角网格划分算法.计算机辅助设计与图形学学报,2002,14(1):56-60.
    [95] 柯映林,周儒荣.实现3D离散点优化三角划分的三维算法.计算机辅助设计与图形学学报,1994,6(4):241-248.
    [96] 孟宪海,蔡强,李吉刚等.面向四面体网格生成的曲面Delaunay三角化算法.工程图学学报,2006,(1):76-81.
    [97] 刘洪,高红伟,李幼铭等.三维复杂地质模型剖分及显示.见陈颙等主编,寸丹集—庆祝刘光鼎院士工作50周年学术论文集,科学出版社,1998,196-205.
    [98] 徐青,常歌,杨力.基于自适应分块的TIN三角网建立算法.中国图象图形学报,2000,5A(6):461-465.
    [99] 胡金星,潘懋,马照亭等.高效构建Delaunay三角网数字地形模型算法研究.北京大学学报(自然科学版),2003,39(5):736-741.
    [100] 何俊,戴浩,谢永强等.一种改进的快速Delaunay三角剖分算法.系统仿真学报,2006,18(11):3055-3057.
    [101] 徐永安,杨钦,谭建荣等.二维任意域约束Delaunay三角化的实现.工程图学学报,1999,(1):51-55
    [102] 杨钦.限定Delaunay三角剖分[博士学位论文].北京:北京航空航天大学,2001.
    [103] 徐华,武强.复杂地质体中多值面的网格生成算法.计算机辅助设计与图形学学报,2002,14(7):609-612.
    [104] 蔡强,杨钦,陈其明.地质结构重叠域的限定Delaunay三角剖分研究.计算机辅助设计与图形学学报,2004,16.(6):766-771.
    [105] 崔汉国,胡瑞安,金端峰等.三维点集Delaunay三角剖分的自动生成与修改算法.工程图学学报,1995,(2):1-7.
    [106] 陈学工,潘懋.空间散乱点集Delaunay四面体剖分切割算法.计算机辅助设计与图形学学报,2002,14(1):93-95.
    [107] 唐泽圣.三维数据场可视化.北京:清华大学出版社,1999.
    [108] 王靖波,潘懋,张绪定.基于Kriging方法的空间散乱点插值.计算机辅助设计与图形学学报,1999,11(6):525-529.
    [109] 吴宗敏.函数的径向基表示.数学进展,1998,27(3):202-208.
    [110] 于秋则,曹矩,柳健等.基于紧支撑径向基函数与共辘梯度法的大规模散乱数据快速曲面插值.电子与信息学报,2005,27(2):298-301.
    [111] 杨彦军,陆正元,姚菊莲等.利用径向基函数改进算法实现函数逼近.桂林工学院学报,2006,26(1):136-139.
    [112] 刘国峰,孟小红,张颖.基于Delunay剖分和高斯小波函数的地球物理数据规格化.工程地球物理学报,2005,2(6):403-407.
    [113] Braun J, Sambridge M. A numerical method for solving partial differential equations on highly irregular evolving grids. Nature, 1995, 376: 655-658.
    [114] Lindenbeck C H, Ebert H D, Ulmer H, et al. TRICUT: a program to clip triangle meshes using the rapid and triangle libraries and the visualization toolkit. Computers & Geosciences, 2002, 28(7): 841-850.
    [115] 花卫华,邓伟萍,刘修国等.一种改进的不规则三角网格曲面切割算法.地球科学,2006,3l(5):619-623.
    [116] 陈国良,三维地质断层结构模型构建及切割分析技术研究[硕士学位论文].武汉:中国地质大学(武汉),2006.
    [117] 曹代勇,王占刚.三维地质模型可视化中直接三维交互的实现.中国矿业大学学报,2004,33(4):384-387.
    [118] 王志宏,陈应显.基于三维可视化矿床模型的断层整体插值方法.煤炭学报,2003,28(6):569-572.
    [119] 杨耀忠.内部被多条断层切割的复杂断块油藏地质建模研究.科技通报,2003,19(3):196-200.
    [120] 刘进,李绍虎.断层的三维可视化建模研究.吉林大学学报(地球科学版),2004,34(S1):36-39.
    [121] 王信国,曹代勇.矿山断层构造三维动态建模方法探讨.采矿技术,2005,5(3):20-21
    [122] 陈学习,吴立新,车德福等.基于钻孔数据的含断层地质体三维建模方法.煤田地质与勘探,2005,33(5):5-8.
    [123] 刘修国,陈国良,候卫生等.基于线框架模型的三维复杂地质体建模方法.地球科学,2006,31(5):668-672.
    [124] 陈国良,朱良峰,刘修国.三维地质断层结构模型的构建技术及方法.信阳师范学院学报(自然科学版),2007,20(2):248-252.
    [125] 韩王发等编著.地质学基础.北京:地质出版社,1984.
    [126] 毛小平,黄延祜,吴冲龙.体元结构模型在三维地震模型正演模拟研究中的应用.地球物理学报,1998,41(6):833-840.
    [127] 徐涛.三维复杂介质的块状建模和快速射线追踪[博士学位论文].合肥,中国科技大学,2004.
    [128] 蒋先艺.基于二维与三维复杂结构模型正演的地震数据采集设计方法研究[博士学位论文].成都,成都理工大学,2003.
    [129] Mallet J L, Chuck S, Wolfgang V. Computation of smooth second derivatives on irregular triangulated surfaces. SEG Expanded Abstracts, 1997, 1715-1718.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700