磁致伸缩直线位移传感器弹性波机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁致伸缩直线位移传感器是一种利用磁致伸缩效应及逆磁致伸缩效应实现位移测量的传感器。国内外该种传感器的研究大多集中于材料制备、基础材料理论、系统集成等方面,而对磁致伸缩直线位移传感器的基础理论研究尚处于起步阶段。
     本研究通过对电磁学、力学、磁固体力学、信号学、计算机仿真、数值分析、计算机控制等多学科相关知识进行综合应用,研究传感器中弹性波的产生机理;在非线性耦合理论框架下,利用有限元分析手段,解决多场耦合作用下的非线性问题;通过数值分析手段,结合实验研究,获得磁致伸缩线材上的磁场分布特性,建立激励源分布场与弹性波信号波形之间的关系。针对影响传感器性能的易磁化方向、固支波、磁致伸缩材料结构等问题进行理论研究和实验验证。研究对于提高传感器性能指标具有积极的意义。
     论文第一章介绍磁致伸缩直线位移传感器的研究背景,对比了国内外研究现状和研究热点,论述了本课题的研究内容和研究意义。
     论文第二章介绍与磁致伸缩直线位移传感器相关的基础理论知识和基本概念,对磁致伸缩直线位移传感器弹性波机理研究的问题进行了闸述,构建了弹性波相关理论模型,建立了激励磁场分布特性与磁致伸缩分布特性、应力场分布特性之间的关系。
     论文第三章对磁致伸缩直线位移传感器的关键部件,以及影响传感器的相关技术参量进行实验测试和相关理论的讨论。研究对激励源激励方式进行理论分析和实验测试;并通过计算机仿真及数值计算方法,获得线材内部的磁场分布数据;对检测系统的振荡现象进行分析讨论,对所采集信号进行了频谱分析,给出所采集信号的信号特征;对本文所使用线材的弹性波波速进行实验研究和数据测定。
     论文第四章构建了磁致伸缩直线位移传感器系统实验及评估平台,采用了实验研究确定的相关参数,将仿真计算所得的磁致伸缩线材内部的分布磁场数据,应用于所构建的激励源相关模型,对激励源分布参数进行计算和分析,建立力学、磁学分布特性与弹性波波形特性之间的对应关系,以验证传感器系统模型的合理性。并对影响传感器系统性能的易磁化方向、固支波及磁致伸缩线材结构等因素进行分析、讨论和评估。
     论文第五章对磁致伸缩直线位移传感器的现阶段研究进行了总结,概括了本课题阶段性研究成果,讨论了现有研究中存在的问题和进一步研究的方案和课题。
     论文提出的激励源合成模型和磁极化强度模型解释了磁致伸缩直线位移传感器输入量与输出信号间的关系问题,通过计算机仿真和数值分析所得数据,对模型的合理性进行了验证,并通过大量的实验研究获得了传感器中的关键技术参数。
Magnetostrictive linear position sensor is a kind of sensor with magnetostrictive effect and inverse magnetostrictive effect. At present, both at home and abroad, the theories and practices on this kind of sensor were focused largely on material preparation, basic materials theory, systems integration etc, but rather the lack of researches on the basis theory of the sensor system.
     In order to explain the generation mechanism of elastic wave in the sensor system, multi-disciplinary application of knowledge were utilized, such as magnetic, mechanical, electrical, signal, computer simulation, numerical analysis, computer control, and so on. Within the framework of nonlinear coupling theory, the nonlinear problem of multi-field coupling effect was discussed using finite element analysis. The magnetic field distribution data of magnetostrictive line was obtained and the relationship between impulse source and elastic waves were constructed and discussed with the help of numerical analysis and the data from experiments. The easy magnetization direction, fixed end wave and the structure of sensor line were studied, which affect the performance of the sensor system. The study has positive influence on the enhancement of the performance of the sensor.
     ChapterⅠis an introduction on issues of the background and object of research, content, significance, methods and structure of the framework.
     In chapterⅡ, basic theories and concepts of magnetostrictive linear position sensor were described, and the research approaches and relative results associated with the magnetostrictive linear position sensor were introduced, which provided theoretical support for further relevant models discussed. Based on the basic theories and previous works, theory models of elastic wave were constructed, which explained the mechanism of elastic wave. The relationship between magnetic field and characteristics of elastic waveform, the stress field and the distribution of the magnetostriction were discussed.
     In chapterⅢ, the important components and key parameters of the magnetostrictive line sensor were studied with special experiments and relative theories. The parameters of the impulse source were delimited based on abundant of experiments and theories. The circumference magnetic field and the permanent magnetic field were detected and analyzed, and further more magnetic field distribution data in the magnetostrictive line were calculated with computer simulation and numerical calculation method. The oscillation phenomena of detecting system were discussed and spectral analyses of collected signals reveal the characteristic of signals in the sensor. Finally, the elastic wave velocity of the material we used was measured with special experiment system.
     In chapterⅣ, Experimental and assessment platform of the magnetostrictive line position sensor were designed and implemented, using the definite values of impulse source, signal detection and position calculation studied in chapterⅢ. The distribution data of impulse source were calculated and analyzed based on relative mathematic models established, using the magnetic field distribution data inside the material of magnetostrictive line of the sensor, which resulted from experiments, ANSYS simulation platform and numerical analysis methods. And the relationship between impulse source and the distribution characteristics of stress field, magnetic field and magnetostrictive field were discussed to prove the rationality of the established mathematic model. On the assessment platform, the easy magnetization direction, fixed end wave and the structure of sensor line were studied, which affect the performance of the sensor system.
     Finally, in chapter V, the research achievements in present phase of the magnetostrictive position line sensor were summarized and the problems existed in the study at present are put forward, as well as the future research orientation.
     The theory models of elastic waves explained the relationship between input parameters and output signals in the magnetostrictive line sensor. The rationality of the models can be proved with the data resulted from simulated and numerical analyzed. The key parameters of the sensor are discussed by lots of experiments in this paper.
引文
[1]孙君文,李怀洲,潘日敏等.磁致伸缩位移传感器的研制[J].仪表技术与传感器,2006,6:1-5.
    [2]刘蓉生.稀土超磁致伸缩材料及其应用[J].四川稀土,2006,2:30-32.
    [3]江小霞,钟荣龙,卢长耿.磁致伸缩位移传感器的应用[J].传感器技术,2003,22(1):50-52.
    [4]黄卉,肖定国,理华等.磁致伸缩式扭转超声波位移传感器的研究与设计[J].仪表技术与传感器,2002,6:4-5.
    [5]姚世选.磁致伸缩直线位移传感器的机理研究与应用[D].太原:太原理工大学计算机应用专业,2007.
    [6]冯雪.铁磁材料本构关系的理论和实验研究[D].北京:清华大学工程力学系,2002.
    [7]杨兴.磁场与位移感知型超磁致伸缩微位移执行器及其相关技术研究[D].大连:大连理工大学,2001.
    [8]王博文.超磁致伸缩材料制备与器件设计.冶金工业出版社,北京,2003:1-2.
    [9]Riichi Murayama. Study of driving mechanism on electromagnetic acoustic transducer for Lamb wave using magnetostrictive effect and application in drawability evaluation of thin steel sheets. Ultrasonics,1999,37:31-38.
    [10]Eckhard Quandt, Alfred Ludwig. Magnetostrictive actuation in Microsystems. Sensors and Actuators,2000,81:275-280.
    [11]H. Kwun, K. A. Bartels. Magnetostrictive sensor technology and its applications[J]. Ultrasonics,1998.2,36:171-178.
    [12]刘楚辉.超磁致伸缩材料的工程应用研究现状[J].机械制造,2005,43(492):25-27.
    [13]M. Pasquale.Mechanical sensors and actuators[J]. Sensors and Actuators A: Physical Issues 1-3,2003.9,106:142-148.
    [14]江丽萍,沙玉辉,李松,赵骧,赵增祺,左良.磁场热处理和预压力对Tb0.3Dy0.7Fe1.95合金磁致伸缩“跳跃”效应的影响[J].中国稀土学报,2006,24(2):197-200.
    [15]W.Fleming, Magnetostrictive torque sensor performance-nonlinear analysis[J]. IEEE Trans, Vehicle Technol.1989(38):159-167.
    [16]I. Sasada, N. Suzuki, T. Sasaoka, K. Toda, In-process detection of torque on a drill using magnetostrictive effect[J]. IEEE Trans. Magn.,1994(30):4632-4634.
    [17]顾仲权,朱金才,彭福军.磁致伸缩材料作动器在振动主动控制中的应用研究[J].振动工程学报,1998,11(4):381-388.
    [18]欧阳光耀,施引.用磁致伸缩作动器进行主动隔振的研究[J].噪声与振动控制,1997,(4):2-5.
    [19]]王传礼,方平,丁凡.GMM在机械电子工程中的应用研究现状[J].电子机械工程,2002,18(4):1-4.
    [20]王红波,于敏.基于ARM7_FPGA的磁致伸缩超声波位移测量系统[J].仪表技术与传感器,2007,8:58-60.
    [21]Wang Zheng,Chang Xiaoming,Hiroyuki Wakiwaka. Study on Impulse Magnetic Field of Magnetosrtictive Position Sensor[C].2010 2nd International Workshop on Intelligent Systems and Application,2010,5(11):933-936.
    [22]Chang Xiaoming,Wang Zheng,Hiroyuki Wakiwaka:The Study on the Fixed End Wave in Magnetosrtictive Position Sensor[C].2010 2nd International Workshop on Intelligent Systems and Application,2010,5(1):81-84.
    [23]王峥,常晓明,脇若弘之.长线磁致伸缩位移传感器激励波的研究[J].太原理工大学报,2010,3(41):241-244.
    [24]杨朝虹,杨竞,李焕,付春林.磁致伸缩液位传感器的应用与发展[J].矿冶,2004,4(13):83-86.
    [25]李淑英,陈双平.稀土超磁致伸缩材料的制备与应用[J].太原理工大学学报,2005,(36增刊):5-6.
    [26]Verhoeven J D. Ostenson J E, Gibson E D, et al. The effect of composition and magnetic heat treatment on magnetostriction of TbxDy1-xFey twinned single crystals[J]. J. Appl. Phys.,1989,66(2):772.
    [27]江丽萍,沙玉辉,李松,赵骧,赵增祺,左良.磁场热处理和预压力对Tb0.3Dy0.7Fe1.95合金磁致伸缩“跳跃”效应的影响[J].中国稀土学报,2006,24(2):197-200.
    [28]姜启源.数学模型[M].北京:高等教育出版社,2008.3:5.
    [29]段玉兵,李庆民,吴明雷,娄杰,吕婷婷.磁致功能材料在新型电工执行机构中的应用研究进展[J].电气应用,2007,26(11):6-12
    [30]Jiles D C, Thoelke J B, Devine M K. Numerical determination ofhysteresis parameters for the modeling of magnetic properties usingthe theory of ferromagnetic hysteresis[J]. IEEE Trans Magn,1992,28(1):27-35.
    [31]Sablik M J, Jiles D C. Coupled magnetoelastic theory of magneticand magnetostrictive hysteresis[J]. IEEE Trans Magn,1993,29(3):2113-2123.
    [32]Marcelo J Dapino, Ralph C Smith, Alison B Flatau. Structural magnetic strain model for magnetostrictive transducers[J].IEEE Trans Magn,2000,36(3):545-556.
    [33]Calkins F T, Smith R C, Flatau A B. Energy-based hysteresis model for magnetostrictive[J]. IEEE Trans Magn,2000,36(2):429-439.
    [34]杨庆新,阎荣格,徐桂芝.超磁致伸缩器件的数值计算模型[J].电工技术学报,1999.8,14(4):17-20.
    [35]冯雪.铁磁材料本构关系的理论和实验研究[D].北京:清华大学工程力学系,2002.
    [36]周浩淼.铁磁材料非线性磁弹性耦合理论及其在超磁致伸缩智能材料中的应用[D].兰州:兰州大学,2007.
    [37]孙乐.超磁致伸缩材料的本构理论研究[D].兰州:兰州大学,2007.
    [38]刘信恩.磁致伸缩本构模型及其在薄膜型GMA数值模拟中的应用[D].州:兰州大学,2004.
    [39]M.J. Dapino, F.T. Calkins, R.C. Smith, A.B. Flatau. A Magnetoelastic Model for Magnetostrictive Sensor [C]. Proceedings of ACTIVE 99, International Symposium on Active Control of Sound and Vibration,1999, pp.1193-1204.
    [40]KUZ'MENKO A P, ZH UKOV E A, DOBROMYSLOV M B, KAMINSKII A V. Magneto-elastic waves in the orthoferrite plates induced by solitary domain wall[J].RARE METALS,2007,26:5-9.
    [41]Yu Jiangong, Ma Qiujuan, Su Shan. wave propagation in non-homogeneous magneto-electro-elastic hollow cylinders[J]. Ultrasonics,2008,48(8):664-677.
    [42]Wu Bin, Yu jiangong, He Cunfu. wave propagation in non-homogeneous magneto-electro-clastic platcs[J]. Journal of Sound and Vibration, 2008,317:250-264.
    [43]樊长在,杨庆新,闫荣格,杨文荣,刘福贵.超磁致伸缩力传感器的模型研究[J]. 传感器与微系统,2007,26(3):40-43.
    [44]杨维明,冯富龙.磁机械效应超声扭转振动方程[J].沈阳工业大学学报,1997,19(3):14-18.
    [45]Keat G. Ong, Casey S. Mungle, Craig A. Grimes. Control of a magnetoelastic sensor temperature response by magnetic field tuning[C]. IEEE Transactions on Magnetics,2003,39(5):3319-3321.
    [46]李永波,胡旭东,曾宗云.温度对磁致伸缩液位传感器测量精度的影响[J].工业仪表与自动化装置,2007,6:11-13.
    [47]文西芹,杜玉玲,张永忠.逆磁致伸缩扭矩传感器温度漂移特性研究[J].仪表技术与传感器,2005,2:56-58.
    [48]夏天,张新喜,高学绪.利用磁力显微镜观察铁镍合金丝的磁畴结构[J].金属功能材料,2009.6,16(3):16-20.
    [49]杨雷,张天丽,蒋成保.超磁致伸缩致动器轴向谐振频率计算与实验研究[J].航空学报,2008.9,29(5):1381-1385.
    [50]闫瑞杰.磁致伸缩液位传感器机理及检测信号不确定性的实验分析研究[D].太原:太原理工大学,2003.
    [51]Fernando Seco, Jose Miguel Martin, Jose Luis Pons, Antonio Ramon Jimenez. Hysteresis compensation in a magnetostrictive linear position sensor[J]. Sensors and Actuators A,2004,110:247-253.
    [52]Fernando Seco, Jose Miguel Martin, Antonio Ramon Jimenez etc. A high accuracy magnetostrictive linear position sensor[J]. Sensors and Actuators A,2005, 123:216-223.
    [53]H.Wakiwaka, M.Shimada, S.Hattori etc. Elastic wave signal processing on a long displacement sensor using magneto-strictive wire[C]. The 1st International Symposium on LDIA'95,1995, FA-20,243.
    [54]M. Norhisam, A. Norrimah, R. Wagiran, R.M. Sidek, N. Mariun, H. Wakiwaka. Consideration of theoretical equation for output voltage of linear displacement sensor using meander coil and pattern guide[J]. Sensors and Actuators A:Physical, 2008.10,147:470-473.
    [60]E. Hristoforou, D. Niarchos, H. Chiriac, Maria Neagu. A coily magnetostrictive delay line arrangement for sensing applications[J]. Sensors and Actuators A: Physical,2001.6,91:91-94.
    [61]E. Hristoforou, P.D. Dimitropoulos, J. Petrou. A new position sensor based on the MDLtechnique[J]. Sensors and Actuators A,2006,132:112-121.
    [62]E. Hristoforou. Amorphous magnetostrictive wires used in delay lines for sensing applications[J]. Journal of Magnetism and Magnetic Materials,2002,249: 387-392.
    [63]H. Chiriac, E. Hristoforou, Maria Neagu etc. Force measurements using Fe-rich amorphous wire as magnetostrictive delay line[J]. Sensors and Actuators A,2001, 91:223-225.
    [64]Evangelos Hristoforou, Aphrodite Ktena, Magnetostriction and magnetostrictive materials for sensing applications[J]. Journal of Magnetism and Magnetic Materials,2007.9,316(2):372-378.
    [65]王红波,于敏.基于ARM7_FPGA的磁致伸缩超声波位移测量系统[J].仪表技术与传感器,2007,8:58-60.
    [66]金纪东.彭静,范新南.一种基于 FPGA的磁致伸缩效应传感器控制器设计[J].电子测量技术,2007,30(12):73-75.
    [1]程守洙,江之永.普通物理学[M].北京:高等教育出版社,1993.8(2):120-234.
    [2]戴道生.铁磁学[M].北京:科学出版社,1992.
    [3]宛德福,罗世华.磁性物理学[M].北京:电子工业出版社,1999.
    [4]冯雪.铁磁材料本构关系的理论和实验研究[D].北京:清华大学工程力学系,2002.
    [6]赵凯华,陈熙谋.电磁学[M].北京:高等教育出版社,2004.10:93-250.
    [7]钟文定.铁磁学[M].北京:科学出版社,1987.8.
    [8]R.C.奥汉德利.现代磁性材料原理和应用[M].北京:化学工业出版社,2004:174.
    [9]杨大智.智能材料与智能系统[M].天津:天津大学出版社,2002:294.
    [10]刘蓉生.稀土超磁致伸缩材料及其应用[J].四川稀土,2006,2:30-32.
    [11]周浩淼.铁磁材料非线性磁弹性耦合理论及其在超磁致伸缩智能材料中的应用[D].兰州:兰州大学固体力学专业,2007:1-116.
    [12]A.E. Clark, J.P Teter, O.D. McMasters. Magnetostriction jumps in twinned Tb0.3Dy0.2Fe1.9 [J]. Appl. Phys.,1988,63 (8):3910-3912.
    [13]唐志峰.超磁致伸缩执行器的基础理论与实验研究[D].浙江:浙江大2005:15-26.
    [14]李一博.磁致伸缩多参数罐储自动计量系统关键技术研究[D].天津:天津大学,2003:24-29.
    [15]Yu Jiangong, Ma Qiujuan, Su Shan. Wave Propagation in non-homogeneous magneto-electro-elastic hollow cylinders [J]. ultrasonics,2008,48(8):664-667.
    [16]Fernando Seco, Jose Miguel Martin, Antonio Ramon Jimenez, Leopoldo Calderan. A high accuracy magnetostrictive linear position sensor[J]. Sensors and Actuators A 123-124,2005:216-223.
    [17]杨维明,冯富龙.磁机械效应超声扭转振动方程[J].沈阳工业大学学报,1997.19(3):14-19.
    [18]王峥,常晓明,脇若弘之.长线磁致伸缩位移传感器磁极化强度模型[J].传感技术学报,2010,8:1075-1078.
    [19]姚世选.磁致伸缩直线位移传感器的机理研究与应用[D].太原:太原理工大学计算机应用专业,2007.
    [20]余本刚,张棋飞,舒行军等.基于ANSYS对电磁翻边成形的仿真研究fJ].系 统仿真学报,2004,16(1):91-93.
    [21]任吉林,刁海波,唐继红,俞佳,宋凯.涡流传感器提离效应的ANSYS模拟[J].传感技术学报,2008,21(6):967-971.
    [22]胡红军,张丁非.Z31镁合金快速铸轧过程热应力场有限元仿真研究[J].系统仿真学报,2005,29(6):6-8.
    [23]杨雷,张天丽,蒋成保.超磁致伸缩致动器轴向谐振频率计算与实验研究[J].航空学报,2008,29(5):1381-1385.
    [24]Fernando Seco, Jose Miguel Martin, Jose Luis Pons, Antonio Ramon Jimenez. Hysteresis compensation in a magnetostrictive linear position sensor[J]. sensors and actuators,2004,110:247-253.
    [1]胡广书.数字信号处理[M].北京:清华大学出版社,2005.10:18-20.
    [2]柯岩,武新军,康宜华等.磁致伸缩导波在钢管中传播的研究[J].无损检测,2005,29(6):6-8.
    [3]姚世选.磁致伸缩直线位移传感器的机理研究与应用[D].太原:太原理工大学计算机应用专业,2007.
    [4]余本刚,张棋飞,舒行军等.基于ANSYS对电磁翻边成形的仿真研究[J].系统仿真学报,2004,16(1):91-93.
    [5]任吉林,刁海波,唐继红,俞佳,宋凯.涡流传感器提离效应的ANSYS模拟[J].传感技术学报,2008,21(6):967-971.
    [6]胡红军,张丁非.Z31镁合金快速铸轧过程热应力场有限元仿真研究[J].系统仿真学报,2005,29(6):6-8.
    [7]黄卉,肖定国,理华等.磁致伸缩式扭转超声波位移传感器的研究与设计[J].仪表技术与传感器,2002,6:4-5.
    [8]博弈创作室. ANSYS经典产品基础教程与实例详解[M].中国水利水电出版社,2006,12:39.
    [9]R.C.奥汉德利.现代磁性材料原理和应用[M].化学工业出版社,2004.3:26.
    [10]KUZ'MENKO A P, ZH UKOV E A. Magneto-elastic waves in the orthoferrite plates induced by solitary domain wall [J]. RARE METALS.2007.26:5-9.
    [11]周浩淼.铁磁材料非线性磁弹性耦合理论及其在超磁致伸缩智能材料中的应用[D].兰州大学,2007.
    []]高健,邓峥,戚海峰等.基于GPIB任意函数信号的产生与采集[J].实验技术与管理,2007,24(3):73-76.
    [2]任子龙,刘杰.基于Visual Basic 6.0的信号发生器自动测试系统[J].计算机技术与应用,2007,27(5):46-28.
    [3]陶成忠,汪振科.基于GPIB总线的信号发生器自动检定系统[J].国外电子测量技术,2007,26(6):65-66.
    [4]Zheng WANG, Xiaoming CHANG, Wakiwaka HIROYUKI, Hirama YUTAKA, Xiaofeng YANG. The Study The Preferred Magnetization Direction of Long Line Magnetostrictive Position Sensor[C].17th World Conference on Nondestructive Testing [Abstracts],2008:474.
    [5]姚世选.磁致伸缩直线位移传感器的机理研究与应用[D].太原:太原理工大学计算机应用专业,2007.
    [6]江晓霞,钟荣龙,卢长耿.磁致伸缩式位移传感器的应用[J].传感技术学报,2002,6:4-5.
    [7]Ryo Matsubayashi, Tetsumaru Saito, Nozomi Tsuji, Kunitake Seki, Kunihisa Tashiro, Hiroyuki Wakiwaka, Xiao-ming Chang. Effect of damper in non-contacting displacement sensor using magnetostrictive wird [R].2008.
    [8]杨维明,冯富龙.磁机械效应超声扭转振动方程[J].沈阳工业大学学报,1997,19(3):14-19.
    [9]刘鸿文.材料力学(下册)[M].北京:高等教育出版社,1992.9:95.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700