电网智能调度决策支持系统的研究与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
确保电力系统的安全、稳定、经济、优质运行是调度人员的主要职责。电网规模不断扩大和结构日益复杂,使调度人员面临着巨大挑战。然而,作为主要辅助决策工具的能量管理系统(EMS, Energy Management System)并不能完全满足新环境对电网运行监控的要求,其应用范围和决策的智能化水平都有待提高。基于以上背景,本文提出建立功能完善、使用方便、可以在线自主协调运行的“电网智能调度决策支持系统”的设想。电网智能调度决策支持系统将更多的智能技术应用于电力系统分析,为调度分析与操作提供智能化的决策支持。本文通过对电力系统暂态稳定预测和电网操作指导的研究,进一步完善了智能决策支持系统的分析功能,并采用多智能体技术使系统具有在线自主协调运行能力,从而可以为调度人员提供更为全面的决策支持。研究内容分为两个层次:一是决策分析工具的扩充,二是系统自主运行和协调决策能力的实现。
     考虑到电力系统安全稳定运行的重要性,在充分利用广域测量数据的基础上,提出了一种基于在线式学习算法的暂态稳定预测方法。该方法根据分块矩阵求逆定理对标准学习算法进行改进,以提高计算速度。为满足实际多机系统稳定预测的要求,引入轨迹聚合技术对多机轨迹进行聚合,进一步减少了计算量。在轨迹降阶的基础上,根据扩展等面积法则(EEAC, Extended Equal Area Criteria),通过识别聚合轨迹的动态鞍点来判断轨迹的稳定性。仿真试验结果从预测精度和计算时间两方面验证了方法的有效性。
     在电网操作指导方面,深入分析了操作票专家系统中广泛采用的产生式规则表示方法的局限性,指出推理程序对规则表示的依赖是制约操作票专家系统通用性的根本原因。为解决上述问题,首先研究了产生式规则的Petri网表示方法,提高规则表示的灵活性;其次,研究了基于Petri网模型的推理方法,使推理程序与规则表示完全分离,从而提高了操作票系统的适应能力。
     为了实现软件系统的自主运行,将多智能体技术引入调度决策支持系统的研究中。通过划分电力系统运行状态和定义典型事件,建立了电力系统领域环境模型,并以此作为软件智能体的生存环境,在识别电力系统运行状态和事件的基础上赋予智能体环境感知能力,从而解决了软件自主运行问题。通过研究基于环境交互的多智能体协作方法并将其用于调度决策方案的在线自动生成,使多个软件智能体可以协调运行,主动为调度人员提供针对电网当前运行状态的调度决策方案。
Because of the expending scale and complexity of power grid, the power system operator is facing with much greater challenge the duty of ensuring the system’s security, stability, economy and operating quality. However, the energy management system (EMS) which serves as a major tool to support decision making can’t fully meet the requirement of power system operation monitoring, its function and intelligent level need to be improved. Under this background, this paper presents a notion of constructing an intelligent decision support system for perfect function, convenient using and online self-coordinated operation. More AI techniques are used in the intelligent decision support system to provide better decision results to the operators. Based on the research of power system transient stability prediction and switching sequence generation of power grid, this paper improves the analysis function of the intelligent decision support system, realizes online coordinated operation capacity by adopting multi-agent technology. By such means the system can provide integrated decision support for the operator. This paper includes two hierarchies: the expansion of the decision-making analysis tools and the realization of system autonomous running and coordinated decision-making capacity.
     Considering security and stability of power grid as the primary goal, this paper presents a transient stability online prediction method based on machine learning algorithm. According to the theorem of inverting block matrix, the standard machine learning algorithm is improved, and the learning efficiency is enhanced. In order to satisfy the online transient stability prediction of multi-machine system, polymerization technology of trajectories is used to reduce the computing burden. Based on the theory of extended equal area criteria (EEAC), transient stability of power system is estimated by identifying the dynamic saddle point (DSP). According to the simulation results, the validity of proposed method is proved in respects of prediction precision and computing time.
     As to switching sequence generation of power grid, this paper analyses the disadvantage of production knowledge representation which has been widely used in operating command expert system, and indicates that dependent relation between inference program and rules is the main reason that restricts the adaptability of operating command expert system. To solve the above problem, firstly, this paper establishes a more flexible model of production knowledge based on Petri net; secondly, a new inference engine is brought forward, which can separate inference program from knowledge representation and improve adaptability of operating command expert system.
     In order to realize system autonomous running, this paper introduces multi-agent technology into the research of the intelligent decision support system. By defining power system operation states and typical events, the field model that agents live in is constructed. Based on the recognition of operation states and events, this paper granted sensation capacity to intelligent agents. By the research of multi-agent collaboration based on interactive theory and applying to the dispatching schemes auto-generation, the system can actively provide decision results for power grid operator according to current power grid operation state.
引文
[1]甘德强,胡江溢,韩祯祥.2003年国际若干停电事故思考[J].电力系统自动化,2004,28(3):1-4.
    [2]何大愚.一年以后对美加“8.14”大停电事故的反思[J].电网技术,2004,28(21):1-5.
    [3]郭国川.电力市场环境下的电网调度及其自动化[J].中国电力,2002,25(11):32-36.
    [4]沙亦强.节能减排:电力主旋律2007[J].中国电力企业管理,2007,15(3):14-18.
    [5]于尔铿,谢开等.能量管理系统[M].北京:科学出版社,1997:16-28.
    [6]潘莹玉.我国电网调度自动化系统的发展与现状[J].继电器,2000,28(6): 58-62.
    [7]王明俊.我国电网调度自动化的发展——从SCADA到EMS[J].电网技术,2004,28(4): 43-46.
    [8]吴京涛,谢小荣,王立鼎,等.广域测量系统在电力系统的发展与展望[J].电力设备,2006,7(3):46-49.
    [9]崔巍,程逍,石东源,等.电力系统故障信息综合应用系统的研究[J].电力自动化设备,2004,24(5):27-30.
    [10]韩晓萍,李佰国,王肃,等.继电保护及故障信息系统的设计与实现[J].电网技术,2004,28(18):16-19.
    [11] Alan M. Turing,Computing machinery and intelligence[M]. New York: Mind, 1950: 433-460.
    [12]赵遵廉.中国电网的发展与展望[J].中国电力,2004,37(1):1-6.
    [13]韩祯祥.电力系统稳定[M].北京:中国电力出版社,1995:186-201.
    [14] Prabha Kundur.电力系统稳定与控制[M].北京:中国电力出版社,2002:.
    [15]印永华,郭剑波,赵建军,等.美加“8.14”大停电事故初步分析以及应吸取的教训[J].电网技术,2003,27(10):8-11.
    [16]周孝信,郑健超,沈国荣,等.从美加东北部电网大面积停电事故中吸取教训[J].电网技术, 2003,27 (9) :T1.
    [17]胡学浩.美加联合电网大面积停电事故的反思和启示[J].电网技术, 2003,27 (9) :16-22.
    [18]郭永基.加强电力系统可靠性的研究和应用——北美东部大停电的思考[J].电力系统自动化,2003,27(19):1-5.
    [19]鲁宗相.莫斯科“5.25”大停电的事故调查及简析[J].电力设备,2005,6(8):14-17.
    [20]高翔,庄侃沁,孙勇.西欧电网“11.4”大停电事故的启示[J].电网技术,2007,31(1):25-30.
    [21]余保东,孙建波,汤胜祥.湖北电网低频振荡计算分析[J].电力系统自动化,2001,25(15):39-42.
    [22]吴彤,涂光瑜,康健.湖北鄂西电网低频振荡抑制及PSS试验研究[J].电力系统及其自动化学报,2003,15(4):1-4.
    [23]王正风,刘盛松.安徽500 kV电网低频振荡分析[J].继电器,2002,30(10):41-43.
    [24]秦文萍,徐红利.“9.1”蒙西电网机组低频振荡现象分析[J].太原理工大学学报,2007,38(1):51-54.
    [25]白雪峰,倪以信.电力系统动态安全分析综述[J].电网技术,2002,28(16):14-19.
    [26]郭琦,张伯明,王守相.基于EMS的动态安全分析系统[J].电力系统自动化,2004,28(8):57-61.
    [27]罗建裕,王小英,鲁庭瑞.基于广域测量技术的电网实时动态监控系统应用[J].电力系统自动化,2003,27(24):78-80.
    [28]常乃超,兰州,甘德强,等.广域测量系统在电力系统分析及控制中的应用综述[J].电网技术,2005,29(10):46-52.
    [29]许树楷,谢小荣,辛耀中.基于同步相量测量技术的广域测量系统应用现状及发展前景[J].电网技术,2005,29(2):44-49.
    [30]朱永利,杨以涵,张文勤,等.专家系统在编写变电站倒闸操作票中的应用[J].中国电机工程学报,1988,8(6):61-65.
    [31]岑文辉.用计算机专家系统编写操作票[J].华东电力,1989,6(5):11-16.
    [32]杨以涵,吴琼,刘文颖,等.Petri网规则表示方法在操作票专家系统中的应用[J].继电器,2007,35(20):31-36.
    [33]姬翔,杜文静.人工智能论析[J].中山大学学报论丛,2006,26(8):22-24.
    [34] Stuart Russell, Peter Norving.人工智能—一种现代方法[M].北京:人们邮电出版社,2004:268-300.
    [35]徐志国.人工智能(AI)在电力系统中的应用[ J ].现代电子技术,2006,21(16):147-150.
    [36]赵冬梅,郭锐,徐开理,等.电网故障诊断专家系统的一种实现[J].电力自动化设备,2000,20(4):33-36.
    [37]赵冬梅,张东英,徐开理,等.分层分布式电网故障诊断专家系统设计[J].现代电力,2001,18(3):41-46.
    [38]赵冬梅,万彦栋,高曙,等.电网故障恢复系统软件的设计与实现[J].现代电力,2002,19(4):38-42.
    [39]刘明慧,张东英,邹品元,等.能在线应用的地区电网故障恢复系统[J].电网技术,2006,30(18):35-39.
    [40]宋宏坤.电网调度操作票管理专家系统及应用[J].电力系统自动化,1999,23(19):58-59.
    [41]许巧燕,尤钟晓.智能化调度操作票系统的实现[J].电力自动化设备,2000,20(4):31-32.
    [42]陈耀武,汪乐宇,龙洪玉.基于组合式神经网络的短期电力负荷预测模型[J].中国电机工程学报,2001,21(4):79-82.
    [43]雷绍兰,孙才新,周湶,等.基于径向基神经网络和自适应神经模糊系统的电力短期负荷预测方法[J].中国电机工程学报,2005,25(22):79-82.
    [44]顾雪平,张文勤,高曙.基于神经网络和元件关联分析的电网故障诊断[J].华北电力大学学报,1999,26(2):12-16.
    [45]毕天姝,倪以信,吴复立,等.基于新型神经网络的电网故障诊断方法[J].中国电机工程学报,2002,22(2):73-78.
    [46]戴先中,张腾,张凯锋,等.发电机励磁与汽门系统解耦控制的神经网络逆系统方法[J].中国电机工程学报,2002,22(11):75-80.
    [47]曹先庆,朱建光,唐任远.基于模糊神经网络的永磁同步电动机矢量控制系统[J].中国电机工程学报,2006,26(1):137-141.
    [48]朱敏,王定一.基于人工神经网络的梯级水电厂日优化运行[J].电力系统自动化,1999,23(10):137-141.
    [49]严华,吴捷,马志强,等.模糊集理论在电力系统短期负荷预测中的应用[J].电力系统自动化,2000,22(12):67-71.
    [50]周明,任建文,李庚银,等.基于模糊推理的分布式电力系统故障诊断专家系统[J].电力系统自动化,1999,23(10):33-36.
    [51]王金凤,杨丽徙,臧睿,等.基于改进遗传算法的配电网优化规划[J].电力自动化设备,2002,22(5):64-66.
    [52]张粒子,舒隽,林宪枢,等.基于遗传算法的无功规划优化[J].中国电机工程学报,2000,20(6):5-8.
    [53] Hong H. W., Carl F. I., and David L. B. et al., Integrated Support Systems for Electric Utility Operation[J]. Computer Applications in Power, IEEE Computer Applications in Power, 1992, 5(1): 15-20.
    [54] Dy-Liacco T E, Enhancing Power System Security Control[J]. IEEE Computer Applications in Power, 1997, 10(3): 38-41.
    [55] Ebrahim Vaahedi, Yakout Mansour, E.K. Tse, A General Purpose Method for On-line Dynamic Security Assessment[J]. IEEE Transactions on Power Systems, February 1998,12(3):243-249.
    [56] Ebrahim Vaahedi, Kwok W. Cheung, Evolution and Future of On line DSA[J]. Power Engineering Society Winter Meeting, IEEE Transactions on Power Systems, 2000: 18(5):63– 65.
    [57] Kip Morison, Lei Wang, Prabha Kundur, Power system security assessment[J]. IEEE power and energy magazine, 2004,28(12):30-39.
    [58] Chen Ching Liu, Juhwan Jung, Gerald T. and V. Vittal et al., The Strategic Power Infrastructure Defense (SPID) System: A Conceptual Design[J]. IEEE Control System Magazine, 2000,16(3): 40-51.
    [59]卢强.数字电力系统(DPS)[J].电力系统自动化,2000, 24(9):1-4.
    [60]张伯明,现代能量控制中心概念的扩展与前景展望[J].电力系统自动化, 2003, 27(15):1-6.
    [61] de Azevedo, G.P., Feijo, B., Costa, M.. An Agent-based Approach to EMS in Open Environments[J]. International Conference Electric Power Engineering, 1999, 6(5):14-18.
    [62] Gilberto, P. de Azevedo, Bruno F., Monica Costa. Control Centers Evolve with Agent Technology[J]. IEEE Computer Applications in Power, 2000: 32(1):48-53.
    [63]刘青,彭晓兰,程时杰,电网调度管理多AGENT系统研究[J].华中理工大学学报,, 1997,25(12): 63-65.
    [64] de Azevedo, G.P., Feijo, B.. Agents in Power System Control Centers[J]. Power Engineering Society General Meeting, 2005,15(2):21-26.
    [65] Qing Zhao, Garng Huang, Xiaowei Wu, and Xiaochuan Luo, A Software Architecture for Power Market Supporting System and Reengineering of Legacy EMS[J]. IEEE Transactions On Power Systems, 2003, 18(1):191-197.
    [66] WU Jun-qiang, BOSE A, HUANG Jin-an, et al. An Parallel Implementation of Power System Transient Stability Analysis[J]. IEEE Transactions on Power System, 1995, 10(3):1226-1233.
    [67] La Scala, M., Sbrizzai, R., Torelli, F., Scarpellini, P.. A Tracking Time Domain Simulator for Real-time Transient Stability Analysis[J]. IEEE Transactions on Power Systems,2001,3(13):992-998.
    [68]卢锦玲,于磊,李英. PC机集群系统在电力系统暂态稳定分析中的应用.电力自动化设备,2006,26(4):36-38.
    [69]李亚楼.大规模电力系统机电暂态实时仿真算法及软件的研究[M],北京,中国电力科学研究院,2003:1-112.
    [70] Athay T, Sherkar E R, Podmore R et al. Transient Energy Stability Analysis[J], Conference on System Engineering for Power: Emergency Operating State Control—SectionⅣ[C]. 1979, 15(3):15-19.
    [71] Athay T, et al. A Practical Method for the Direct Analysis of Transient Stability[J]. IEEE Trans. 1979, 19(6): 573-584.
    [72] N Kakimoto, Y Ohasawa, M Hayaashi. Transient Stability Analysis of Power System viaLure’Type Lypunov Function[J]. Part I& II. Trans. IEE of Japan, 1978,98(6):62-79.
    [73] H D Chiang, F F Wu, P P Varaiya. A BCU Method for Direct Analysis of Power System Transient Stability[J]. IEEE/PES 1991 Summer Meeting, San Diego,, 1991,19(2):14-18.
    [74] Y Xue, T V Cutsem, Ribbens-Pavella M, A Simple Direct Method for Transient Stability Assessment of Large Power Systems[J]. IEEE Trans. on Power Systems, 1988, 3(2):400-412.
    [75] Y Xue, P Rousseaux, Z Gao et al. Dynamic Extended Equal Area Criteria Part 1. Basic Formulation[J]. Athens Power Tech Conference:“Planning, Operation and Control of Today’s Electric Power Systems”, 1993,15(3): 889-895.
    [76]薛禹胜. DEEAC的理论证明—四论暂态能量函数直接法[J].电力系统自动化,1993,17(7):7-9.
    [77]薛禹胜.运动稳定性量化理论——非自治非线性多刚体系统的稳定性分析[M].南京:江苏科学技术出版社,1999:230-260.
    [78]刘明志,房大中,宋文南,等.电力系统暂态稳定混合分析法的研究[J].电力系统及其自动化学报,1999,11(2):7-11.
    [79] Padilha, A., Denis, E.F.. Transient Stability Indices from a Hybrid Approach[J]. 2001 IEEE Porto on Power Tech Proceedings, 2001,10(2):12-17.
    [80] Fang, D.Z., David, A.K., Kai, C., Yunli, C.. Improved Hybrid Approach to Transient Stability Assessment[J]. IEE Proceedings on Generation Transmission and Distribution, 2001,152(2):201-207.
    [81]赵建成,谢小荣,穆刚.基于WAMS的电力系统暂态稳定的快速预测[J].继电器,2005,33(7):1-5.
    [82]吕志来,张保会,哈恒旭.基于PMU的电力系统暂态稳定实时快速预测的研究[J].继电器,2000,28(1):3-6.
    [83]宋方方,毕天姝,杨奇逊.基于WAMS的电力系统受扰轨迹预测[J].电力系统自动化,2006,30(23):27-32.
    [84]彭疆南,孙元章,王海风.基于广域测量数据和导纳参数在线辨识的受扰轨迹预测[J].电力系统自动化,2003,27(22):6-11.
    [85]韩英铎,严剑锋,谢小荣,等.电力系统机电暂态过程主导动态参数的在线辨识[J].中国电机工程学报,2006,26(2):1-6.
    [86]吕志来,张保会,哈恒旭.基于改进的势能界面判据实时预测电力系统稳定性[J].中国电机工程学报, 2002,24(2):94-99.
    [87]宋方方,毕天姝,杨奇逊.基于广域测量系统的电力系统多摆稳定性评估方法[J].中国电机工程学报, 2006,26(16):38-45.
    [88] Liu C W,Su M C,Tsay S S,et al.Application of A Novel Fuzzy Neural Network toReal-time Transient Stability Swings Prediction Based on Synchronized Phasor Measurements[J].IEEE Transactions on Power System,1999,28(14):685-692.
    [89]刘玉田,林飞.基于相量测量技术和模糊径向基网络的暂态稳定性预测[J].中国电机工程学报,2000,20(2):19-23.
    [90]顾雪平,曹绍杰,张文勤.基于神经网络暂态稳定评估方法的一种新思路[J].中国电机工程学报,2000,20(4):77-83.
    [91]褚晓东,刘玉田,邱夕兆.基于径向基函数网络的暂态稳定极限估计与预防控制[J].电力系统自动化,2004,28(10):45-48.
    [92]许涛,电力系统安全稳定的智能挖掘[D].北京:华北电力大学博士学位论文,2004:1-90.
    [93]于之虹,基于数据挖掘技术的暂态稳定评估研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2004:1-90.
    [94]许涛,贺仁睦,王朋,等.基于统计学习理论的电力系统暂态稳定评估[J].中国电机工程学报,2003,23(11):51-55.
    [95]马骞,杨以涵,刘文颖,等.多输入特征融合的组合支持向量机电力系统暂态稳定评估[J].中国电机工程学报,2005,25(5):17-23.
    [96] Abe, T., Goto, H., Mizutori, T., Matsuki, N.. An Expert System for Generating Switching Sequences at Substations[J]. IEEE AI '88., Proceedings of the International Workshop on Artificial Intelligence for Industrial Applications, 1988, 25(27):326- 331.
    [97]郑尚高.一个实用的操作票专家系统[J].农村电气化,1991,6(6):12-16.
    [98]张文磊,王建雄.调度操作票专家系统及N-1安全分析在湖南电网中的应用[J].电网技术,1996,6(7):31-35.
    [99]陈树勇.地区电网操作票专家系统的探讨[J].全国高校电自专业第七届学术会议,济南,1991,1(1):12-16.
    [100] Deng Yuehui, Yang Yihan. A Knowledge and Betwork-based Cognition Model Expert System of Automatic Switching Sequences for Substations and Plants[J]. 1998 International Conference on Power System Technology, 1998, 18(2):982 - 987.
    [101]邹军,许珉,娄和恭.大型变电站操作票自动生成专家系统[J].郑州工业大学学报,1997,18(3):32-35.
    [102]谭建成.一个多文档界面无误票的变电所操作票专家系统[J].电力系统自动化,1997,21(8):68-71.
    [103]叶绿,史烈.变电所操作票图形辅助开票系统的设计与实现[J].计算机辅助设计与图形学学报,1999,11(6):512-515.
    [104]刘运皓.推算操作票的原理和方法[J].电力系统自动化,1996,20(7):19-23.
    [105]刘蔚,杨宛辉.操作逻辑函数在操作票专家系统中的应用[J].电力系统及其自动化学报,1999,11(4):39-43.
    [106]任建文,杨以涵,周明,等.变电所通用操作票专家系统的研究与实现[J].华北电力大学学报,1999,21(3):1-5.
    [107]徐淑珍,朱子述,张君,等.变电站操作票仿真系统的面向对象设计和实现[J].高电压技术,2000,26(1):39-41.
    [108]许巧燕,尤钟晓.智能化调度操作票系统的实现[J].电力自动化设备,2000,20(4):31-32.
    [109]胡耀垓,张晓星,陶劲松,等.面向对象的操作票专家系统[J].继电器,2004,32(21):45-49.
    [110]王林川,焦燕莉,邓集祥.一种新的灵活实用的操作票专家系统[J].继电器,2004,28(4):35-38.
    [111]杨继涛,胡明,吴琼,等.电网调度操作票专家系统的设计与开发[J].继电器,2004,32(15):46-47.
    [112]鞠平,郑世宇,徐群,等.广域测量系统研究综述[J].电力自动化设备,2004,24(7):37-42.
    [113] Zhu Jiayuan, Ren Bo, Zhang Hengxi, et al. Time series prediction via new support vector machines[J]. Proceedings of the First International Conference on Machine Learning and Cybernetics, 2002, 15(6):364-366.
    [114] Liu Bo, Hao Zhifeng, Yang Xiaowei. Nesting support vector machine for multi-classification[J]. Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, 2005:13(1):4220-4224.
    [115] Lin C-F,Wang S-D. Fuzzy support vector machines[J]. IEEE Trans on Neural Networks, 2002,13(2):464-471.
    [116] Tay F E H,Cao L J.ε-Descending support vector machines for financial time series forecasting[J]. Neural Processing Letters, 2002, 15(2):179-195.
    [117]李大虎,曹一家.基于PMU和混合支持向量机网络的电力系统暂态稳定性分析[J].电网技术,2006,30(9):46-52.
    [118]李元诚,方廷健,于尔铿.短期负荷预测的支持向量机方法研究[J].中国电机工程学报,2003,23(6):55-59.
    [119] Bo-Juen Chen, Ming-Wei Chang, Chih-Jen lin. Short-term load forecasting based on an adaptive hybrid method[J]. IEEE Transactions on Power Systems, 2004, 19(4): 1821-1830.
    [120]谢宏,魏江平,刘鹤立.短期负荷预测中支持向量机模型的参数选取和优化方法[J].中国电机工程学报,2006,26(22):16-22.
    [121]王李东,李志宇,文劲宇.基于SVR算法的短期负荷快速预测研究[J].继电器,2005,33(9):17-20.
    [122]董明,孟源源,徐长响,等.基于支持向量机及油中溶解气体分析的大型电力变压器故障诊断模型研究[J].中国电机工程学报,2003,23(7):88-92.
    [123]翟永杰,韩璞,王东风,王国鹏.基于损失函数的SVM算法及其在轻微故障诊断中的应用[J].中国电机工程学报,2003,23(9):198-203.
    [124]王安娜,李明,李华,栾峰.基于支持向量机的容差电路故障诊断[J].华北电力大学学报,2003,32(增刊):41-44.
    [125] Vladimir N. Vapnik,张学工译,统计学习理论的本质[M].北京:清华大学出版社,2000:289-305.
    [126] Vapnik V N. Statistical learning theory[M]. New York: McGraw-Hill, 1998:72-90.
    [127] Suykens J, Vandewale J. Least squares support vector machine classifiers[J].Neural Processing Letters, 1999, 9(3):293-300.
    [128] Cowen C C. Linear algebra for engineering and science[M]. West Lafayette: Indiana West Pickle Press, 1996:290-300..
    [129]薛巍,舒继武,王心丰,郑纬民.电力系统暂态稳定仿真并行算法的研究进展[J].系统仿真学报,2002,14(2):177-182.
    [130] Ye Jianhua, Liu Zhengguang, Zhu Lihui. The Implementation of a Spatial Parallel Algorithm for Transient Stability Simulation on PC Cluster[J]. IEEE Conference on Industrial Electronics and Applications, 2007, 23(15):489-492.
    [131] Magnusson P C. Transient Energy Method of Calculation Stability[J]. AIEE Trans., 1947, 58(66):747-752.
    [132] Gless G E. Direct Method of Lyapunov Applied to Transient Power System Stability[J]. IEEE Trans. 1966,15(85):159-168.
    [133] Pai M A, Adgaonkar R P. Electromechanical Distance Measure for Decomposition of Power Systems[J]. Electrical Power and Energy Systems,1984,6(4):17-22.
    [134] Podmore R. Identification of Coherent Generator Dynamic Equivalents[J].IEEE Trans on Power Apparatus and Systems, 1978, 97(4):22-26.
    [135] Chow J. New Algorithms for Slow Coherency Aggregation of Large Power Systems[J]. Systems and Control Theory for Power Systems,1993,64(1):78-83.
    [136] Lawler J S. Computational algorithms for constructing modal-coherency dynamics equivalents[J]. IEEE Trans on PAS, 1982,101(5):1070-1080.
    [137] Nath R, Surrinder Slamba K S, Prakasa R. Coherency based system decomposition into study and external areas using weak coupling[J]. IEEE Trans on PAS, 1985,104(6):1443-1449.
    [138]薛禹胜.EEAC与直接法的机理比较:(一)受扰程度函数[J].电力系统自动化,2001,25(11):6-10.
    [139]薛禹胜.EEAC与直接法的机理比较:(二)壁垒点与观察点[J].电力系统自动化,2001,25(12):1-7.
    [140]薛禹胜.EEAC与直接法的机理比较:(三)定性判稳与定量分析[J].电力系统自动化,2001,25(13):1-5.
    [141]薛禹胜.EEAC与直接法的机理比较:(四)回顾与瞻望[J].电力系统自动化,2001,25(14):1-5.
    [142] Effron B. Estimating the error rate of a prediction rule: improvement on cross-validation[J]. Journal of the American Statistical Association, 1983, 78(402):316-331.
    [143] Kundur P. Power system stability and control[M]. New York, McGraw-Hill Company, 1994:380-460.
    [144]杨以涵,唐国庆,高曙.专家系统及其在电力系统中的应用[M].北京,水利电力出版社,1995:88-120.
    [145]李龙澍,凌成.基于时态逻辑的知识表示研究[J].安徽大学学报(自然科学版),2002,26(2):14-18.
    [146]刘培奇,李增智,赵银亮.扩展产生式规则知识表示方法[J].西安交通大学学报,2004,38(6):587-590.
    [147]李蕾,高铁曼.产生式规则专家系统的原理与实现[J].微计算机应用,2006,27(5):631-635.
    [148]赵鹏大,胡光道,李新中.基于语义网络知识表示的专家系统的设计[J].地球科学-中国地质大学学报,1994,7(4):15-20.
    [149]夏幼明,刘海庆,徐天伟.基于语义网络的知识表示的形式转换及推理[J].武汉大学学报(信息科学版) ,2001,26(4):369-372.
    [150]吴爱军,陶俊才,周绍梅,饶虹.一种基于规则的神经网络的知识表示和推理方法[J].计算机与现代化,2003,89(1):27-28.
    [151]朱光菊,夏幼明.框架知识表示及推理的研究与实践[J].云南大学学报(自然科学版),2006,28(1):154-157.
    [152]付炜.基于框架网络结构的专家知识表示方法研究[J].计算机应用,2002,22(1):3-6.
    [153]白振兴.专家系统中推理机的设计与实现[J].现代电子技术,1995,12(4):13-16.
    [154]史铁林,王雪.设备诊断专家系统中的一种并行反向推理算法[J].华中理工大学学报,1996,18(4):22-26.
    [155]张学军,刘小冰,阎彩萍,陈佩琳,王锡田.基于正反向推理的电力系统故障诊断[J].电力系统自动化,1998,22(5):30-34.
    [156]张学军,王建新.用于电网结构知识表示的框架网络法[J].电网技术,1998,22(8):18-19.
    [157]段振国,高曙,杨以涵.电网结构知识表示方法研究与管理系统开发[J].中国电力,1999,32(2):34-37.
    [158]袁崇义.Petri网原理[M].北京:电子工业出版社,1998:520-560.
    [159] Cavalieri S. Improving Performance of a Flexible Manufacturing System by Petri net Based Modeling and Simulation[C]. In: Industrial Electronics Society, 2000. IECON 2000. 26th Annual Conference of the IEEE. Nagoya(Japan), 2000.
    [160] Lee J, Member S. Modeling Uncertainty Reasoning with Possibilistic Petri Net[C]. IEEE Trans on System Man and Cybernetics-part B: Cybernetics,2003,33(2): 16-19.
    [161] Retchkiman Z. Stability and Stabilization Techniques for Discrete Event Systems Modeled by Coloured Petri Nets[C]. Proceedings of the 2000 IEEE International Conference. Anchorage, (USA), 2000:25-30.
    [162] Gotesman M, Lopez-Benitez N. Petri Net-based Modeling of Hybrid Dynamic Systems[C]. In: Emerging Technologies and Factory Automation, 1996 IEEE Conference. Kauai(Hawaii): 1996:35-41.
    [163]孙静,秦世引,宋永华.一种基于Petri网和概率信息的电力系统故障诊断方法[J].电力系统自动化,2003,27(13):10-14.
    [164]马骞,杨以涵,刘文颖,等.基于对象Petri网技术的电力系统故障恢复方法[J].电网技术,2005,29(3):23-28.
    [165]王磊,万秋兰.扩展时序Petri网在仿真保护及自动装置动作逻辑中的应用[J].电力系统自动化,2005,29(6):71-74.
    [166]赖晓平,周鸿兴.电力系统网络拓扑分析的有色Petri网模型[J].电网技术,2000, 24(12):5-10.
    [167]李建湘,邓康,汤四平.命题逻辑中的蕴涵置换法[J].数学理论与应用,2003, 23(4):31-34.
    [168]刘晓霞.基于Petri网的知识库维护方法的研究[J].小型微型计算机系统,1997,18(7):74-77.
    [169]董红斌,杨巨庆.Petri网:概念、分析方法和应用[J].哈尔滨师范大学自然科学学报,1999,15(5),59-60.
    [170] Carl Hewitt. Viewing Control Structures as Patterns of Passing Messages[J]. Artificial Intelligence, 1977,8(3): 323-364.
    [171] Minsky, Marvin. The society of Mind[M]. New York: Simon and Schuster, 1986:156-200.
    [172] Hayes Roth. Agent on Stage[C]. Proceedings of IJCAI-95, Montreal, Canada, 1995.
    [173] Wooldridge M, Jennings N R. Intelligent Agents: Theory and Practice[J]. Knowledge Engineering Review, 1995,10(2):1-67.
    [174]王汝传.智能Agent及其在信息网络中的应用[J].北京:北京邮电大学出版社,2006.
    [175]史忠植.智能主体及应用[M].北京,科学出版社,2000:270-310.
    [176] Dy-liacco T E, The Adaptive Reliability of Control System[J]. IEEE Trans. on PAS, vol. Pas-86, May, 1967: 517-531.
    [177] Fink L H, Carlsen K, Operating under stress and strain[J]. IEEE Spectrum, Vol. 15, March 1978: 48-53.
    [178] Zaborszky J, Operation of the large Interconnected power system by Decision and Control[J]. IEEE Trans. Power Apparatus Syst. 1980, PAS-99: 37-45.
    [179] Zaborszky J, A large System Approach Toward operating the Electric Power System By Decision and Control[J]. Proc. Am. Control Conf. 1984: 1143-1155.
    [180] Zaborszky J, Ilic M, Huang G, Computer control of a large power system during faults or inherently adaptive selective protection[J]. IEEE Trans. Power Apparatus Syst. PWRS-2, 1987: 494-504.
    [181] M E Bratman. Intentions, Plans, and Practical Reason[M]. Havard University Press: Cambridge, MA, 1987:365-420.
    [182] N R Jennings. Joint Intentions as a Model of Multiagent Cooperation[D]. Ph. D. dissertation, University of London, 1992:570-600.
    [183] A S Hardadi. Communication and Cooperation in Agent Systems[M]. Berlin:Springer, 1996:620-670.
    [184] B Dunin-Keplicz, R Berbrugge. Collective Commitments[C]. The Second International Conference on Multi-Agent Systems. Mento Park, California: AAAI Press, 1996, 56-63.
    [185] K Fischer, J P Muller,et al. A Model for Cooperative Trans-portation Scheduling[M]. Proceedings of the First International Conference on Multi-Agent Systems, AAAI Press/MIT Press, San Francisco, California, 1995:109-116.
    [186] E H Durfee, V Lesser. Negotiating Task Decomposition and Application Using Partial Global Planning[J]. Distributed Artificial Intelligence 1989, 12(2): 229-244.
    [187] K Decker, V Lesser. Designing a Family of Coordination Algorithms[C]. The First International Conference on Multi-agent Systems, San Francisco, CA, June, 1995:73-80.
    [188] L Magnus, L Andrew. The OASIS Air Traffic Management System[J]. August, 1992 Technical Note 28.
    [189] V Manuela, S Peter. A Team of Robotic Soccer Agents Collab-orating in anAdversarial Environment[C]. Proceedings of the First International Workshop on RoboCup, Nagoya, Japan, August 1997:120-130.
    [190] J H Hu, D Wellman. Learning Models of Intelligent Agent[J]. International Journal of Human-Computer Studies, 1998, 4(8):21-26.
    [191] P Stone, M Veloso. Multi-agent systems: A Survey From the Machine Learning Perspective[J]. IEEE Trans on Knowledge and Data Engineering, 1998, 13(5):67-77.
    [192]吴琼,刘文颖,杨以涵.智能型电网调度决策支持系统的开发与实现[J].电力系统自动化,2006,39(12):79-83.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700