用户名: 密码: 验证码:
Sonic hedgehog信号通路在胰腺癌发生发展过程中的作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Sonic hedgehog信号通路在胰腺癌发生发展过程中的作用机制研究
     目的研究胚胎发育信号通路Sonic hedgehog(SHH)在胰腺癌中的作用及其生物学意义,探讨SHH与WNT/β-catenin和EGFR信号通路的关系,并通过特异性阻断SHH信号通路,观察对胰腺癌细胞的影响,探索胰腺癌靶向治疗的新方法。
     方法逆转录聚合酶链反应(RT-PCR)、Western blot、免疫荧光和免疫组化法分别检测胰腺癌组织和细胞系中SHH信号通路主要分子的mRNA和蛋白表达情况,分析其与WNT/β-catenin和EGFR信号通路的相关性及其意义;用SHH信号通路特异性抑制剂cyclopamine处理胰腺癌细胞系,或用野生型PTC1真核表达质粒转染细胞系后,观察对EGFR表达的影响;用不同浓度Cyclopamine单独或联合Iressa处理胰腺癌细胞系后,通过四唑盐(MTT)比色试验检测癌细胞增殖状况,用流式细胞仪检测各组的细胞周期和凋亡率;RT-PCR和Western blot检测下游基因Bcl-2和p21的表达。
     结果SHH mRNA和蛋白在胰腺癌组织中呈高表达状态,与癌旁组织相比,差异有统计学意义(P<0.05)。SHH蛋白表达与β-catenin和EGFR蛋白表达呈正相关关系,且与年龄、肿瘤大小、组织学类型和肿瘤部位等病理因素均无关(P>0.05),而在不同淋巴结转移状况和TNM分期的病例组中,表达差异有统计学意义(P<0.05)。用cyclopamine处理胰腺癌细胞系,或用野生型PTC1真核表达质粒转染细胞系后,EGFR的表达下调。
     流式细胞术检测可见,野生型PTC1转染组的细胞凋亡率达24.5%,转染突变型PTC1组的细胞凋亡率达8.3%,与对照组相比明显升高(P<0.01)。而转染空质粒组的凋亡率无明显变化。随着Cyclopamine单独或联合Iressa作用浓度增加和时间延长,对PANC-1, SUIT-2, ASPC-1细胞增殖的抑制作用逐渐增强;联合应用Cyclopamine和Iressa具有相加的抑制效果。Cyclopamine单独或联合Iressa使细胞周期阻滞在G0/G1期,细胞凋亡率增加。Cyclopamine可以使Bcl-2基因表达下调,并使p21表达上调。
     结论SHH和WNT/β-catenin信号通路在胰腺癌组织中呈活化状态,二者之间的交叉对话对胰腺癌的发生发展可能起重要作用。SHH与EGFR信号转导通路关系密切。PTC1作为一种重要的抑癌基因对胰腺癌细胞体外作用有重要影响,其主要的机制可能是通过SHH/PTC1/Gli1信号转导通路,作用于下游效应分子EGFR,对其产生直接影响。SHH信号通路特异性阻断剂Cyclopamine通过影响Bcl-2和p21基因表达,导致细胞周期阻滞和促进细胞凋亡,发挥对胰腺癌细胞增殖的抑制效应,并且这种效应呈剂量依赖性。
     第一部分
     胚胎发育信号通路Sonic hedgehog在胰腺癌中的表达及意义
     目的研究胚胎发育信号通路Sonic hedgehog(SHH)在胰腺癌中的表达及其生物学意义。
     方法用逆转录聚合酶链反应(RT-PCR)技术和免疫组化方法,检测Sonic hedgehog信号通路主要成分SHH、SMO和Gli1在胰腺癌组织及癌旁组织中的mRNA和蛋白表达情况。
     结果78.9%(30/38)胰腺癌组织中检测到SHH mRNA表达;18.4%(7/38)癌旁正常组织SHH mRNA阳性。免疫组化结果显示: 84.2% (32/38)胰腺癌组织SHH蛋白呈阳性表达;癌旁胰腺组织SHH阳性率为21.1%(8/38)。两组差异有显著意义(P <0.01)。SHH蛋白表达与年龄、肿瘤大小、组织学类型和肿瘤部位等病理因素均无关(P>0.05),而在不同淋巴结转移状况和TNM分期的病例组中,表达差异有统计学意义(P<0.05)。胰腺癌组织中的SMO的mRNA表达是正常组织中的2.38倍,差异显著(p<0.05);Gli1mRNA在胰腺癌组织中的表达与正常组织比较为2.21,显著差异(p<0.05)。胰腺癌组织中SMO蛋白表达的阳性率为92.1% (35/38),癌旁正常组织中阳性率仅为18.4%(7/38),且与配对的癌旁组织相比,SMO在胰腺癌组织中均为高表达,两者比较差异有统计学意义(P<0.05)。胰腺癌组织中Gli1蛋白表达的阳性率为为86.8% (33/38),癌旁正常组织中阳性率仅为13.2%(5/38),且与配对的癌旁组织相比,Gli1在胰腺癌组织中均为高表达,两者比较差异有统计学意义(P<0.05)。
     结论SHH信号通路主要分子在胰腺癌组织中表达均增高,SHH信号途径可能在胰腺癌发生发展过程中起重要作用。
     第二部分
     Sonic hedgehog信号通路与WNT/β-catenin信号通路的相关性研究目的研究发育信号通路Sonic hedgehog(SHH)和WNT/β-catenin在胰腺癌组织中的表达及其相关性。
     方法逆转录聚合酶链反应(RT-PCR)和Western blot法检测胰腺癌组织及癌旁组织中SHH和β-catenin的mRNA和蛋白表达情况。
     结果SHH mRNA和蛋白在胰腺癌组织中的阳性率分别为81.6%和79.6%,与癌旁组织相比,差异有统计学意义(P<0.05)。β-catenin蛋白在胰腺癌组织中的阳性率为71.4%,与癌旁组织相比,差异有统计学意义(P<0.05)。而β-catenin mRNA在胰腺癌组织和癌旁组织中的表达水平均较低,差异无统计学意义(P>0.05)。SHH和β-catenin蛋白表达与年龄、肿瘤大小、组织学类型和肿瘤部位等病理因素均无关(P>0.05),而在不同淋巴结转移状况和TNM分期的病例组中,二者表达差异有统计学意义(P<0.05)。配对资料的Spearman相关分析显示, SHH表达与β-catenin表达呈正相关关系(γ=0.352, P<0.05)。
     结论SHH和WNT/β-catenin信号通路在胰腺癌组织中呈活化状态,二者之间的交叉对话对胰腺癌的发生发展可能起重要作用。
     第三部分Sonic hedgehog信号传导通路与表皮生长因子受体的关系
     论文1 SHH在胰腺癌组织中的表达及其与表皮生长因子受体的关系目的研究Sonic hedgehog(SHH)在胰腺癌组织中的表达及其与表皮生长因子受体(EGFR)的关系。
     方法逆转录聚合酶链反应(RT-PCR)和Western blot法、免疫组化SP法分别检测胰腺癌组织及癌旁组织中SHH和EGFR的mRNA和蛋白表达情况。
     结果SHH mRNA和蛋白在胰腺癌组织中的阳性率分别为81.6%和79.6%,与癌旁组织相比,差异有统计学意义(P<0.05)。EGFR mRNA和蛋白在胰腺癌组织中的阳性率均为73.5%,与癌旁组织相比,差异有统计学意义(P<0.05)。SHH和EGFR蛋白表达与年龄、肿瘤大小、组织学类型和肿瘤部位等病理因素均无关(P>0.05),而在不同淋巴结转移状况和TNM分期的病例组中,二者表达差异有统计学意义(P<0.05)。配对资料的Spearman相关分析显示, SHH表达与EGFR表达呈正相关关系(γ=0.232, P<0.05)。
     结论SHH和EGFR在胰腺癌组织中均呈高表达状态,二者之间存在密切的相关性,SHH和EGFR协同参与了胰腺癌的发生发展。
     论文2 SHH/SMO在胰腺癌细胞系中的表达及其与EGFR的关系研究
     目的研究胚胎发育相关信号通路Sonic hedgehog ( SHH )和EGFR在人胰腺癌细胞系PANC-1, SUIT-2, ASPC-1中的mRNA和蛋白的表达,以及shh信号通路抑制剂对EGFR表达的影响。
     方法传代培养人胰腺癌细胞系,利用逆转录-聚合酶链式反应(RT—PCR)法分别检测SHH、SMO和EGFR在PANC-1, SUIT-2, ASPC-1中的mRNA的表达情况;Western blot和免疫荧光试验检测SHH和EGFR蛋白的表达;用特异性抑制剂cyclopamine处理胰腺癌细胞细胞后,观察EGFR表达的改变。
     结果人胰腺癌细胞系PANC-1, SUIT-2, ASPC-1中均有不同程度SHH、SMO和EGFR表达,其中SUIT-2的表达最强;免疫荧光检测显示,SHH蛋白主要表达在胞浆中,而EGFR主要表达在胞膜上。用cyclopamine 2.5μM作用细胞系48h后,EGFR的mRNA和蛋白表达呈不同程度下调。
     结论Sonic hedgehog ( Shh )和EGFR信号通路在胰腺癌细胞系中均呈活化状态,阻断SHH信号通路可以下调EGFR表达。
     论文3胰腺癌细胞系体外转染PTC1对EGFR表达的影响
     目的研究Hedgehog信号转导通路中抑癌基因PTC1体外对胰腺癌细胞生长的抑制作用,及对EGFR表达的影响。
     方法用携带有野生型PTC1和突变型PTC1的真核表达载体及空载质粒转染SUIT-2细胞;用Western blot检测转染后PTC1蛋白表达的变化;检测转染后下游EGFR蛋白的表达。流式细胞技术检测细胞周期和细胞凋亡情况。
     结果PcDNA3.1-PTC1wt、PcDNA3.1-PTC1mt及空载质粒转染细胞后,于荧光显微镜下观察,可见转染成功的细胞呈明显的绿色。转染野生型PTC1,突变型PTC1,空载质粒及未转染细胞1,2,3,4,5,6,7d后绘制细胞生长曲线明显可见转染野生型PTC1组细胞的生长可速度明显减慢,而未转染组和转染空载体质粒组无明显变化。转染野生型PTC1基因后,其表达明显升高,与转染突变型PTC1基因后有明显差异;转染野生型PTC1基因后,EGFR的表达明显下降,与其他3组有明显差异。流式细胞术检测可见,野生型PTC1转染组的细胞凋亡率达24.5%,转染突变型PTC1组的细胞凋亡率达8.3%,与对照组相比明显升高(P<0.01)。而转染空质粒组的凋亡率无明显变化。
     结论野生型PTC1转染胰腺癌细胞后,凋亡率有显著意义的改变,并可使细胞停滞于G1期。转染前后EGFR相应的改变说明,SHH与EGFR信号转导通路的关系密切。PTC1胰腺癌细胞体外作用的主要机制可能是通过SHH/PTC1/Gli1信号转导通路,作用于下游效应分子EGFR,对其产生直接影响。
     第四部分
     特异性阻断SHH信号通路对胰腺癌细胞系增殖和凋亡的影响及作用机制目的研究Cyclopamine单独或联合Iressa对胰腺癌细胞系PANC-1, SUIT-2, ASPC-1增殖和凋亡的影响及其作用机制。
     方法不同浓度Cyclopamine单独或联合Iressa处理胰腺癌细胞系后,通过四唑盐(MTT)比色试验检测癌细胞增殖状况,并计算抑制率;用流式细胞仪检测各组的细胞周期;RT-PCR和Western blot检测下游基因Bcl-2和p21的表达。
     结果随着Cyclopamine单独或联合Iressa作用浓度增加,对PANC-1, SUIT-2, ASPC-1细胞增殖的抑制作用逐渐增强;联合应用Cyclopamine和Iressa具有相加的抑制效果。Cyclopamine单独或联合Iressa使细胞周期阻滞在G0/G1期,细胞凋亡率增加。Cyclopamine可以使Bcl-2基因表达下调,并使p21表达上调。
     结论Cyclopamine通过细胞周期阻滞和促进细胞凋亡,发挥对胰腺癌细胞增殖的抑制效应,并且这种效应呈剂量依赖性。
Study on Mechanism of Sonic Hedgehog Signal Pathway in Development of Pancreatic Carcinoma
     Objective To investigate the role of Sonic hedgehog(SHH) signal pathway and its clinical significance in human pancreatic cancer. Explore the correlation between SHH、WNT/β-catenin and EGFR signal pathways. To assess the inhibitory effects through the blockade of the SHH signaling pathways by cyclopamine.
     Methods Reverse transcription-polymerase chain reaction (RT-PCR), Western blot, Immunofluorescence and immunohistochemistry assay were used to determine the mRNA and protein expression of SHH in human pancreatic cancer tissue and pancreatic cancer cell lines. Analysis the correlation between SHH、WNT/β-catenin and EGFR signal pathways. Detect the EGFR expression level after cyclopamine treatment, or transfected with the wild-type PTC1 plasmid. Pancreatic cancer cells were treated with different concentrations of cyclopamine, alone or in combination with iressa, the antiproliferative effect of pancreatic cancer cells was analysed by methyl thiazolyl tetrazolium(MTT) assays. Flow cytometry analysis was used to detect the cellular cycle distribution and apoptosis of pancreatic cancer cells. RT-PCR and Western blot were used to detect the expression of Bcl-2 and p21.
     Results The SHH mRNA and protein expression was high in pancreatic cancer, compared with normal tissue adjacent to cancer(P <0.05). The relationship between SHH andβ-catenin or EGFR protein was positive(P<0.05), and these expressions have no correlation with age, tumor size, pathological type and tumor site(P >0.05), but has a relationship with lymph node metastasis and TNM stage(P <0.05). The EGFR expression level was downregulated after cyclopamine treatment, or transfected with the wild-type PTC1 plasmid. Cyclopamine and Iressa induced a growth inhibitory effect in a dose-dependent manner. Moreover, the combined use of 2.5μM cyclopamine and 1μM Iressa induced an additive inhibitory effect, which was much more than that of 5μM cyclopamine or 5μM Iressa alone. The percentage of cell population of the G0/G1 and sub-G1 phase was significantly increased, while that in S and G2/M phase decreased, along with the increasing dose of cyclopamine and/or Iressa. Moreover, 2.5μM cyclopamine plus 1μM Iressa induced greater apoptosis rate than any agent alone. The expression of Bcl-2 and p21 were downregulated by Cyclopamine.
     Conclusion The SHH and WNT/β-catenin signaling pathways were active in human pancreatic cancer. The crosstalk between these pathways may play an important role in the carcinogenesis and development of pancreatic carcinoma. Sonic hedgehog and EGFR signal pathways are active in pancreatic cancer cells. Blockade of SHH signaling could downregulate EGFR expression. Cyclopamine could downregulate the expression of Bcl-2 and p21, and induced cell cycle arrest and apoptosis.The simultaneous blockade of SHH and EGFR signaling represents possible targets of new treatment strategies for pancreatic carcinoma.
     PART ONE The expression of sonic hedgehog(SHH) in human pancreatic cancer Objective To investigate the expression of Sonic hedgehog(SHH)and its clinical significance in human pancreatic cancer.
     Methods Reverse transcription-polymerase chain reaction (RT-PCR) assay and immunohistochemistry were used to determine the mRNA and protein expression of SHH,SMO and Gli1 in human pancreatic cancer tissue and normal tissues adjacent to cancer.
     Results The SHH mRNA expression was detected in 78.9%(30/38)of pancreatic cancer, while only 18.4%(7/38) of normal tissue adjacent to cancer. Immunohistochemical analysis showed that the SHH protein expression was 84.2% (32/38) in pancreatic cancer tissues, and 21.1%(8/38)in normal tissues. There was a significant difference between them(P <0.01). Overexpression of SHH protein in pancreatic cancer has no correlation with age, tumor size, pathological type and tumor site(P >0.05), but the difference of lymph node metastasis,TNM stage were significant(P <0.05). The SMO mRNA expression in cancer tissue was 2.38 stronger than that in normal tissue. The Gli1 mRNA expression in cancer tissue was 2.21 stronger than that in normal tissue. The SMO protein expression was detected in 92.1%(35/38)of pancreatic cancer, while only 18.4%(7/38) of normal tissue adjacent to cancer. The Gli1 protein expression was detected in 86.8%(33/38)of pancreatic cancer, while only 13.2%(5/38) of normal tissue adjacent to cancer.
     Conclusion The expression of SHH signal molecular was increased in human pancreatic cancer. The overexpression of SHH signaling pathway may play an important role in the carcinogenesis and development of pancreatic carcinoma.
     PART TWO The expression of sonic hedgehog andβ-catenin in human pancreatic cancer
     Objective To investigate the expression of Sonic hedgehog(SHH)and WNT/β-catenin signaling pathways in human pancreatic cancer.
     Methods Reverse transcription-polymerase chain reaction (RT-PCR) and Western blot assay were used to determine the mRNA and protein expression of SHH andβ-catenin in human pancreatic cancer tissue and normal tissues adjacent to cancer.
     Results The SHH mRNA and protein expression was detected in 81.6% and 79.6% of pancreatic cancer, respectively. Theβ-catenin protein expression was 71.4% in pancreatic cancer tissues. These were significantly different from that of normal tissue adjacent to cancer(P <0.05). But the expression level ofβ-catenin mRNA was low in both pancreatic cancer tissues and normal tissues. There was no significant difference between them(P >0.05). The expression of SHH andβ-catenin protein in pancreatic cancer has no correlation with age, tumor size, pathological type and tumor site(P >0.05), but has a relationship with lymph node metastasis and TNM stage(P <0.05). The relation between SHH andβ-catenin protein was positive(γ=0.352, P<0.05).
     Conclusions The SHH and WNT/β-catenin signaling pathways were active in human pancreatic cancer. The crosstalk between these pathways may play an important role in the carcinogenesis and development of pancreatic carcinoma.
     PART THREE The correlation between sonic hedgehog and EGFR signal pathways
     PAPER 1 The expression of sonic hedgehog and EGFR in pancreatic cancer Objective To investigate the expression of Sonic hedgehog(SHH)and EGFR signaling pathways in human pancreatic cancer.
     Methods Reverse transcription-polymerase chain reaction (RT-PCR) and Western blot assay ,immunohistochemistry were used to determine the mRNA and protein expression of SHH and EGFR in human pancreatic cancer tissue and normal tissues adjacent to cancer. Results The SHH mRNA and protein expression was detected in 81.6% and 79.6% of pancreatic cancer, respectively. The EGFR mRNA and protein expression were both 73.5% in pancreatic cancer tissues. These were significantly different from that of normal tissue adjacent to cancer(P <0.05). The expression of SHH and EGFR protein in pancreatic cancer has no correlation with age, tumor size, pathological type and tumor site(P >0.05), but has a relationship with lymph node metastasis and TNM stage(P <0.05). The relationship between SHH and EGFR protein was positive(γ=0.232, P<0.05).
     Conclusion The SHH and EGFR signaling pathways were active in human pancreatic cancer. The crosstalk between these pathways may play an important role in the carcinogenesis and development of pancreatic carcinoma.
     PAPER 2 The expression of SHH/SMO in human pancreatic cancer cells and correlation with EGFR
     Objective To investigate the expression of sonic hedgehog (SHH) and epidermal growth factor receptor (EGFR) signal molecules in pancreatic cancer cells, and to assess the inhibitory effects through the blockade of the SHH signaling pathways by cyclopamine.
     Methods The expression of SHH, SMO and EGFR in pancreatic cancer cell lines (PANC-1, SUIT-2, and ASPC-1) was detected by RT–PCR、Immunofluorescence and Western blot analysis. Detect the expression of EGFR before and after cyclopamine treatment.
     Results All of the 3 pancreatic cancer cell lines expressed SHH, Smoothened (SMO), and EGFR, but the expression level was higher in SUIT-2 cells than the other two cell lines; SHH was located in cell plasma, and EGFR was located on cell membrane. Cyclopamine could downregulate the expression of EGFR in all cell lines.
     Conclusion Sonic hedgehog and EGFR signal pathways are active in pancreatic cancer cells. Blockade of SHH signaling could downregulate EGFR expression.
     PAPER 3 The EGFR expression in pancreatic cancer cells transfected with PTC1 plasmid in vitro
     Objective: To investigate the effects of the tumor suppressor gene PTC1 on the growth inhibition and down-regulation of EGFR in pancreatic cancer cells.
     Method:SUIT-2 cells were transfected with wild-type PTC1 plasmids and mutant-PTC1 plasmids in vitro. After transfection, the expression of the PTC1 and EGFR were detected by western blot. Flow cytometry was used to analyze apoptosis and cell cycle of the transfected cells.
     Results:After transtected with wild-type PTC1, the growth rates of pancreatic cells were slow down, but the other groups of cells have no change. Compared with the control, the expression of Ptc1 were increased when transfected with the wild-type PTC1 and EGFR were down-regulated respectively. The apoptosis rates in wild-type PTC1 transtected group was 24.5%, and the mutant-PTC1 transtected group was 8.3%(P<0.01). But the apoptosis rate of blank plasmid group has no change.
     Conclusion:Wild-type PTC1 could induce a cell cycle arrest in G1 phase. Wild-type PTC1 could decrease the EGFR expression level and induce cells apoptosis.
     PART FOUR Blockade of sonic hedgehog signal pathway induce antiproliferative effect and apoptosis in pancreatic cancer cells
     Objective To investigate the inhibitory effects through the blockade of SHH and EGFR signaling pathways by cyclopamine and Iressa, respectively.
     Methods The PANC-1, SUIT-2, ASPC-1 cells were treated with different concentrations of cyclopamine, alone or in combination with iressa, the antiproliferative effect of pancreatic cancer cells was analysed by methyl thiazolyl tetrazolium(MTT) assays. Flow cytometry analysis was used to detect the cellular cycle distribution and apoptosis of pancreatic cancer cells. RT-PCR and western blot were used to detect Bcl-2 and p21 expression.
     Results Cyclopamine and Iressa induced a growth inhibitory effect in a dose-dependent manner. Moreover, the combined use of 2.5μM cyclopamine and 1μM Iressa induced an additive inhibitory effect, which was much more than that of 5μM cyclopamine or 5μM Iressa alone. The percentage of cell population of the G0/G1 and sub-G1 phase was significantly increased, while that in S and G2/M phase decreased, along with the increasing dose of cyclopamine and/or Iressa. Moreover, 2.5μM cyclopamine plus 1μM Iressa induced greater apoptosis rate than any agent alone. Cyclopamine could decrease the Bcl-2 expression and increase the p21 expression.
     Conclusion Cyclopamine could induce cell cycle arrest and apoptosis in pancreatic cancer cells. The simultaneous blockade of SHH and EGFR signaling represents possible targets of new treatment strategies for pancreatic carcinoma.
引文
[1].廖泉,赵玉沛.胰腺癌诊治现状和进展(近2年国内文献回顾).中华肝胆外科杂志,2003,9:502-505
    [2].张延龄.胰腺癌的早期诊断.中华肝胆外科杂志,2002,8:83-84.
    [3].郑树森,李启勇,黄东胜,等.胰腺癌的外科治疗及随访研究(附216例报道).中华肝胆外科杂志,2003,9:134-136
    [4]. Ruizi Altaba A,Sanchez P,Dahmane N.Gli and hedgehog in cancer:tumours,embryos and stem cells.Nature Rev Cancer,2002,2:361-372.
    [5]. Karhadkar SS, Steven Bova G, Abdallah N, et al. Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature, 2004, 431:707
    [6]. Grachtchouk V,Grachtchouk M ,Lowe L, et al. The magnitude of hedgehog signaling activity defines skin tumor phenotype.EMBO,2003,22:2741—2751.
    [7]. Watkins DN,Berman DM .Burkholder SG,et al.Hedgehog signalling within airway epithelial progenitors and in small cell lung cancer.Nature,2003,422:313-317.
    [8]. Kalderon D.Transducing the hedgehog signa1.Cell, 2000,103:371-374
    [9]. Toftgard R.Hedgehog signalling in cancer.Cell Mol Life Sci,2000,57:1720—1731.
    [10]. Berman DM ,Karhadkar SS,Maitra A.Wide spread requirement for Hedgehog ligand stimulation in growth of digestivetract tumour.Nature, 2003,425:846-851
    [11]. Thayer SP,Di Magliano MP,Heiser Pw,et al.Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis.Nature,2003,425:851-856.
    [12]. Sui G, Bonde P, Dhara S, et al. Epidermal growth factor receptor and hedgehog signaling pathways are active in esophageal cancer cells from rat reflux model. J Surg Res,2006,134:1-9
    [13]. Ingham PW, McMahon AP.Hedgehog signaling in animal evelopment:paradigms and principles.Genes Dev,2001,15:3059-3087.
    [14]. Berman DM ,Karhadkar SS,Haliahan AR,et a1.Medulloblastoma growth inhibition by hedgehog pathway blockade.Science,2002,297:1559—1561.
    [1].廖泉,赵玉沛.胰腺癌化学药物治疗现状及其发展方向.中华普通外科杂志,2000,15:302-304
    [2].李治,黄韬,贺艳丽,等.乳腺癌干细胞的端粒酶活性测定及其意义.中华普通外科杂志,2006,21:684-685
    [3]. Ruizi Altaba A,Sanchez P,Dahmane N.Gli and hedgehog in cancer:tumours,embryos and stem cells.Nature Rev Cancer,2002,2:361-372.
    [4]. Kolligs FT, Bommer G, Goke B. WNT/beta-catenin/tcf signaling: a critical pathway in gastrointestinal tumorigenesis. Digestion, 2002, 66: 131-144
    [5]. Ingham PW, McMahon AP.Hedgehog signaling in animal evelopment:paradigms and principles.Genes Dev,2001,15:3059-3087.
    [6]. Toftgard R.Hedgehog signalling in cancer.Cell Mol Life Sci,2000,57:1720—1731.
    [7]. Grachtchouk V,Grachtchouk M ,Lowe L, et al. The magnitude of hedgehog signaling activity defines skin tumor phenotype.EMBO,2003,22:2741—2751.
    [8]. Watkins DN, Berman DM, Burkholder SG, et al.Hedgehog signalling within airway epithelial progenitors and in small cell lung cancer.Nature,2003,422:313-317.
    [9]. Berman DM ,Karhadkar SS,Maitra A.Wide spread requirement for Hedgehog ligand stimulation in growth of digestivetract tumour.Nature, 2003,425:846-851
    [10]. Thayer SP,Di Magliano MP,Heiser Pw,et al.Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis.Nature,2003,425:851-856.
    [11]. Morin PJ. beta-catenin signaling and cancer. Bioessays,1999,21: 1021-1030
    [12]. Rubinfeld B, Robbins P, EL-Gamil M ,et al. Stabilization ofβ-catenin by genetic defects in melanoma cell line. Science,1997, 275 :1790-1792.
    [13]. Alman BA, Catherine L, pajerski ME,et al. Increasedβ-catenin protein and somatic APC mutation in sporadic aggressive fibromatoses. Am J Pathol,1997,151:329-334.
    [14]. Aberle H, Bauer A, Stappert J,et al.β-catenin is a target for the ubiquitin-ptoteasome pathway. Eur Molec Biol Organ, 1997, 16:3797-3804.
    [15]. Viti J, Gulacsi A, Lillien L. WNT Regulation of Progenitor Maturation in the Cortex Depends on Shh or Fibroblast Growth Factor 2. J Neurosci, 2003, 23:5919-5927
    [16]. Musani V, Gorry P, Basta-Juzbasic A, et al. Mutation in exon 7 of PTCH deregulates SHH/PTCH/SMO signaling: possible linkage to WNT. Int J Mol Med,2006, 17:755-9.
    [17]. Elizabeth AM. WNT signalling via the epidermal growth factor receptor: a role in breast cancer? Breast Cancer Res,2004, 6:65-68
    [18]. Sui G, Bonde P, Dhara S, et al. Epidermal growth factor receptor and hedgehog signaling pathways are active in esophageal cancer cells from rat reflux model. J Surg Res,2006,134:1-9
    [19]. Brabletz T, Jung A, Dag S, et al. beta-catenin regulates the expression of the matrix metalloproteinase-7 in human colorectal cancer. Am J Pathol,1999,155: 1033-1038
    [1].张学宏,高玉堂,邵常霞,等.既往疾病史与胰腺癌关系的流行病学研究.肿瘤,2006,26(1):37-41
    [2].程磊周梁.肿瘤干细胞的研究进展.肿瘤,2006,26(7):688-690
    [3]. Ruizi Altaba A,Sanchez P,Dahmane N.Gli and hedgehog in cancer:tumours,embryos and stem cells.Nature Rev Cancer,2002,2(5):361-372.
    [4]. Ueda S, Hatsuse K, Tsuda H, et al. Potential crosstalk between insulin-like growth factor receptor type 1 and epidermal growth factor receptor in progression and metastasis of pancreatic cancer. Mod Pathol. 2006 Jun;19(6):788-96.
    [5]. Ingham PW, McMahon AP.Hedgehog signaling in animal evelopment:paradigms and principles.Genes Dev,2001,15(23):3059-3087.
    [6]. Toftgard R.Hedgehog signalling in cancer.Cell Mol Life Sci,2000,57(12):1720—1731.
    [7]. Grachtchouk V,Grachtchouk M ,Lowe L, et al. The magnitude of hedgehog signaling activity defines skin tumor phenotype.EMBO,2003,22(11):2741—2751.
    [8]. Watkins DN, Berman DM, Burkholder SG, et al.Hedgehog signalling within airway epithelial progenitors and in small cell lung cancer.Nature,2003,422(6929):313-317.
    [9]. Berman DM ,Karhadkar SS,Maitra A.Wide spread requirement for Hedgehog ligand stimulation in growth of digestivetract tumour.Nature, 2003,425(6960):846-851
    [10]. Thayer SP,Di Magliano MP,Heiser Pw,et al.Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis.Nature,2003,425(6960):851-856.
    [11]. Buck E, Eyzaguirre A, Brown E, et al. Rapamycin synergizes with the epidermal growth factor receptor inhibitor erlotinib in non-small-cell lung, pancreatic, colon, and breast tumors. Mol Cancer Ther. 2006;5(11):2676-84.
    [12]. Z Wang, R Sengupta, S Banerjee, et al. Epidermal growth factor receptor-related protein inhibits cell growth and invasion in pancreatic cancer. Cancer Res 2006; 66(15):7653-60.
    [13]. Sui G, Bonde P, Dhara S, et al. Epidermal growth factor receptor and hedgehog signaling pathways are active in esophageal cancer cells from rat reflux model. J Surg Res,2006,134(1):1-9
    [14]. Mimeault M, Moore E, Moniaux N, et al. Cytotoxic effects induced by a combination of cyclopamine and gefitinib, the selective hedgehog and epidermal growth factor receptor signaling inhibitors, in prostate cancer cells. Int J Cancer 2006;118(4):1022-31.
    [15]. Amin A, Li Y, Finkelstein R. Hedgehog activates the EGF receptor pathway during Drosophila head development. Development 1999; 126(12): 2623-30.
    [1]. Rosenberg L.Pancreatic cancer:a review of emerging therapies. Drugs 2000;59:1071—1089
    [2]. RegineWF,JohnVVJ,Mohiuddin M.Current and emerging treatments for pancreatic cancer.Drugs Aging 1997;11:285-295
    [3]. Thayer SP,di Magliano M P,Heiser PW ,N ielsen CM ,RobertsDI,Lauwers GY,Qi YP,Gysin S,Fernandezdel Castillo C,Yajnik V,Antoniu B,McMahon M,Warshaw AL,Hebrok M. Hedgehog iS an early and late mediator of pancreatic cancer tumorigenesis.Nature 2003;425:851—856
    [4]. Berm an DM ,Karhadkar SS,Maitra A.W ide spread requirement for Hedgehog ligand stimulation in growth of digestivetract tumour.Nature 2003;425:846—851
    [5]. Ingham PW .M cM ahon AP.Hedgehog signaling in animal evelopment:paradigms and principles.Genes Dev 2001;15:3059-3087
    [6]. Nasslein—Volhard C,Wieschaus E.Mutations affecting segment number and polarity in Drosophila.Nature 1980;287:795-801
    [7]. Ruiz i Altaba A,Sanchez P,Dahmane N.Gli and hedgehog in cancer:tumours,embryos and stem cells.Nature Rev Cancer2002;2:361-372
    [8]. Murone M,Luoh SM,Stone D.Gli regulation by the opposing activities of fused andsuppressor of fused.Nature Celf Biof2000:2:310—312
    [9]. Kalderon D.Transducing the hedgehog signa1.Cell 2000;103:371-374
    [10]. Toftgard R.Hedgehog signalling in cancer[J].Cell Mol Life Sci,20{}0,57(12):1 720—1731.
    [11]. Thayer SP,Di Magliano MP,Heiser Pw,et a1.Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis [J1.Nature,2003,425(696(J):851 856.
    [12]. Zurawel RH,Allen C.Chiappa S,et a1.Analysis of PTCH/SMO/SHH pathway genes in medulloblastoma[J].Genes Chromosomes Cancer,2()(J(),27(1):44 51.
    [13]. Berman DM,Karhadkar SS.Maitra A,et a1.Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours[J].Nature。2003,425(696{}):846—851.
    [14]. Nishimaki H,Kasai K,Kozaki K,et al_A role of activated Sonic hedgehog signaling for the cellular proliferation of oral squamous cell carcinoma cell line[J].Biochem Biophys Res Commun,2004,314(2):313—320.
    [15]. Xie K,Abbruzzese儿.Developmental biology informs cancer:the emerging role of the hedgehog signaling pathway in upper gastrointestinal cancers~J1.Cancer Cell,2003,4(4):245—247.
    [16]. Freestone SH,Marker P,Grace OC,et a1.Sonic hedgehog regulates prostatic growth and epithelial differentiation[J].Dev Biol,2003,264(2):352 362.
    [17]. Lum I .Yao S,Mozer B,et a1.Identification of Hedgehog pathway components by RNAi in Drosophila cultured cells EJ].Science,2003.299(561 5):2039—2045.
    [1]. Moon HJ, An JY, Heo JS, et al. Predicting survival after surgical resection for pancreatic ductal adenocarcinoma. Pancreas. 2006;32:37-43.
    [2]. Thayer SP, Magliano MP, Heiser PW, et al. Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature. 2003; 425: 851-6.
    [3]. Litingtung Y, Lei L, Westphal H, et al. Sonic hedgehog is essential to foregut development. Nat Genet. 1998;20:58.
    [4]. Berman DM, Karhadkar SS, Maitra A, et al. Widespread requirement for hedgehog ligand stimulation in growth of digestive tract tumours. Nature. 2003;425:846.
    [5]. Wang Z, Sengupta R, Banerjee S, et al. Epidermal growth factor receptor-related protein inhibits cell growth and invasion in pancreatic cancer. Cancer Res. 2006; 66:7653-60.
    [6]. Litingtung Y, Lei L, Westphal H, et al. Sonic hedgehog is essential to foregut development. Nat Genet. 1998;20:58.
    [7]. Carpenter G, Cohen S. Epidermal growth factor. J Biol Chem. 1990;265:7709.
    [8]. Salomon DS, Brandt R, Ciardiello F, et al. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol. 1995;19:183.
    [9]. Mimeault M, Moore E, Moniaux N, et al. Cytotoxic effects induced by a combination of cyclopamine and gefitinib, the selective hedgehog and epidermal growth factor receptor signaling inhibitors, in prostate cancer cells. Int J Cancer. 2006;118:1022-31.
    [10]. Sui G, Bonde P, Dhara S, et al. Epidermal growth factor receptor and hedgehog signaling pathways are active in esophageal cancer cells from rat reflux model. J Surg Res. 2006;134:1-9.
    [11]. Bahra M, Langrehr JM, Koch A, et al. Activation of the hedgehog-patched-signaling pathway in pancreatic adenocarcinomas. Pancreas. 2005; 31:432
    [12]. Amin A, Li Y, Finkelstein R. Hedgehog activates the EGF receptor pathway during Drosophila head development. Development. 1999; 126: 2623-30.
    [13]. Dahmane N, Sanchez P, Gitton Y, et al. The Sonic Hedgehog-Gli pathway regulates dorsal brain growth and tumorigenesis. Development. 2001; 128: 5201-12.
    [14]. Altaba A, Sanchez P, Dahmane N. Gli and hedgehog in cancer: tumours, embryos and stem cells. Nat Rev Cancer. 2002; 2: 361-72.
    [15]. Wessells RJ, Grumbling G, Donaldson T, et al. Tissue-specific regulation of vein/EGF receptor signaling in Drosophila. Dev Biol. 1999; 216: 243-59.
    [16]. Altaba A, Stecca B, Sanchez P. Hedgehog-Gli signaling in brain tumors: stem cells and paradevelopmental programs in cancer. Cancer Lett. 2004; 204: 145-57.
    [17]. Incardona JP, Gaffield W, Kapur RP, et al. The teratogenic Veratrum alkaloid cyclopamine inhibits sonic hedgehog signal transduction. Development. 1998;125:3553.
    [18]. Berman DM, Karhadkar SS, Hallahan AR, et al. Medulloblastoma growth inhibition by hedgehog pathway blockade. Science. 2002;297:1559.
    [19]. Kubo M, Nakamura M, Tasaki A, et al. Hedgehog signaling pathway is a new therapeutic target for patients with breast cancer. Cancer Res. 2004;64:6071.
    [20]. Sanchez P, Hernandez AM, Stecca B, et al. Inhibition of prostate cancer proliferation by interference with sonic hedgehog-gli1 signaling. Proc Natl Acad Sci. 2004; 101:12561.
    [21]. Karhadkar SS, Steven Bova G, Abdallah N, et al. Hedgehog signalling in prostate regeneration, neoplasia and metastasis.Nature. 2004;431:707.
    [22]. Kayed H, Kleeff J, Keleg S, et al. Indian hedgehog signaling pathway: expression and regulation in pancreatic cancer. Int J Cancer. 2004;110:668.
    [23]. Ciardiello F, Caputo R, Bianco R, et al. Antitumor effect and potentiation of cytotoxic drugs activity in human cancer cells by ZD-1839 (Iressa), an epidermal growth factor receptor-selective tyrosine kinase inhibitor. Clin Cancer Res. 2000;6:2053.
    [24]. Kenney AM, Rowitch DH. Sonic hedgehog promotes G(1) cyclin expression and sustained cell cycle progression in mammalian neuronal precursors. Mol Cell Biol. 2000; 20: 9055-67.
    [25]. Qualtrough D, Buda A, Gaffield W, et al. Hedgehog signalling in colorectal tumour cells: induction of apoptosis with cyclopamine treatment. Int J Cancer. 2004;110:831.
    [1]. Taipale J,Chen JK,Cooper MK,et a1.Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine.Nature,2000,406:1005—1009.
    [2]. Ruizi Altaba A,Sanchez P,Dahmane N.Gli and hedgehog in cancer:tumours,embryos and stem cells.Nature Rev Cancer, 2002,2:361-372.
    [3]. Xie K,Abbruzzese D.Developmental biology informs cancer:the emerging role of the hedgehog signaling pathway in upper gastrointestinal cancers.Cancer Cell,2003,4:245—247.
    [4]. Ingham PW .McMahon AP.Hedgehog signaling in animal development:paradigms and principles.Genes Dev, 2001,15:3059-3087
    [5]. Berman DM ,Karhadkar SS,Maitra A.Wide spread requirement for Hedgehog ligand stimulation in growth of digestivetract tumour.Nature, 2003,425:846—851
    [6]. Grachtchouk V,Grachtchouk M ,Lowe L,et a1.The magnitude of hedgehog signaling activity defines skin tumor phenotype.EMBO,2003,22:2741—2751.
    [7]. Watkins DN,Berman DM,Burkholder SG,et a1.Hedgehog signalling within airway epithelial progenitors and in small cell lung cancer.Nature,2003,422:313-317.
    [8]. Berman DM ,Karhadkar SS,Haliahan AR,et a1.Medulloblastoma growth inhibition by hedgehog pathway blockade.Science,2002,297:1559—1561.
    [9]. Moon HJ, An JY, Heo JS, Choi SH, Joh JW, Kim YI. Predicting survival after surgical resection for pancreatic ductal adenocarcinoma. Pancreas 2006;32:37-43.
    [10]. Thayer SP, Magliano MP, Heiser PW, Nielsen CM, Roberts DJ, Lauwers GY,et al. Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature 2003; 425: 851-6.
    [11]. Hebrok M, Kim SK, St Jacques B, McMahon AP, Melton DA. Regulation of pancreas development by hedgehog signaling. Development 2000;127:4905-13..
    [12]. Jin-rong FU, Wen-li LIU, Jian-feng ZHOU, Han-ying SUN, Hui-zhen XU, Li LUO, et al.Sonic hedgehog protein promotes bone marrow-derived endothelial progenitor cell proliferation, migration and VEGF production via PI 3-kinase/Akt signaling pathways. Acta Pharmacologica Sinica 2006; 27: 685-693
    [13]. Berman DM, Karhadkar SS, Maitra A, Montes De Oca R,Gerstenblith MR,Briggs K, et al. Widespread requirement for hedgehog ligand stimulation in growth of digestive tract tumours. Nature 2003;425:846.
    [14]. Z Wang, R Sengupta, S Banerjee, Y Li, Y Zhang, KMW Rahman, et al. Epidermal growth factor receptor-related protein inhibits cell growth and invasion in pancreatic cancer. Cancer Res 2006; 66:7653-60.
    [15]. Sipos B, Moser S, Kalthoff H, Torok V, Lohr M, Kloppel G. A comprehensive characterization of pancreatic ductal carcinoma cell lines: towards the establishment of an in vitro research platform. Virchows Arch 2003;442:444-52.
    [16]. Carpenter G, Cohen S. Epidermal growth factor. J Biol Chem 1990;265:7709.
    [17]. Salomon DS, Brandt R, Ciardiello F, Normanno N. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol 1995;19:183.
    [18]. Mimeault M, Moore E, Moniaux N, Hénichart, J.P., Depreux, P., Lin MF, et al. Cytotoxic effects induced by a combination of cyclopamine and gefitinib, the selectivehedgehog and epidermal growth factor receptor signaling inhibitors, in prostate cancer cells. Int J Cancer 2006;118:1022-31.
    [19]. Sui G, Bonde P, Dhara S, Broor A, Wang J, Marti G, et al. Epidermal growth factor receptor and hedgehog signaling pathways are active in esophageal cancer cells from rat reflux model. J Surg Res 2006;134:1-9.
    [20]. Bahra M, Langrehr JM, Koch A, Hartmann, W ; Schüller, U ; Schulz, N,et al. Activation of the hedgehog-patched-signaling pathway in pancreatic adenocarcinomas. Pancreas 2005; 31:432
    [21]. Amin A, Li Y, Finkelstein R. Hedgehog activates the EGF receptor pathway during Drosophila head development. Development 1999; 126: 2623-30.
    [22]. Dahmane N, Sanchez P, Gitton Y, Palma V, Sun T, Beyna M, et al. The Sonic Hedgehog-Gli pathway regulates dorsal brain growth and tumorigenesis. Development 2001; 128: 5201-12.
    [23]. Altaba A, Sanchez P, Dahmane N. Gli and hedgehog in cancer: tumours, embryos and stem cells. Nat Rev Cancer 2002; 2: 361-72.
    [24]. Kayed H, Kleeff J, Keleg S, Guo K, Ketterer PO, Berberat N, et al. Indian hedgehog signaling pathway: expression and regulation in pancreatic cancer. Int J Cancer 2004;110:668.
    [25]. Ciardiello F, Caputo R, Bianco R, Damiano V, Pomatico G, De Placido S,et al. Antitumor effect and potentiation of cytotoxic drugs activity in human cancer cells by ZD-1839 (Iressa), an epidermal growth factor receptor-selective tyrosine kinase inhibitor. Clin Cancer Res 2000;6:2053.
    [26]. Kenney AM, Rowitch DH. Sonic hedgehog promotes G(1) cyclin expression and sustained cell cycle progression in mammalian neuronal precursors. Mol Cell Biol 2000; 20: 9055-67.
    [27]. Qualtrough D, Buda A, Gaffield W, Williams AC, Paraskeva C. Hedgehog signalling in colorectal tumour cells: induction of apoptosis with cyclopamine treatment. Int J Cancer 2004;110:831.
    [1]. Berman D M,S S Karhadkar,et al.Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours.Nature,2003,425(6960):846-851.
    [2]. Houghton J,Stoicov C,Nomura S,et al.Gastric cancer originating from bone marrow-derived cells.Science,2004,306 (5701):1568.
    [3]. Clarke MF.Neurobiology:at the root of brain cancer.Nature,2004,432 (7015):281.
    [4]. Singh SK,Hawkins C,Clarke ID,et al.Identification of human brain tumour initiating cells.Nature,2004,432 (7015):396.
    [5]. Nybakken K,Perrimon N.Hedgehog signal transduction:recent findings.CurtOpin Genet Dev,2002,15(5):503-511.
    [6]. Jeong J,McMahon AP.Cholesterol modification of Hedgehog family proteins.J Clin Invest,2002,110(5):591-596.
    [7]. Cohen MM Jr.The hedgehog signaling network.Am J Med Genet,2003,123A(1):5-28.
    [8]. Yamaguchi A,Komori T,Suda T,et a1. Regulation of osteoblast diferentiation mediated by bone morphog enetic proteins,hedge-hogs,and cbfal.Endoc Rev,2000,21(4):393-411.
    [9]. Kalderon D.Transducing the hedgehog signal.Cell,2000,103:371-374.
    [10]. Ruiz i Almba A,Sanchez P,Dahmane N.Gli an d hedgehog in cancer:tumours,embryos and stem ceils.Nat Rev Cancer,2002,2(5):361-372.
    [11]. Gli2 and gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function.PLoS Genet,2005 Oct;1(4):e53.Epub 2005,Oct 28.
    [12]. The mechanism of hedgehog signal transduction.Biochem Soc Trans,2005,33(6):1509-1512.
    [13]. Ruiz I Altaba A,Palma V,Dahmane N.Hedgehog-Gli signalling and the growth of the brain.Nat Rev Neurosci,2002,3(1):24-33.
    [14]. AI-H M,Wicha MS,Benito—Hemandcz A,et a1.Prospective identification of tumorigenic breast cancer cells.Proc Natl Acad Sci USA,2003,100(7):3983-3988.
    [15]. Singh SK,Clarke ID,Terasaki M,et a1.Identification of a callcer stem cell in human brain tumors.Cancer Research,2003,63 (18):5821-5828.
    [16]. Hemmati HD,Nakano I.Cancerous stem cells can arisefrom pediatric brain tumors.Proc Natl Acad Sci USA,2003,100(12):15178-15183.
    [17]. AI Hajj M,Wicha MS,Benito Hernandez A,et a1.Prospective identi-fication of tumorigenic breast cancer cells.Proc Natl Acad Sci USA,2003,100(7):3983-3988.
    [18]. Jordan CT.Cancer stem cell biology:froIll leukemia to solid tulnors.Curt Opin Cell Biol,2004,16(6):708-712.
    [19]. A tumorigenic subpopulation with stem cell properties in melanomas.Cancer Res,2005,15;65(20):9328-9337.
    [20]. Biochem Soc Trans,2005,33(6):1531-1533.
    [21]. Pikarsky E,Porat RM,Stein I,et al.NF-kappaB functions as a tumour promoter in inflammation-associated cancer.Nature,2004,431 (7007):461.
    [22]. Sonnenschein C,Soto A M.Mol Carcinogen,2000,29:205.
    [23]. Beachy PA,Karhadkar SS,Berman DM.Tissue repair and stem cell renewal in carcinogenesis.Nature,2004,432 (7015):324.
    [1]. Xie K,Abbruzzese D.Developmental biology informs cancer:the emerging role of the hedgehog signaling pathway in upper gastrointestinal cancers.Cancer Cell,2003,4:245—247.
    [2]. Ingham PW .McMahon AP.Hedgehog signaling in animal development:paradigms and principles.Genes Dev, 2001,15:3059-3087
    [3]. Berman DM ,Karhadkar SS,Maitra A.Wide spread requirement for Hedgehog ligand stimulation in growth of digestivetract tumour.Nature, 2003,425:846—851
    [4]. Grachtchouk V,Grachtchouk M ,Lowe L,et a1.The magnitude of hedgehog signaling activity defines skin tumor phenotype.EMBO,2003,22:2741—2751.
    [5]. Watkins DN,Berman DM,Burkholder SG,et a1.Hedgehog signalling within airway epithelial progenitors and in small cell lung cancer.Nature,2003,422:313-317.
    [6]. Berman DM ,Karhadkar SS,Haliahan AR,et a1.Medulloblastoma growth inhibition by hedgehog pathway blockade.Science,2002,297:1559—1561.
    [7]. Moon HJ, An JY, Heo JS, Choi SH, Joh JW, Kim YI. Predicting survival after surgical resection for pancreatic ductal adenocarcinoma. Pancreas 2006;32:37-43.
    [8]. Thayer SP, Magliano MP, Heiser PW, Nielsen CM, Roberts DJ, Lauwers GY,et al. Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature 2003; 425: 851-6.
    [9]. Hebrok M, Kim SK, St Jacques B, McMahon AP, Melton DA. Regulation of pancreas development by hedgehog signaling. Development 2000;127:4905-13..
    [10]. Jin-rong FU, Wen-li LIU, Jian-feng ZHOU, Han-ying SUN, Hui-zhen XU, Li LUO, et al.Sonic hedgehog protein promotes bone marrow-derived endothelial progenitor cell proliferation, migration and VEGF production via PI 3-kinase/Akt signaling pathways. Acta Pharmacologica Sinica 2006; 27: 685-693
    [11]. Berman DM, Karhadkar SS, Maitra A, Montes De Oca R,Gerstenblith MR,Briggs K, et al. Widespread requirement for hedgehog ligand stimulation in growth of digestive tract tumours. Nature 2003;425:846.
    [12]. Z Wang, R Sengupta, S Banerjee, Y Li, Y Zhang, KMW Rahman, et al. Epidermal growth factor receptor-related protein inhibits cell growth and invasion in pancreatic cancer. Cancer Res 2006; 66:7653-60.
    [13]. Sipos B, Moser S, Kalthoff H, Torok V, Lohr M, Kloppel G. A comprehensive characterization of pancreatic ductal carcinoma cell lines: towards the establishment of an in vitro research platform. Virchows Arch 2003;442:444-52.
    [14]. Carpenter G, Cohen S. Epidermal growth factor. J Biol Chem 1990;265:7709.
    [15]. Salomon DS, Brandt R, Ciardiello F, Normanno N. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol 1995;19:183.
    [16]. Mimeault M, Moore E, Moniaux N, Hénichart, J.P., Depreux, P., Lin MF, et al. Cytotoxic effects induced by a combination of cyclopamine and gefitinib, the selective hedgehog and epidermal growth factor receptor signaling inhibitors, in prostate cancer cells. Int J Cancer 2006;118:1022-31.
    [17]. Sui G, Bonde P, Dhara S, Broor A, Wang J, Marti G, et al. Epidermal growth factor receptor and hedgehog signaling pathways are active in esophageal cancer cells from rat reflux model. J Surg Res 2006;134:1-9.
    [18]. Bahra M, Langrehr JM, Koch A, Hartmann, W ; Schüller, U ; Schulz, N,et al. Activation of the hedgehog-patched-signaling pathway in pancreatic adenocarcinomas. Pancreas 2005; 31:432
    [19]. Amin A, Li Y, Finkelstein R. Hedgehog activates the EGF receptor pathway during Drosophila head development. Development 1999; 126: 2623-30.
    [20]. Dahmane N, Sanchez P, Gitton Y, Palma V, Sun T, Beyna M, et al. The Sonic Hedgehog-Gli pathway regulates dorsal brain growth and tumorigenesis. Development 2001; 128: 5201-12.
    [21]. Altaba A, Sanchez P, Dahmane N. Gli and hedgehog in cancer: tumours, embryos and stem cells. Nat Rev Cancer 2002; 2: 361-72.
    [22]. Kayed H, Kleeff J, Keleg S, Guo K, Ketterer PO, Berberat N, et al. Indian hedgehog signaling pathway: expression and regulation in pancreatic cancer. Int J Cancer 2004;110:668.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700