侧风对于自然通风逆流湿式冷却塔传热传质影响机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自然通风逆流湿式冷却塔作为有效的冷却设备,广泛用于电站热力系统循环水的冷却,其冷却性能直接影响电站冷端系统的安全经济高效运行。冷却塔内气-水两相间复杂的传热传质极易受环境空气温度、湿度及侧风的影响。环境侧风可破坏无侧风时塔内轴对称的空气动力场,引起冷却塔进风口风速周向分布不均,弱化冷却塔传热传质,对电站热力系统的高效节能运行产生不利影响。冷却塔传热传质区由配水区、填料区和雨区组成,因各区在塔内的位置及其结构的不同,侧风对各区传热传质有着不同的影响机理。为明确环境侧风对冷却塔传热传质的影响机制,以更为有效地提高冷却塔冷却性能,有必要针对环境侧风对塔内各区传热传质的影响机理进行深入地系统研究。
     本文建立了侧风条件下自然通风逆流湿式冷却塔传热传质分析的三维数值计算模型,对侧风条件下冷却塔空气动力场及塔内气.水两相间的传热传质进行了三维数值计算,研究了侧风对冷却塔各区传热传质及其冷却性能的影响机理,以及侧风条件下导风板、十字隔墙等控风方案的作用机理及其耦合。并基于冷却塔的热态模型试验和现场运行试验,对所建三维数值计算模型进行了验证,为侧风下冷却塔冷却性能评价理论模型的建立奠定了基础。主要研究工作如下:
     (1)侧风条件下,冷却塔气-水两相间传热传质数学模型的完善。基于塔内气-水两相间传热传质的基本原理,分析了气-水间对流传热和对流传质的类似性,指出了冷却塔传热传质传统数学模型的不足,其中一维模型和二维模型无法考虑环境侧风的影响,已有三维模型采用水滴代替水膜近似模拟填料区传热传质,降低了侧风下冷却塔传热传质性能计算分析的准确性。本文修正了冷却塔内空气和水物性参数的计算方法,充分考虑了侧风条件下塔内空气和水两相温度、速度、含湿量等参数的三维分布对局部传热传质的影响,在侧风条件下引入了修正的国Le_f因子关联式实现了填料区空气和水膜间对流传热系数和对流传质系数计算的三维关联,参考离散相模型计算了空气和水滴两相间的对流传热系数和对流传质系数,在侧风条件下建立了完善的塔内气-水两相间传热传质的三维数学模型,为研究侧风对冷却塔传热传质的影响机制奠定了理论基础。
     (2)侧风条件下,自然通风逆流湿式冷却塔传热传质分析三维数值计算模型的建立。结合侧风条件下塔内气-水两相间传热传质的三维数学模型,采用标准κ-ε湍流模式和标准壁面函数法分别对空气运动控制方程进行湍流封闭和近壁区处理,建立了侧风条件下冷却塔传热传质分析的三维数值计算模型。结合实测侧风工况,验证了所建三维数值计算模型的正确性,对计算结果进行了网格独立性的考核,得到了与网格无关的数值解,研究了侧风廓线指数和雨滴当量直径等关键参数对计算结果的影响,结果表明所建三维数值计算模型可准确分析研究环境侧风对自然通风逆流湿式冷却塔传热传质的影响机制。
     (3)环境侧风对冷却塔传热传质影响机理的研究。结合实测侧风工况,从数值计算的角度研究了侧风对冷却塔雨区横截面空气动力场、纵剖面空气动力场的影响,引入了横向通风量、纵向通风量和总体进风量等概念,为分析环境侧风对冷却塔各区传热传质的影响机理创造了理论条件。
     (4)环境侧风对于冷却塔进风口空气动力场影响机理的研究。由环境侧风对进风口径向压力梯度和径向进风风速周向分布的影响,分析研究了横向通风量出现的原因和纵向通风量降低的机理。
     (5)侧风条件下,导风板控风方案对冷却塔进风口空气动力场及塔内各区传热传质影响机理的研究。结合实验数据,从数值计算的角度研究了导风板对冷却塔各区平均传热系数和平均传质系数、各区冷却水温降及冷却水总温降等性能参数的影响。指出导风板可有效改善冷却塔进风口空气动力场,实现侧风下填料区传热传质的强化,从而可在侧风条件下有效提高冷却塔总体冷却性能。
     (6)侧风条件下,雨区十字隔墙对冷却塔各区传热传质影响机理的研究。结合实验数据,从数值计算的角度研究了不同形式的十字隔墙,在不同风速的外界侧风作用下,在不同的安装位置时,对于塔内各区传热传质的影响机理,获得了最佳的十字隔墙安装位置与最佳的十字隔墙形状。
     (7)侧风条件下,导风板与十字隔墙两种控风方案对冷却塔冷却性能耦合作用的研究。结合实验数据,从数值计算角度,分析了导风板和十字隔墙对冷却塔冷却性能的耦合作用:对于带十字隔墙的冷却塔,导风板可实现冷却塔总体冷却性能的强化;对于已安装导风板的湿式冷却塔,间隙十字隔墙对冷却塔总体冷却性能的影响与无导风板时的情况基本近似。
     (8)侧风作用下湿式冷却塔的热态模型实验研究和现场运行实验研究。通过实验室冷却塔的热态模型试验,在无导风板、有导风板、无十字隔墙、有十字隔墙、导风板与十字隔墙并存、十字隔墙布置方式和形状变化、进塔水量变化和进塔水温变化等不同条件下,分析了侧风对模型塔冷却性能的影响规律,并与所建三维数值计算模型针对实型塔的相关数值计算分析进行了对比,验证了侧风条件下冷却塔冷却性能相关数值计算分析的正确性。通过已采用导风板冷却塔的现场试验和数值计算分析,进一步验证了所建湿式冷却塔三维数值计算模型的正确性。对比相同气象条件下运行的无导风板冷却塔现场试验,进风口进风相对偏离度的实验数据表明侧风条件下导风板控风方案可实现冷却塔进风口空气动力场的优化。
     (9)侧风条件下,自然通风逆流湿式冷却塔冷却性能评价理论模型的建立。分析了冷却塔常规设计和性能评价方法,指出常规方法未考虑环境侧风影响。研究了侧风条件下冷却塔冷却数、冷却特性数、当量通风量以及总体阻力系数等的确定方法,并基于形体阻力的概念,分析了冷却塔各部分阻力系数,提出了与侧风影响下冷却塔空气动力场结构有关的冷却塔流场结构阻力系数,建立侧风条件下冷却塔冷却性能评价的理论模型,给出了性能评价指标,实现了相同气象条件下运行的冷却塔冷却性能的横向比较,并结合工程实例进行了性能评价。
     本文的研究结论,阐明了环境侧风对大型自然通风逆流湿式冷却塔配水区、填料区和雨区等各区传热传质的作用机理,为进一步在侧风条件下强化冷却塔内气-水两相间的传热传质、提高自然通风逆流湿式冷却塔的冷却性能奠定了理论基础,并为侧风条件下自然通风逆流湿式冷却塔冷却性能的科学评价提供了一个新方法。
As an effective cooling equipment, natural draft wet cooling tower (NDWCT) is used widely to cool circulating water for power plant thermodynamic system, and has a direct and important impact on the safety, economy and effectiveness of power plant cold end system. The complex air-water heat and mass transfer is subject to ambience factors such as ambient dry air temperature, relative humidity and ambient crosswind. Crosswind can destroy the axisymmetrical aerodynamic field in NDWCT at windless ambience, and would cause the asymmetric circumferential distribution of air velocity around tower air inlet, so as to deteriorate NDWCT heat and mass transfer, and cause unfavorable impact on the high economical run of power plant thermodynamic system. The heat and mass transfer zone of NDWCT is composed of spray zone, fill zone and rain zone. The impact mechanism of crosswind on each zone air-water heat and mass transfer is different from each other for differences in location and structure. To clarify the effect mechanism of crosswind on NDWCT air-water heat and mass transfer and improve NDWCT cooling performance effectively, it is very necessary to probe into the impact mechanism of crosswind on the heat and mass transfer in each zone systematically.
     The three-dimensional (3D) numerical computation model for NDWCT was established here to carry out the 3D numerical analyses for NDWCT based on CFD code FLUENT. The aerodynamic field and the intensity of air-water heat and mass transfer in NDWCT were analyzed numerically under crosswind so as to investigate the effect mechanism of crosswind on the heat and mass transfer in each zone and the total cooling performance of NDWCT. The heat and mass transfer mechanism in each zone was also studied when wind-control scheme was adopted, such as air-leading plate, cross-wall, etc. The thermal-state model experiment and field experiment were carried out for NDWCT to validate the established 3D numerical computation model, and also provide field experiment data for the establishment of NDWCT cooling performance evaluation method under crosswind conditions. Then the main research efforts are as follow:
     (1) Establishment of the perfect air-water heat and mass transfer mathematical model for NDWCT. Based on the fundamentals of air-water heat and mass transfer, the similarity between air-water convective heat transfer and convective mass transfer was analyzed, and the shortcomings of traditional heat and mass transfer mathematical model for NDWCT were also discussed. Both the traditional one-dimensional (1D) model and two-dimensional (2D) model can not consider the impact of ambience crosswind. The traditional 3D model substituted water droplet for water film in fill zone, and then debase the accuracy of computation results under different crosswind conditions. This paper corrected the computation method of moist air and water physical parameters for NDWCT, considered fully the effect of the 3D distribution of air and water parameters such as air temperature, air velocity, air moisture, water temperature and water drop velocity, introduced the Lewis factor Le_f to realize the 3D correlation between air-water convective heat transfer coefficient and convective mass transfer coefficient in fill zone, computed the convective heat transfer coefficient and mass transfer coefficient between moist air and water droplet in spray zone and rain zone, and then established the perfect 3D mathematical model for NDWCT air-water heat and mass transfer under crosswind conditions, which provided theoretical fundamentals for the mechanism research of crosswind impact on NDWCT air-water heat and mass transfer.
     (2) Establishment of the 3D numerical computation model for NDWCT heat and mass transfer analyses under crosswind conditions. Based on the above 3D air-water heat and mass transfer mathematical model under crosswind conditions, the 3D numerical computation model for NDWCT was established. The standard k-e turbulence model and wall function were adopted to enclose the 3D turbulence governing equations and treat the wall boundary conditions for air flow, respectively. Referring to field experiment data, the validity of the established 3D numerical computation model for NDWCT was validated. To make relevant analyses about crosswind impact have universal significance, the grid-independence check for numerical computation result was carried out to get mesh-independent solution, and the effect of key parameters on numerical computation result were also investigated such as crosswind profile index, water droplet equivalent. The investigation shows that the established 3D numerical computation model for NDWCT heat and mass transfer analyses can study the impact mechanism of ambient crosswind on NDWCT heat and mass transfer.
     (3) Research of the impact mechanism of ambient crosswind on NDWCT air-water heat and mass transfer. Referring to field experiment data, the impact mechanism of crosswind on NDWCT air dynamic field was investigated through numerical computation method. The introduction of some new concepts such as transverse air mass flowrate, longitudinal air mass flowrate and total air mass flowrate established theoretical analysis conditions for investigation about crosswind impact on heat and mass transfer in NDWCT each zone. Through the above analyses, it can be seen that under low speed crosswind, fill zone is the main heat and mass transfer zone of NDWCT, and the longitudinal air mass flowrate decreases rapidly with the increase of crosswind speed and reduces the heat and mass transfer intensity in fill zone. High speed crosswind increases transverse air mass flowrate and total air mass flowrate greatly so as to enhance the intensity of rain zone heat and mass transfer and make rain zone contribute greatly to the total cooling performance. The heat and mass transfer in spray zone is less sensitive to ambient crosswind than fill zone and rain zone for the synthesized effect of heat and mass transfer coefficients and drive forces. The impact of ambient crosswind on NDWCT total cooling performance is the synthesized impact of crosswind on each heat and mass transfer zone. From computation analyses, it can be known that ambient crosswind causes unfavorable effect on NDWCT total cooling performance. With the increase of crosswind speed, the total water temperature drop decreases firstly and then increases. Under different running conditions, the impact mechanism of crosswind on cooling tower cooling performance was investigated further. The results show that the impact trends of crosswind on NDWCT total cooling performance are similar under different running conditions.
     (4) Research of the impact mechanism of crosswind on the aerodynamic field at NDWCT air inlet. From the crosswind impact on the circumferential distribution of radial pressure gradient and radial air velocity at NDWCT air inlet, the reason why longitudinal air mass flowrate reduces and the transverse air mass flowrate increase increases was studied. Based on the crosswind impact on the circumferential distribution of air radial inflow velocity at air inlet, the concept of air inlet air inflow relative deviation degree was presented to measure the impact of crosswind on the aerodynamic field at NDWCT air inlet and on the relevant air mass flowrate quantitatively. From relevant numerical computation analyses, it can be known that under crosswind impact, the larger air inflow relative deviation degree at NDWCT air inlet make the circumferential of air radial inflow velocity more asymmetric at NDWCT air inlet, and then make the transverse air mass flowrate larger, and result in the reduction of the longitudinal air mass flowrate. Thus the impact mechanism of crosswind on the heat and mass transfer in NDWCT fill zone and spray zone was revealed fundamentally from the above relevant analyses.
     (5) Research of the effect mechanism of air-leading plate scheme on NDWCT air inlet aerodynamic field and its cooling performance under crosswind conditions. Referring to field experiment data, The numerical computation method was adopted to investigate the effect of air-leading plate scheme on NDWCT longitudinal air mass flowrate, transverse air mass flowrate, total air mass flowrate, air inlet air inflow relative deviation degree, each zone heat and mass transfer characteristics and total water temperature drop etc. The above analyses point out that air-leading plates can improve the aerodynamic field around NDWCT air inlet, decrease the air inflow relative deviation degree, reduce the transverse air mass flowrate, enhance the longitudinal air mass flowrate, intensify the heat and mass transfer in fill zone under crosswind conditions, so as to improve the total cooling performance of NDWCT effectively under crosswind conditions.
     (6) Research of the effect mechanism of cross-wall in rain zone on NDWCT cooling performance. Referring to field experiment data, the numerical computation method was adopted to investigate the effect mechanism of different type cross-wall, at different installation position, on NDWCT cooling performance under crosswind conditions. The optimum cross-wall installation position and the optimum cross-wall form were given through the above investigation. The above analyses denotes that under low speed crosswind conditions, cross-wall can intensify each zone heat and mass transfer and improve NDWCT cooling performance. Under high speed crosswind, cross-wall causes unfavorable effect on rain zone heat and mass transfer. When the angle between crosswind direction and the windward first wall plate of cross-wallθ_(cw) is 0°, the cross-wall can improve the total cooling performance of NDWCT under high speed crosswind. Whenθ_(cw) is 45°, the total cooling performance of NDWCT decreases under high speed crosswind, but the gab-cross-wall can alleviate the unfavorable effect of no-gab-cross-wall. So at area with high year-average ambient crosswind speed, the gab-cross-wall should be adopted to alleviate the unfavorable effect of no-gab-cross-wall for variable crosswind directions, and the windward first wall plate of cross wall should be parallel to the year-average ambient crosswind direction as much as possible.
     (7) Research of the synthesized effect of air-leading plates and cross-wall on NDWCT cooling performance under crosswind conditions. Based on field experiment data, the synthesized effect of air-leading plates and cross-wall was analyzed from numerical computation results. For NDWCT with gab-cross-wall, air-leading plates can intensify the total cooling performance of NDWCT. For NDWCT with air-leading plates, the effect of gab-cross-wall on the total cooling performance of NDWCT is similar to the situations for NDWCT without air-leading plates.
     (8) Thermal state model experiment research and field experiment research for NDWCT under crosswind conditions. The impact trends of crosswind on the cooling performance of thermal state model tower under different conditions are compared with relevant trends of real cooling tower numerical computation analyses to verify the validity of relevant numerical computation analyses of cooling tower under crosswind conditions. Through field experiment and numerical analyses for NDWCT with air-leading plates, the validity of the above 3D numerical computation model NDWCT is validated further. Compared with field experiment for cooling tower without air-leading plates under same ambience condition, the experiment for air inflow relevant deviation degree shows that the aerodynamic field of cooling tower with air-leading plates is optimized by air-leading plates.
     (9) Establishment of NDWCT cooling performance evaluation theoretical model under crosswind conditions. The conventional performance evaluation methods for NDWCT were analyzed, which could not evaluate NDWCT cooling performance correctly under crosswind conditions. The definition methods for NDWCT cooling number, cooling characteristic number, equivalent air mass flowrate and total resistance coefficient were investigated under crosswind conditions. Based on the concept of form resistance, the resistance coefficient of NDWCT was analyzed for each part separately, and the flow field structure resistance coefficient of NDWCT was presented which was relevant to the aerodynamic field of NDWCT under crosswind condition. And then the cooling performance evaluation theoretical model for NDWCT under crosswind conditions was established based on the above analyses, and the performance evaluation index was also presented to realize the NDWCT performance evaluation under same ambience conditions. Referring to field measured data and DCS measured data for two neighbor NDWCTs, the cooling performance evaluation theoretical model for NDWCT was used and examined under different conditions.
     These conclusions clarify the impact mechanism of ambient crosswind on the heat and mass transfer performance in spray zone, fill zone and rain zone of large-scale NDWCT, may provide theoretical foundation for further intensifying NDWCT air-water heat and mass transfer and improving NDWCT cooling performance under ambient crosswind conditions, and also present a new method for NDWCT scientific cooling performance evaluation under ambient crosswind conditions.
引文
[1]江宁,曹祖庆.影响汽轮机凝汽器真空主要因素作用分析[J].热力透平,2007,36(4):207-211.
    [2]王咏虹,王俊有.凝汽器真空度低的原因分析及节能改造[J].电力科学与工程,2008,24(2):76-78.
    [3]李秀云,林万超.冷却塔的节能潜力分析[J].中国电力,1997,10:34-36.
    [4]Al-Waked R,Behnia M.CFD simulation of wet cooling towers[J].Applied Thermal Engineering,2006,26(4):382-395.
    [5]Gao M,Sun F Z,Wang K,et al.Experimental research of heat transfer performance on natural draft counter flow wet cooling tower under cross-wind conditions[J].International Journal of Thermal Sciences,2008,47(7):935-941.
    [6]Williamson N,Armfield S,Behnia M.Numerical simulation of flow in a natural draft wet cooling tower-the effect of radial thermo-fluid fields[J].Applied Thermal Enginering,2008,28(2-3):178-189.
    [7]Perry D,Nuttcr D E,Hale A.Liquid distribution for optimum packing performance[J].Chemical Engineering Progress,1990,86(1):30-35.
    [8]Kranc S C.Performance of counter-flow cooling towers with structured packings and mal-distributcd water flow[J].Numerical Heat Transfer,1993,23(1):115-127.
    [9]Smrekar J,Oman J,Sirok B.Improving the efficiency of natural draft cooling towers[J].Energy Conversion and Management,2006,47(9-10):1086-1100.
    [10]Bedekar S V,Nithiarasu P,Seetharamu K N.Experimental investigation of the performance of a counter-flow,packed-bed mechanical cooling tower[J].Energy(Oxford),1998,23(11):943-947.
    [11]Kloppers J C,Kr(o|¨)ger D G.Loss coefficient correlation for wet-cooling tower fills[J].Applied Thermal Engineering,2003,23(17):2201-2211.
    [12]Erens P J,Dreyer A A.Modeling of cooling tower splash pack[J].International Journal of Heat and Mass Transfer,1996,39(1):109-123.
    [13]Milosavljevic N,Heikkila P.A comprehensive approach to cooling tower design[J].Applied Thermal Engineering,2001,21(9):899-915.
    [14]Gharagheizi F,Hayati R,Fatemi S.Experimental study on the performance of mechanical cooling tower with two types of film packing[J].Energy Conversion and Management,2007,48(1):277-280.
    [15]Muangnoi T,Asvapoositkul W,Wongwises S.An exergy analysis on the performance ofa couterflow wet cooling tower[J].Applied Thermal Engineering,2007,27(5-6):910-917.
    [16]Khan J,Qureshi B A,Zubair S M.A comprehensive design and performance evaluation study of counter flow wet cooling towers[J].International Journal of Refrigeration,2004,27(8):914-923.
    [17]黄东涛,杜成琪.逆流式冷却塔填料及淋水分布的数值优化设计[J].应用力学学报,2000,17(1):102-109.
    [18]胡洪营,张旭,黄霞,等.环境工程原理[M].北京:中国高等教育出版社,2005:180-203.
    [19]Merkel F.Verdunstungsk(u|¨)hlung[J].VDI-Zeitchrift,1925,70:123-128.
    [20]Kr(o|¨)ger D G.Air-cooled Heat Exchangers and Cooling Towers[M].Tulsa,USA:PennWell Corporation,2004.
    [21]ASHRAE,Cooling towers,in:ASHRAE Systems and Equipment Handbook,2000,pp.36.1-36.19.
    [22]Jaber H,Webb RL.Design of cooling towers by the effectiveness-NTU method[J].ASME Journal of Heat Transfer,1989,111(4):837-843.
    [23]Poppe M,R(o|¨)gener H.Berechnung von Rückkühlwerken[J].VDIW(a|¨)rmeatlas,1991:Mi I-Mi 15.
    [24]Walker W H,Lewis W K,McAdams W H,et al.Principles of Chemical Engineering[M].3rd ed.New York:McGraw-Hill,1923.
    [25]Missimer J,Wilber K.Examination and comparison of cooling tower component heat transfer characteristics[C].IAHR Cooling Tower Workshop,Hungary,1982:12-15.
    [26]史佑吉主编.冷却塔运行与试验[M].北京:水利电力出版社,1990.
    [27]Khan J,Yaqub M,Zubair S M.Performance characteristics of counter flow wet cooling towers[J].Energy Conversion and Management,2003,44(13):2073-2091.
    [28]Mills A F.Heat and Mass Transfer[M].Boston:Richard D Irwin Inc,1995.
    [29]Kloppers J C.A critical evaluation and refinement of the performance of wet-cooling towers[D].Stellenbosch,South Africa:University of Stellenbosch,2003.
    [30]Webb R L.A unified theoretical treatment for thermal analysis of cooling towers,evaporative condensers,and fluid coolers[J].ASHRAE Trans,1984,90(2):398-415.
    [31]Webb R L,Villacres A.Algorithms for performance simulation of cooling towers,evaporative condensers,and fluid coolers[J].ASHRAE Trans,1984,90(2):416-458.
    [32]Braun J E,Klein S A,Mitchell J W.Effectiveness models for cooling towers and cooling coils[J].ASHRAE Trans,1989,95(2):167-174.
    [33]El-Dessouky H T A,AI-Haddad A,AI-Juwayhel F.A modified analysis of counter flow cooling towers[J].ASME Journal of Heat Transfer,1997,119(3):617-626.
    [34]Ren C Q.Corrections to the simple effectiveness-NTU method for counterflow cooling towers and packed bed liquid desiccant-air contact systems[J].International Journal of Heat and Mass Transfer,2008, 51(1-2): 237-245.
    
    [35] Jin G Y. Cai W J, Lu L, et al. A simplified modeling of mechanical cooling tower for control and optimization of HVAC systems[J]. Energy Conversion and Management, 2007, 48(2): 355-365.
    
    [36] Soylemez M S. On the optimum performance of forced draft counter flow cooling towers[J]. Energy Conversion and Management, 2004, 45(15-16): 2335-2341.
    
    [37] Halasz B. A general mathematical model of evaporative cooling devices[J]. Revue Generale De Thermique, 1998, 37(4): 245-255.
    
    [38] Halasz B . Application of a general non-dimensional mathematical model to cooling towers[J]. International Journal of Thermal Sciences, 1999, 38(1): 75-88.
    
    [39] Bosnjakovic F. Technische Thermodinamik[M]. Dresden: Theodor Steinkopf, 1965.
    
    [40] Baard T W. Performance characteristics of expanded metal cooling tower fill[D]. Stellenbosch, South Africa: University of Stellenbosch, 1998.
    
    [41] Kloppers J C, Kroger D G. 2005. The Lewis factor and its influence on the performance prediction of wet-cooling towers[J]. International Journal of Thermal Sciences, 2005, 44(9): 879-884.
    
    [42] Kloppers J C, Kroger D G. A critical investigation into the heat and mass transfer analysis of counterflow wet-cooling towers[J]. International Journal of Heat and Mass Transfer, 2005, 48(3-4): 765-777.
    
    [43] Muangnoi T, Asvapoositkul W, Wongwises S. Effects of inlet relative humidity and inlet temperature on the performance of counter flow wet cooling tower based on exergy analysis[J]. Energy Conversion and Management, 2008, 49(10): 2795-2800.
    
    [44] Qureshi B A, Zubair S M. Second-law-based performance evaluation of cooling towers and evaporative heat exchangers[J]. International Journal of Thermal Sciences, 2007, 46(2): 188-198.
    
    [45] 杨思文,金六一,等.高等工程热力学[M].北京:高等教育出版社,1988:52-91.
    
    [46]Bejan A. Advanced Engineering Thermodynamics[M]. 2nd ed. New York : John Wiley & Sons, 1997.
    
    [47] Simpson W M, Sherwood T K. Performance of small mechanical draft cooling towers[J]. American Society of Refrigerating Engineering, 1946, 52: 535-543, 574-576.
    
    [48] Goshayshi H R, Missenden J F. The investigation of cooling tower packing in various arran'gements[J]. Applied Thermal Engineering, 2000, 20: 69-80.
    
    [49] Lemouari, Boumaza M, Mujtaba I M. Thermal performances investigation of a wet cooling tower[J]. Applied Thermal Engineering, 2007, 27: 902-909.
    
    [50] Kelly N W, Swenson L K. Comparative performance of cooling tower packing arrangements[J]. Chemical Engineering Progress, 1956, 52: 263-268.
    [51] Goshayshi H R, Missenden J F, Tozer R. Cooling tower-an energy conservation resource[J]. Applied Thermal Engineering, 1999, 19: 1223-1235.
    
    [52] Naphon P. Study on the heat transfer characteristics of an evaporative cooling tower[J]. International Communications in Heat and Mass Transfer, 2005, 32(8): 1066-1074.
    
    [53] Mohiuddin A K M, Kant K. Knowledge base for the systematic design of wet cooling towers. Part I: Selection and tower characteristics[J]. InternationalJournal of Refrigeration, 1996, 19(1): 43-51.
    
    [54] Mohiuddin A K M, Kant K. Knowledge base for the systematic design of wet cooling towers. Part II: Fill and other design parameters[J]. International Journal of Refrigeration, 1996, 19(1): 52-60.
    
    [55] Fisenko S P, Petruchik A I, Solodukhin A D. Evaporative cooling of water in a natural draft cooling tower[J]. International Journal of Heat and Mass Transfer, 2002, 45(23): 4683-4694.
    
    [56] Fisenko S P, Brin A A, Petruchik A I. Evaporative cooling of water in a mechanical draft cooling tower[J]. International Journal of Heat and Mass Transfer, 2004, 47(1): 165-177.
    
    [57] Qi X N, Liu Z Y, Li D D. Performance characteristics of a shower cooling tower[J]. Energy Conversion and Management, 2007, 48(1): 193-203.
    
    [58] Qi X N, Liu Z Y. Further investigation on the performance of a shower cooling tower[J]. Energy Conversion and Management, 2008, 49(4): 570-577.
    
    [59] Heidarinejad G, Karami M, Delfani S . Numerical simulation of counter-flow wet-cooling towers[J]. International Journal of Refrigeration, In Press, Corrected Proof, Available online 18 October 2008.
    
    [60] Kloppers J C , Kroger D G . Influence of temperature inversions on wet-cooling tower performance[J]. Applied Thermal Engineering, 2005, 25(8-9): 1325-1336.
    
    [61] Lowe H J, Christie D G. Heat transfer and pressure drop data on cooling tower packings and model studies of the resistance of natural draught towers to airflow[C]. Proceedings of the International Heat Transfer Conference, Colorado, 1961: 933-950.
    
    [62]SirokB, Blagojevic B, Novak M, et al. Energy and mass transfer phenomena in natural draft cooling towers[J]. Heat Transfer Engineering, 2003, 24(3): 66-75.
    
    [63] Milosavljevic N, Heikkila P. A comprehensive approach to cooling tower design[J]. Applied Thermal Engineering, 2001, 21(9): 899-915.
    
    [64] (美)帕坦卡(Patankar S V)著,郭宽良译.传热和流体流动的数值方法[M].合肥:安徽科学技术出版社,1984.
    
    [65] Sutherland J W. Analysis of mechanical-draught counterflow air/water cooling towers[J]. ASME Journal of Heat Transfer Transactions,1983,105:576-583.
    [66]Norman W S.Absorption,Distillation and Cooling Towers[M].New York:Wiley,1962:219.
    [67]Benton D J.A Numerical Simulation of Heat Transfer in Evaporative Cooling Towers[R].Tennessee Valley Authority Report,WR 28-1-900-110,1983.
    [68]Brener A M,Bolgov N P,Sokolov N M,et al.Applications of methods of grid statistics in describing liquid distribution on stacked shelf packingm[J].Theoretical Foundations of Chemical Engineering,1981,15:53-58.
    [69]Albright M A.Packed tower distributors tested[J].Hydrocarbon Processing,1984,63:173-177.
    [70]Hock P J,Wesselingh J A,Zuiderweg F J.Small scale and large scale liquid maldistribution in packed columns[J].Chemical Engineering Research and Design,1986,64:431-449.
    [71]Zuiderweg F J,Hock P J,Lahm L.The effect of liquid distribution and redistribution of the separating efficiency of packed columns[C].International Chemical Engineering Symposium Series,1987,104:217-231.
    [72]Kranc S C.Radial profiles of deposition nozzles for high uniformity[J].Applied Mathematical Modeling,1986,10:429-432.
    [73]Marchot P,Toye D,Pelsser A M,et al.Liquid distribution images on structured packing by X-ray computed tomography[J].AIChEJournal,2001,47:1471-1476.
    [74]Kranc S C.Optimal spray patterns for counterflow cooling towers with structured packing[J].Applied Mathematical Modeling,2007,31(4):676-686.
    [75]Caytan Y.Validation of the two-dimensional numerical model 'STAR' developed for cooling tower design[C].Proceedings of the 3rd Cooling Tower Workshop,International Association for Hydraulic Research,Budapest,Hungary,1982.
    [76]Majumdar A K,Singhal A K,Spalding D B.VERA2D:Program for 2-D Analysis of Flow,Heat and Mass Transfer in Evaporative Cooling Towers-Volume I:Mathematical Formulation,Solution Procedure,and Applications[R].California:,EPRI CS-2923,1983.
    [77]Majumdar A K,Singhal A K,Spalding D B.Numerical modeling of wet cooling towers -Part 1:Mathematical and physical models[J].ASME Journal of Heat Transfer,1983,105(4):728-735.
    [78]毛献忠,陈允文,黄东涛.逆流式自然通风冷却塔流场及热质交换的数值模拟[J].计算物理,1994,11(4):385-392.
    [79]赵顺安,廖内平,徐铭.逆流式自然通风冷却塔二维数值模拟优化设计[J].水利学报,2003,10:1-8.
    [80] Hawlader M N A, Liu B M. Numerical study of the thermal-hydraulic performance of evaporative natural draft cooling towers[J]. Applied Thermal Engineering, 2002, 22(1): 41-59.
    
    [81] Yang X L, Sun F Z, Wang K, et al. Numerical Simulation of Flow Fields in A Natural Draft Wet-Cooling Tower[J]. Journal of Hydrodynamics, Ser. B, 2007, 19(6): 762-768
    
    [82] Williamson N, Behnia M, Armfield S. Comparison of a 2D axisymmetric CFD model of a natural draft wet cooling tower and a 1D model[J]. International Journal of Heat and Mass Transfer, 2008, 51( 9-10): 2227-2236.
    
    [83] Radosavljevic D. The numerical simulation of direct-contact natural draught cooling tower performance under the influence of cross-wind[D]. London, England: University of London, 1990.
    
    [84] Radosavljevic D, Spalding D B. Simultaneous prediction of internal and external aerodynamic and thermal flow fields of a natural-draft cooling tower in a cross-wind[C]. Proceedings of the 6th IAHR Cooling Tower Workshop, Pisa, 1988.
    
    [85] Razafindrakoto E, Denis C. N3S-AERO: a multidimensional model for numerical simulation o f flows incooling towers[C]. The 11th IAHR Cooling Tower Symposium, Cottbus, Germany, 1998: 1-12.
    
    [86] Fournier Y, Boyer V. Improvements to the N3S-AERO heat exchanger and cooling tower simulation code[C]. Proceedings of the 12th IARH Symposium in Cooling Tower and Heat Exchangers, UTS, Sydney, Australia, 11-14 November 2001.
    
    [87] Dreyer A, Oosthuizen P, Van staden M. The effect of wind on the performance of counterflow natural draught evaporative cooling towers[C]. The 1 lth IAHR Cooling Tower Symposium, Cottbus, Germany, 1998:1- 12.
    
    [88] Gao M, Sun F Z, Wang K, et al. Performance prediction of wet cooling tower using artificial neural network under cross-wind conditions[J]. International Journal of Thermal Sciences, 2009, 48(3): 583-589.
    
    [89] Qi X N, et al. Numerical simulation of shower cooling tower based on artificial neural network[J]. Energy Conversion and Management, 2008, 49(4): 724-732.
    
    [90] Hosoz M. Performance prediction of a cooling tower using artificial neural network[J]. Energy Conversion and Management, 2007, 48(4): 1349-1359.
    
    [91] British Standard 4485. Water cooling towers, Part 2: methods for performance testing[S]. British Standards Institution, 1988.
    
    [92] Cooling Tower Institute. CTI Code Tower, Standard specifications, acceptance test for water-cooling towers. Parti, Part II and Part III[S]. CTI Code ATC-105, Revised, February 1990.
    
    [93] Cooling Tower Institute. CTI Code Tower, Standard specifications, acceptance test code for water-coolingtowers,vol.I[S].CTICodeATC-105(97),Revised,February1997.
    [94]DL-T 1027-2006.工业冷却塔测试规程[S].中华人民共和国电力行业标准,2006.
    [95]CECS 118.冷却塔验收测试规程[S].中国工程建设标准化协会标准,2000.
    [96]赵振国.冷却塔[M].北京:中国水利水电出版社,1997.
    [97]赵振国,石金铃.横向风对冷却塔运行特性的影响[J].北京:水利学报,1985,11.
    [98]Caytan Y.An investigation of the performance of natural draft cooling towers under cross wind conditions,Performed using small scale heated models in a hydraulic channel[C].Proceedings of the 5th IAHR Cooling Tower Workshop,1980.
    [99]Henning H.Air flow conditions in a cooling tower and means of control[C].Proceedings of the 5th IAHR Cooling Tower Workshop,1980.
    [100]Ribier J G.Study of performances on site and on a model of large natural draught cooling towers[C].Proceedings of the 5th IAHR Cooling Tower Workshop,1980.
    [101]Du preez A F,Kr(o|¨)ger D G.Investigation into the influence of cross-wind in the performance of dry-cooling towers[C].The 8th Cooling Tower and Spraying Pond Symposium,1992.
    [102]Bourillot C..Effect of Wind on the Performance of a Natural Wet Cooling Tower[C].Proceedings of the 5th IAHR Cooling Tower Workshop,1980.
    [103]Madadnia J,Bojnordi M,Koosha H.Wind Effects on Performance of a Natural Draught Wet Cooling Tower,b) Influence of the Packing Design(Scaled-model)[C].The 12th IAHR Symposium in Cooling Tower and HeatExchangers,UTS,Sydney,Australia,2001:102-108.
    [104]高明.外界侧风对自然通风逆流湿式冷却塔传热传质性能影响的研究[D].济南:山东大学,2008.
    [105]Burger R.Modernise your cooling tower[J].Chemical Engineering Progress,1990,86:37-40.
    [106]Zhai Z,Fu S.Improving cooling efficiency of dry-cooling towers under cross-wind conditions by using wind-break methods[J].Applied Thermal Engineering,2006,26(10):1008-1017.
    [107]翟志强,朱克勤,符松.横向风对自然通风干式冷却塔空气流场影响的模型实验研究[J].实验力学,1997,12(2):306-311.
    [108]Al-Waked R,Behnia M.The Effect of Windbreak Walls on the Thermal Performance of Natural Draft Dry Cooling Towers[J].Heat Transfer Engineering,2005,26(8):50-62.
    [109]赵振国,石金玲,魏庆鼎,等.自然风对空冷塔的不利影响及其改善措施[J].应用科学学报,1998,3:112-120.
    [110]Moore F K.Dry cooling towers[J].Advanced Heat Transfer,1976,12:175.
    [111]Russell C M B,McChesney H R,Holder D W,et al.Cross wind and internal flow characteristics of dry cooling towers[J].Combustion,1978,49(11):20-24.
    [112]Leene J A.Draught reduction of hyperbolic natural draught cooling towers as a result of wind,in:Proc.4th Colloq.on Industrial aerodynamics,Part2,Fachhochschule Aachen,1980:71-82.
    [113]Buxmann J.Dry cooling tower characteristics effected by cooling circuit and the top shape of the tower[C].Proceedings of the 5th IAHR Cooling Tower Workshop,Monterey.EPRI,San Francisco,1986.
    [114]魏庆鼎,曹远漠.渭河电厂冷却塔群和厂房对冷却塔风荷载影响的风洞实验研究[J].电力建设,1991,13:
    [115]Wei Q D,Zhang B Y,Liu K Q,et al.A study of the unfavorable effects of wind on the cooling efficiency of dry cooling towers[J].Journal of Wind Engineering and Industrial Aerodynamics,1995:633-643.
    [116]杜向东.干式冷却塔风影响实验研究[D].北京:北京大学,1996.
    [117]翟志强,朱克勤,符松.横向风对自然通风干式冷却塔空气流场影响的模型实验研究[J].实验力学,1997,12(2):306-311.
    [118]翟志强,唐革风,符松,等.横向风对自然通风干式冷却塔运行性能影响的实验与数值研究[J].热力发电,1997,(3):3-7,31.
    [119]唐革风,苏铭德,符松.横向风影响下空冷塔内外流场的数值研究[J].空气动力学学报,1997,15(3):328-336.
    [120]翟志强,符松,朱克勤.横风下空冷塔单塔与双塔流场特性及相关改进方案的实验比较研究[J].空气动力学学报,1999,17(1):30-38.
    [121]Su M D,Tang G F,Fu S.Numerical simulation of fluid flow and thermal performance of a dry-cooling tower under cross wind condition[J].Journal of Wind Engineering and Industrial Aerodynamics,1999,79(3):289-306.
    [122]Fu S,Zhai Z.Numerical investigation of the adverse effect of wind on the heat transfer performance of two natural draft cooling towers in tandem arrangement[J].Aeta Mechanica Sinica,2001,17(1):24-34.
    [123]Du Preez A F.The influence of cross-winds on the performance of natural draft dry-cooling towers[D].SteUenbosch,South Africa:University of Stellenbosch,1992.
    [124]Du Preez A F,Kr(o|¨)ger D G.Effect of wind on performance of dry-cooling tower[J].Heat Recovery Systems&CHP,1993,13(2):139-146.
    [125]Du Preez A F,Kr(o|¨)ger D G.The effect of the heat exchanger arrangement and wind-break walls on the performance of natural draft dry-cooling towers subjected to cross-winds[J].Journal of Wind Engineering and Industrial Aerodynamics,1995,58:293-303.
    [126]Du Preez A F,Kr(o|¨)ger D G.Effect of the shape of the tower supports and walls on the performance of a dry-cooling tower subjected to cross winds[J].Heat Transfer Engineering,1995,16(2):42-49.
    [127]张晓东,郑永刚,王清照.冷却塔内外流场的数值分析[J].热能动力工程,2000,(1):52-55.
    [128]Al-Waked R,Behnia M.The performance of natural draft dry cooling towers under crosswind:CFD study[J].International Journal of Energy Research.2004,28(2):147-161.
    [129]Derksen D D,Bender T J,Bergstrom D J,et al.A study on the effects of wind on the air intake flow rate of a cooling tower:Part 1.Wind tunnel study[J].Journal of Wind Engineering and Industrial Aerodynamics,1996,64(1):47-59.
    [130]Derksen D D,Bender T J,Bergstrom D J,et al.A study on the effects of wind on the air intake flow rate of a cooling tower:Part 2.Wind wall study[J].Journal of Wind Engineering and Industrial Aerodynamics,1996,64(1):61-72.
    [131]Derksen D D,,Bender T J,Bergstrom D J,et al.A study on the effects of wind on the air intake flow rate of a cooling tower:Part 3.Numerical study[J].Journal of Wind Engineering and Industrial Aerodynamics,1996,64(1):73-88.
    [132]Al-Waked R,Behnia M..Enhancing performance of wet cooling towers[J].Energy Conversion and Management,2007,48(10):2638-2648.
    [133]Al-Waked R.Development of performance-improving structures for power station cooling towers[D].Sydney,Australia:University of New South Wales,2005.
    [134]连之伟.热质交换原理与设备[M].北京:中国建筑工业出版社,2001:11-45.
    [135]杨世铭,陶文铨.传热学[M].第三版.北京:高等教育出版社,1998:131-189.
    [136]Chilton T H,Colburn A P.Mass transfer(absorption) coefficients:prediction from data on heat transfer and fluid friction[J].Industrial & Engineering Chemical Research,1934,26:1183-1187.
    [137]Colburn A P.A method of correlating forced convection heat transfer data and comparison with fluid friction[J].Transactions of the AIChE,1993,29:174-180.
    [138]陈敏恒,丛德滋,方图南,等.化工原理(第二册)[M].第三版.北京:化学工业出版社,2006:8-22.
    [139]Lewis W K.The evaporation of a liquid into a gas[J].Transactions of the ASME,1922,44:325-340.
    [140]Lewis W K.The evaporation of a liquid into a gas-A correction[J].Mechanical Engineering,1933,55:567-573.
    [141]Dreyer A A.Analysis of evaporative coolers and condensers[D].Stellenbosch,South Africa:University of Stellenbosch,1988.
    [142]Bouriilot C.On the hypothesis of calculating the water flowrate evaporated in a wet cooling tower[R].EPRI Report CS-3144-SR,August 1983.
    [143]Grange J L.Calculating the evaporated water flow in a wet cooling tower[C].The 9th IAHR Cooling Tower and Spraying Pond Symposium.Brussels,Belgium:Von Karman Institute,September 1994.
    [144]FLUENT Incorporated.FLUENT user's guide v6.1[M].Lebanon:New Hampshire,2003.
    [145]胡三季,陈玉玲,刘廷祥,等.逆流式冷却塔不同高度的PVC淋水填料热力及阻力性能试验研究[J].吉林电力,2003,4:9-11.
    [146]王培红,贾俊颖,程懋华.水和水蒸汽性质的IAPWS-IF97计算模型[J].动力工程,2000,20(6):988-991.
    [147]吴燕玲,钟崴,童水光,等.IAPWS-IF97水和水蒸气性质计算方法的补充模型及应用[J].热力发电,2008,37(3).
    [148]冉鹏,张树芳,肖淼.基于IAPWS-IF97的水和水蒸气性质计算模型及实现[J].电力科学与工程,2005,2:41-43.
    [149]黄新元,徐夕仁,王乃华.热力发电厂课程设计[M].北京:中国电力出版社,2004.138-152.
    [150]The International Association for the Properties of Water and Steam.Release on the IAPWS industrial formulation 1997 for the Thermodynamic Properties of Water and Steam[R].Erlangen,Germany:IAPWS,1997.
    [151]沈维道,蒋智敏,童俊耕.工程热力学[M].第三版.北京:高等教育出版社,2007:341-361.
    [152]Oosthuizen P C.Performance characteristics of hybrid cooling towers[D].Stellenbosch,South Africa:University of Stellenbosch,1995.
    [153]陶文铨.数值传热学[M].第二版.西安:西安交通大学出版社,2005.
    [154]吴德铭,郜冶,著.实用计算流体力学基础[M].哈尔滨:哈尔滨工程大学出版社,2006.
    [155]Hinze J O.Turbulence[M].New York:McGraw-Hill Publishing Company,1975.
    [156]Launder B E,Spalding D B.Lectures in Mathematical Models of Turbulence[M].London:Academic Press,1972.
    [157]Henkes R A W M,van der Flugt F F,Hoogendoorn C J.Natural Convection Flow in a Square Cavity Calculated with Low-Reynolds-Number Turbulence Models[J].International Journal of Heat and Mass Transfer,1991,34:1543-1557.
    [158]Launder B E,Spalding D B.The Numerical Computation of Turbulent Flows[J].Computer Methods in Applied Mechanics and Engineering,1974,3:269-289.
    [159]赵振国,李志悌,石金铃,等.逆流式自然通风冷却塔通风阻力的研究[J].水动力学研究与进 展.1993(4).
    [160]姚增权.火电厂烟羽的传输与扩散[M].北京:中国电力出版社,2003,38-41.
    [161]张学镭,张明智,刘树华,等.冷却塔冷却性能的评价模型[J].汽轮机技术,2002,44(5):299-303.
    [162]郭江龙,张树芳,杨海生,等.冷却塔性能评价系统软件设计[J].电站辅机,2005,93(2):33-35.
    [1] Li Y, Zhang C and Zhu J 2006 Int. J. Nonlinear Sci. 7 357
    [2] Ning J G, Wang C and Ma T B 2006 . Int. J. Nonlinear Sci. 7 71
    [3] Su M D, Tang G F and Fu S 1999 J. Wind. Eng. Ind. Aerod. 79 289
    [4] Al-Waked R and Behnia M 2004 Int. J. Energ. Res. 28 147
    
    [5] Zhai Z and Fu S 2006 Appl. Therm. Eng. 26 1008
    
    [6] Hawlader M N A and Liu B M 2002 Appl. Therm. Eng. 22 41
    
    [7] Zhao S A, Liao N P and Xu M 2003 J. Hydraul. Eng. (in Chinese) 10 26
    
    [8] Al-Waked R and Behnia M 2006 Appl. Therm. Eng. 26 382
    
    [9] Zhao Z G 2001 Cooling Tower (Beijing: China Water Power Press)
    
    [10] Kloppers J C and Kroger D G 2005 T Int. J. Therm. Sci. 44 879
    
    [11] Shi Y J 1990 Operation and Experiments of Cooling Tower (Beijing: China Water Power Press)
    [12] Cheng Y H 2007 Research on Basic Performance and Influence of Wind of Natural Draft Counter-flow Wet Cooling Towers (Jinan, China: Shandong University)
    [1] Li Xiuyun, YanJunjie, Lin Wanchao. Study on thermo-economics diagnosis method and index evaluation system for the cold-end system in steam power unit[J]. Proceedings of the CSEE, 2001, 21(9): 94-99 (in Chinese).
    [2] Hawlader M N A, Liu B M. Numerical study of the thermal-hydraulic performance of evaporative natural draft cooling towers[J]. Applied Thermal Engineering, 2002, 22(1): 41-59.
    [3] Williamson N, Armfield S, Behnia M. Numerical simulation of flow in a natural draft wet cooling tower - The effect of radial thermofluid fields[J]. Applied Thermal Engineering, 2008, 28(2-3): 178-189.
    [4] Williamson N, Behnia M, Armfield, S. Comparison of a 2D axisymmetric CFD model of a natural draft wet cooling tower and a 1D model[J]. International Journal of Heat and Mass Transfer, 2008, 51(9-10): 2227-2236.
    [5] Zhao Y B, Sun F Z, W K. Three-dimensional numerical analyses of heat and mass transfer in a cooling tower[J]. Journal of Shandong University (Engineering Science), 2008, 38(5): 36-41.
    [6] Zhai Zhiqiang, Zhu Keqin, Fu Song. Model Experiment for the Influence of Cross-wind on the Air Flow Filed in Natural Draft Dry-Cooling Tower[J]. Journal of Experimental Mechanics, 1997, 12(2): 302-301(in Chinese).
    [7] Zhai Z, Fu S. Improving cooling efficiency of dry-cooling towers under cross-wind conditions by using wind-break methods[J]. Applied Thermal Engineering, 2006, 26(10): 1008-1017.
    [8]. Al-Waked R, Behnia M. The Effect of Windbreak Walls on the Thermal Performance of Natural Draft Dry Cooling Towers[J]. Heat Transfer Engineering, 2005, 26(8): 50-62.
    [9] Al-Waked R , Behnia M . Enhancing performance of wet cooling towers[J]. Energy Conversion and Management, 2007, 48(10): 2638-2648.
    [10] Su M D, Tang GF, Fu S. Numerical simulation of fluid flow and thermal performance of a dry-cooling tower under cross wind condition[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1999, 79(3): 289-306.
    [11] Zhao Zhenguo, Shi Jinling, Wei QingDing, Zhang Bo Yin. The Engineering Improvement for Weakening the Bad Effect of Natural Wind on the Dry Cooling Towers. Journal of Applied Sciences, 1998, 3: 112-120. (in Chinese)
    [12] Al-Waked R, Behnia M. CFD simulation of wet cooling towers[J]. Apply Thermal Engineering, 2006, 26(4): 382-395.
    [13] Zhao YB, Sun F Z, Gao M, et al. Three-dimensional numerical analysis of wet cooling tower[C]. The 2nd International Symposium on Nonlinear Dynamics, Shanghai, China, 2007, 10: 52-58.
    [14] Gao M, Sun F Z, Wang K, et al. Experimental Research of Heat Transfer Performance on Natural Draft Counter Flow Wet Cooling Tower Under Cross-Wind Conditions[J]. International Journal of Thermal Science, 2008, 47(7): 935-941.
    [15] Zhao Z G. Cooling tower. Chinese Water and Electricity Press; 1994 [in Chinese].
    [16]HuSanji, Chen Yuling, Liu Tingxiang, etal. Experimental Investigation of Thermodynamic and Resistance Performance about Different Heights PVC Transfer Packing in Counter-flow Cooling Tower[J]. Jilin Electric Power, 2003, 4(): 9-11.
    [17] Hu H Y, Zhang X, Huang, X, etc. Environmental Engineering Principle [M]. Beijing: Chinese High Education Press; 2005 [in Chinese].
    [18] Kloppers J C, Kroger D G. A critical investigation into the heat and mass transfer analysis of counterflow wet-cooling towers[J]. International Journal of Heat and Mass Transfer, 2005, 48(3-4): 765-777.
    [19] Kloppers J C, Kroger D G. The Lewis factor and its influence on the performance prediction of wet-cooling towers[J]. International Journal of Thermal Sciences, 2005, 44(9): 879-884.
    [20] FLUENT Incorporated. FLUENT user's guide v6. 1 [M]. Lebanon: New Hampshire, 2003.
    [21] Yao Zengquan. Transportation and Diffusion of Fire Power Plant Smoke and Plume[M]. Beijing: Chinese Electric Power Press; 2003 [in Chinese].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700