粗糙面电磁散射及其与目标的复合散射研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粗糙表面及粗糙面与目标的复合电磁散射研究在微波遥感、雷达成像、海洋工程、无线通信、表面光学和半导体物理等领域均具有重要的实际应用。本论文就粗糙面电磁散射及其与目标的复合散射中的若干问题开展了系统的理论研究工作。论文首先研究了随机深粗糙度表面、分层介质微粗糙面的电磁散射及粗糙面、分层介质微粗糙面电磁波透射散射。然后将分层介质微粗糙面电磁散射和透射散射的理论运用到海面,研究了基于P-M谱的二维各向异性分层海面、改进的二维分形模型分层海面的电磁散射和透射散射。最后研究了粗糙面与其下方和上方目标的复合电磁散射问题。主要工作和成果如下:
     1.根据格林矢量第二定理推导出了平面波入射粗糙面时远区场的数学表达式,进一步运用基尔霍夫驻留相位近似法得到了深粗糙度高斯粗糙面双站散射系数计算公式,通过数值计算讨论了深粗糙度高斯粗糙面双站散射系数随介质介电常数、粗糙面相关长度和均方根、入射波频率的变化。
     2.运用微扰法研究了平面波入射分层介质微粗糙面的电磁散射和透射散射、导出了不同极化状态下的散射和透射系数公式。分别采用高斯和指数型粗糙面来模拟实际微粗糙面,结合它们的功率谱得到了分层介质散射和透射系数计算公式。通过数值计算讨论了底层介质介电常数、中间层介质介电常数和厚度、粗糙面相关长度及均方根、入射波频率对散射和透射系数的影响,分析了两种类型分层介质微粗糙面的电磁散射和透射散射特性。
     3.从格林矢量第二定理出发,基于微扰法、基尔霍夫驻留相位近似法和基尔霍夫标量近似法分别研究了高斯粗糙面的透射散射问题。数值计算得到了不同极化状态下透射系数随散射角、散射方位角及入射波频率的变化,讨论了介质介电常数、粗糙面相关长度和均方根、入射波频率对不同极化状态透射系数的影响。
     4.运用分层介质微粗糙面电磁散射和透射散射理论,结合海面P-M谱与改进的分形海面模型导出了二维分层海面散射系数和透射系数计算公式,数值计算并讨论了双站散射系数和透射系数随中间介质介电常数和厚度、摩擦风速、风区范围、观察方向与逆风方向之间夹角和入射波频率的变化,得出了双站散射系数和透射系数的基本特征、分区特征和随频率变化的特征。
     5.利用矩量法研究了一维高斯和指数型介质粗糙面与其下方二维导体圆柱的复合电磁散射;数值计算并讨论了不同粗糙面相关长度和均方根、粗糙面下方介质的介电常数、导体圆柱埋藏深度、导体圆柱半径下复合散射系数的变化特征。基于矩量法结合近似解析法基尔霍夫近似的混合算法分析了一维导体粗糙面与其上方具有任意形状截面的二维导体目标的复合电磁散射特性,给出了MOM用于求解粗糙面与其上方目标的复合散射的基本原理,通过数值计算讨论了粗糙面相关长度和均方根、导体圆柱半径和高度对复合散射系数的影响。
The study of electromagnetic wave scattering from rough surfaces and composite scattering from rough surface with target has been the subject of intensive investigation for its application in a number of important research areas, such as the remote sensing, the radar imaging, ocean engineering, wireless communications, surface optics, as well as the semiconductor physics. This dissertation presents theoretical studies of electromagnetic scattering from rough surfaces and composite scattering from the target below/above the rough surface. The first topic in this dissertation mainly focuses on the scattering from very rough surface and slightly rough surface of layered media, and transmission scattering from rough surface and slightly rough surface of layered media. The theory of scattering and transmission scattering from slightly rough surface of layered media is then extended to rough sea surface, the electromagnetic scattering and transmission scattering from a 2D anisotropic stratified sea surface with P-M spectrum and from the stratified sea surface simulated by an improved 2D fractal model are investigated. Finally, the composite scattering from the target located below and above the rough surface is examined. The main works and results are as follows:
     1. Mathematic representation of far field with plane electromagnetic wave incidence on the rough surface is derived according to the second Green Vector Theorem. The formula of bistatic scattering coefficient from the very rough Gaussian surface is then obtained by using Kirchhoff stationary phase approximation. The dependence of the bistatic scattering coefficient on the permittivity of medium, the correlation length and root mean square of rough surface, as well as the frequency of the incident wave are numerically discussed.
     2. The electromagnetic wave scattering and transmission scattering with plane wave incidence on the slightly rough surface of layered medium is studied using the small perturbation method. A Gaussian and an exponential distribution rough surface are presented for describing natural slightly rough surface, the formulae of scattering and transmission coefficient of layered medium for different polarizations are derived in associated with their power spectrum density. The influence of the permittivity of substrate medium, the permittivity and the mean layer thickness of intermediate medium, the correlation length and root mean square of rough surface, as well as the frequency of the incident wave on the scattering and transmission coefficient are calculated and discussed. The characteristic of electromagnetic scattering from two types of rough surface of layered media is analyzed.
     3. Based on the second Green Vector Theorem, the electromagnetic wave transmission scattering from the rough surface with Gaussian correlation function is studied with the small perturbation method, Kirchhoff stationary approximation and Kirchhoff scale approximation. The transmission coefficient with different polarization are obtained by numerical implementation for different scattering angle, the scattering azimuth angle and the incident frequency. The influence of the permittivity of medium, the correlation length and root mean square of rough surface, as well as the frequency of the incident wave on the transmission coefficient for different polarizations is discussed.
     4. The electromagnetic scattering and the transmission scattering from a 2D stratified sea surface with P-M spectrum and improved fractal model are derived by using the theory of the electromagnetic and transmission scattering from rough surface of layered medium. The dependence of the scattering and transmission coefficient on the permittivity and the mean layer thickness of intermediate medium, the friction velocity, the wind field, the angle between observational direction and upwind direction, as well as the frequency of the incident wave are discussed by calculations. The basic characteristic, the zonal characteristic and characteristic with varying of frequency of the bistatic scattering and the transmission scattering are obtained.
     5. Using Method of Moment(MoM), the composite scattering from a perfect electric conducting(PEC) column located below a Gaussian and an exponential dielectric rough surface is investigated. The composite scattering is calculated and discussed for diffirent correlation length and root mean square of rough surface, the permittivity of medium below rough surface, as well as the radius and buried height of PEC column. A hybrid algorithm, combining analytic Kirchhoff approximation with MoM, is developed to solve the characteristics of composite scattering from a PEC object with arbitrary shape section above a 1D PEC surface. The essential principle of solving composite scattering from a target above a rough surface is presented, the influence of correlation length and root mean square of rough surface, the radius and height of PEC column on the composite scattering are discussed by numerical implementation.
引文
[1] 王保义, 时振栋. 电磁场在目标识别中的应用. 北京: 电子工业出版社, 1995
    [2] 郭桂蓉, 庄钊文, 陈曾平. 电磁特征抽取与目标识别. 长沙: 国科技大学出版社, 1996
    [3] 陈向东. 微波被动遥感在海况监测中的应用. 北京: 测绘出版社, 1992
    [4] 谢寿生, 徐永进. 微波遥感技术与应用. 北京: 电子工业出版社, 1987
    [5] F.T.Ulaby R.K.Moore and A.K.Fung. Microwave Remote Sensing (Vol. II) . London: Addision-Wesbey Publishing, 1982
    [6] A.Ishimaru. Wave Propagation and Scattering in Random Medium. New York: Academic Press, 1978
    [7] A.K.Fung. Microwave Scattering and Emission Models and Their Applications. London: Artech House, 1994
    [8] J.A.Ogilvy. Theory of Wave Scattering from Random Rough Surface . Bristol: institute of physics Publishing, 1991
    [9] P. Beckman and A.Spizzichino. 1963 The Scattering of Electromagnetic Waves from Rough Surfaces . London: Oxford: Pergamon, 1963
    [10] A. G. Voronovich. Wave Scattering from Rough Surfaces, 2nd ed. Berlin: Springer-Verlag, 1999
    [11] F.G. Bass and I.M. Fuks. Wave Scattering from Statistically Rough Surfaces. Oxford: Pergamon, 1979
    [12] Kamal Sarabandi and Tsenchieh Chiu. Electromagnetic Scattering from Slightly Rough Surfaces with Inhomogeneous Dielectric Profiles. IEEE Trans. on Antenna and Propagat., 1997,9, 45(9):1419~1430
    [13] Daniel E. Lawrence and Kamal Sarabandi. Electromagnetic Scattering From a Dielectric Cylinder Buried Beneath a Slightly Rough Surface. IEEE Trans. on Antenna and Propagat., 2002,10, 50(10):1368~1376
    [14] T.Chiu and K.Sarabandi. Electromagnetic scattering interaction between a dielectric cylinder and slightly rough surface. IEEE Trans. on Antenna and Propagat., 1999,5, 47(5): 902-913
    [15] Guangwen (George) W. Pan, Ke Wang and Douglas Cochran. Coifman Wavelets in 3-D Scattering From Very Rough Random Surfaces. IEEE Trans. Antennas Propagat. 2004,11, 52(11): 3096~3003
    [16] Phu, P., A. Ishimaru, and Y. Kuga. Controlled millimeter wave experiments andnumerical simulations on the enhanced backscatttering from one-dimensional very rough surfaces, in press, Radio Science, 1993
    [17] A. shimaru, A. and J.S. Chen. Scattering from very rough surfaces based on the modified second-order Kirchhoff approximation with angular and propagation shadowing. JASA 88 (1990b):1877-1883
    [18] 金亚秋,李中新. 结合谱积分加速法的前后向迭代法数值计算分形粗糙介质面的双站散射和透射. 电子学报, 2002, 30(11):1648-1653
    [19] 李中新,金亚秋. 双网格前后向迭代与谱积分法计算分形粗糙面的双站散射与透射. 物理学报, 2002, 51(7):1403-1411
    [20] H. T. Friss. A note on a simple transmission formula. in Proc. IRE, 1946, 34: 254–256
    [21] M. P. Forrer. Analysis of millimicrosecond RF pulse transmission. in Proc. IRE, 1958, 46: 1830–1835
    [22] David E. Freund, Nancy E. Woods, Hwar-Ching Ku, and Ra’id S. Awadallah. Forward Radar Propagation Over a Rough Sea Surface: A Numerical Assessment of the Miller-Brown Approximation Using a Horizontally Polarized 3-GHz Line Source. IEEE Transactions on Antennas and Propagation. 2006,4, 54(4): 1292-1304
    [23] David E. Freund, Nancy E. Woods, Hwar-Ching Ku, and Ra’id S. Awadallah. Forward Radar Propagation Over a Rough Sea Surface: A Numerical Assessment of the Miller-Brown Approximation Using a Horizontally Polarized 3-GHz Line Source. IEEE Trans. Geosci. Remote Sensing. 2006,4, 54(4): 1292~1304
    [24] Khalid Jamil and Robert J. Burkholder. Radar Scattering From a Rolling Target Floating on a Time-Evolving Rough Sea Surface. IEEE Trans. Geosci. Remote Sensing. 2006,11, 44(11): 3330~3337
    [25] Nicolas Reul, Joseph Tenerelli, Bertrand Chapron, and Philippe Waldteufel. Modeling Sun Glitter at L-Band for Sea Surface Salinity Remote Sensing With SMOS. IEEE Trans. Geosci. Remote Sensing. 2007,7, 45(7): 2073~2087
    [26] Yan Shi and Chang-Hong Liang. Application of the Spatial–Spectral CG-FFT Method for the Solution of Electromagnetic Scattering by Buried Flat Metallic Objects. IEEE Trans. Geosci. Remote Sensing letters. 2007,1, 4(1): 37~40
    [27] Hongxia Ye and Ya-Qiu Jin. A Hybrid Analytic-Numerical Algorithm of Scattering From an Object Above a Rough Surface. IEEE Trans. Geosci. Remote Sensing. 2007,5, 45(5):1174~1180
    [28] Lei Kuang and Ya-Qiu Jin. Bistatic Scattering From a Three-Dimensional ObjectOver a Randomly Rough Surface Using the FDTD Algorithm. IEEE Transactions on Antennas and Propagation. 2007,8, 55(8): 2302-2312
    [29] Christophe Bourlier, Joseph Saillard, and Gérard Berginc. Effect of Correlation Between Shadowing and Shadowed Points on the Wagner and Smith Monostatic One-Dimensional Shadowing Functions. IEEE Transactions on Antennas and Propagation. 2000,3, 48(3): 437-446
    [30] 薛谦忠, 吴振森. 粗糙介质面对高斯波束的散射. 电子与信息学报. 2000,5, 22(5): 875-880
    [31] Wu Zhensen, Song Kun and Qi Liyan. Experimental study of laser bistatic scattering from random deeply rough surface and backscattering enhancement. Int. J. IR and Mill. Waves. 2000,2, 21(2): 247~254
    [32] 吴振森, 谢东辉, 谢品华. 粗糙表面激光散射统计建模的遗传算法. 光学学报. 2002,8, 22(8): 897~901
    [33] 郭立新, 吴振森. 二维导体粗糙面电磁散射的分形特征研究. 物理学报. 2000, 49(6): 1064-1069
    [34] 郭立新, 吴振森. 二维分数布朗运动(FBM)随机粗糙面电磁散射的基尔霍夫近似. 物理学报. 2001, 50(1): 42-47
    [35] 郭立新, 吴振森. fBm 随机粗糙面电磁散射的微扰法近似. 微波学报. 2001, 17(2): 60-66
    [36] 郭立新, 徐燕, 吴振森. 分形粗糙海面高斯波束散射特性模拟. 电子学报. 2005, 33(3): 534-537
    [37] 郭立新, 金彩英. 脉冲波入射时分形粗糙海面的双频散射截面和脉冲展宽. 红外与毫米波学报. 2003, 22(2): 132-136
    [38] 郭立新,任玉超. 动态分形粗糙海面散射遮蔽效应和多普勒谱研究. 电子与信息学报. 2005, 27(10): 1666-1670
    [39] Xia, M.Y., Chan, C.H., Li, S.Q., Zhang, B., Tsang, L.. An efficient algorithm for electromagnetic scattering from rough surfaces using a single integral equation and multilevel sparse-matrix canonical-grid method. IEEE Transactions on Antennas and Propagation. 2003, 51(6): 1142-1149
    [40] Tsang, Leung, Chan, Chi H., Pak, Kyung, Sangani, Haresh. Monte-Carlo simulations of large-scale problems of random rough surface scattering and applications to grazing incidence with the BMIA/canonical grid method. IEEE Transactions on Antennas and Propagation. 1995, 43(8): 851-859
    [41] Chan, C.H., Tsang, L., Li, Q.. Monte Carlo simulations of large-scale one-dimensional random rough-surface scattering at near-grazing incidence:penetrable case. IEEE Transactions on Antennas and Propagation. 1998, 46(1): 142-149
    [42] Li, Shu-Qing, Chan, Chi Hou, Tsang, Leung, Li, Qin, Zhou, Lin. Parallel implementation of the sparse-matrix/canonical grid method for the analysis of two-dimensional random rough surfaces (three-dimensional scattering problem) on a Beowulf system. IEEE Transactions on Geoscience and Remote Sensing. 2000, 38(4): 1600-1608
    [43] Xia, M.Y., Chan, C.H.. Parallel analysis of electromagnetic scattering from random rough surfaces. Electronics Letters. 2003, 39(9): 710-712
    [44] Xia, M.Y., Chan, C.H.; Li, S.-Q.; Hu, J.-L.; Tsang, L.. Wavelet-based simulations of electromagnetic scattering from large-scale two-dimensional perfectly conducting random rough surfaces. IEEE Transactions on Geoscience and Remote Sensing. 2001, 39(4): 718-725
    [45] Johnson, J.T.. Numerical study of low-grazing-angle backscatter from ocean-like impedance surfaces with the canonical grid method. IEEE Transactions on Antennas and Propagation. 1998, 46(1): 114-120
    [46] 夏明耀,伍振兴. 基于单积分方程矩量法的海洋表面微波散射模拟. 电子学报. 2005, 33(3): 385-388
    [47] Ahmed K. Sultan-Salem and G. Leonard Tyler. Validity of the Kirchhoff Approximation for Electromagnetic Wave Scattering From Fractal Surfaces. IEEE Trans. Geosci. Remote Sensing. 2004,9, 42(9): 1860~1870
    [48] Jakov V. Toporkov and Gary S. Brown. Numerical Study of the Extended Kirchhoff Approach and the Lowest Order Small Slope Approximationfor Scattering From Ocean-Like Surfaces: Doppler Analysis. IEEE Trans. Antennas Propagat. 2002,4, 50(4): 417~425
    [49] Eric.I.Thorsos. The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum. J. Acoust. Soc. Am. 1988, 83(1): 78~92
    [50] Eric. I. Thorsos. The validity of the perturbation approximation for rough surface scattering using a Gaussian roughness spectrum. J. Acoust. Soc. Am. 1989,7, 86(1): 261~277
    [51] J. M. Soto-Crespo, M. Nieto-Vesperinas and A. T. Friberg. Scattering from slightly rough random surfaces: a detailed study on the validity of the small perturbation method. J. Opt. Soc. Am. A. 1990,7, 7(7): 1185~1201
    [52] J.T.Johnson, R.T.Shin. A numerical study of the composite surface model for oceanbackscattering. IEEE Trans. Geosci. Remote Sensing. 1998,1, 36(1): 72~83
    [53] S.L.Durden and J.F.Vesecky. A numerical study of the separation wavenumber in the two scale scattering approximation. IEEE Trans. Geosci. Remote Sensing. 1990,2, 28(2): 271~272
    [54] 叶震,王元利. 粗糙表面电磁散射的解析近似法研究. 战术导弹技术. 2006,7(4): 24~27
    [55] S.T. Mcdaniel, Microwave backscatter from non-Gaussian seas, IEEE Trans Geosci Remote Sensing, 2003, 41(1): 51~58
    [56] C. Bourlier, Azimuthal Harmonic Coefficients of the Microwave Backscattering From a Non-Gaussian Ocean Surface With the First-Order SSA Model, IEEE Trans Geosci Remote Sensing, 2000, 38(7): 2600~2611
    [57] B. B. Mandelbrot. The Fractal Geometry of Nature. San Francisco: Freeman, 1982
    [58] D. L. Jaggard and Y. Kim. Diffraction by band-limited fractal screens. J. Opt. Soc. Am. A. 1987,6, 4(6): 1055~1062
    [59] Giorgio Franceschetti. Scattering from natural rough surfaces modeled by fractional Brownian motion two-dimensional processes. IEEE Trans. Antennas Propag. 1999,9, 47(9): 1405~1415
    [60] A. G. Voronovich. Small-slope approximation for electromagnetic wave scattering at a rough interface of two dielectric half-spaces. Waves in Random Media. 1994, 4: 337~367
    [61] A. G. Voronovich. Non-local small-slope approximation for wave scattering from rough surfaces. Waves in Random Media. 1996, 6: 151~167
    [62] M. S. Gilbert and J. T. Johnson. A study of rough surface scattering effects using the higher-order small slope approximation. International Antennas and Propagation Symposium, 2003,6: 557~560
    [63] F. Berizzi, E. Dalle Mese. Scattering From a 2-D Sea Fractal Surface: Fractal Analysis of the Scattered Singal, IEEE Trans. Antennas. Propagat. 2002,7, 50(7): 912~925
    [64] F. Berizzi, M. Greco and L.Verrazzani. Fractal approach for sea clutter generation. IEE Proc Radar, Sonar Navig, 2000,8, 147(4), pp.189~198
    [65] F Berizzi, E Dalle Mese. Sea-wave fractal spectrum for SAR remote sensing, IEE Proc-Radar, Sonar Navig. 2001,4, 148(2): 56~65
    [66] Patrick Flandrin. On the spectrum of fractional Brownian motions. IEEE Trans. Inform. Theory. 1989,1, 35(1): 197~199
    [67] E. Bahar. Scattering cross sections for random surfaces: full wave analysis. Radio Science. 1981,5, 16(3): 331~341
    [68] E. Bahar and Bom Son Lee. Radar scatter cross sections for two-dimensional random rough surfaces-Full wave solutions and comparisons with experiments. Waves in Random Media. 1996, 6: 1~23
    [69] K.S.Chen, A.K.Fung. A Comparison of Backscattering Models for Rough Surfaces. IEEE Trans. Geosci. Remote Sensing. 1995,1, 33(1): 195~200
    [70] A.K.Fung, Z.Li, K.S.Chen. Backscattering from a randomly rough dielectric surface. IEEE Trans. Geosci. Remote Sensing. 1992,2, 30(2): 356~369
    [71] K. Ivanova, M A Michalev and OI Yordanov. Study of the phase perturbation technique for scattering of waves by rough surfaces at intermediate and large values of the roughness parameter. J. Electrom. Waves and Appl. 1990, 4(5): 401~414
    [72] Bahar E.. Scattering Cross Sections for random surfaces: Full Wave Analysis. Radio Science. 1981, 5, 16(3): 331-341
    [73] Bahar E. and Lee Bom Son. Radar scatter cross sections for two-dimensional random rough surfaces-Full wave solutions and comparisons with experiments. Waves in Random Media. 1996, 6: 1-23
    [74] Bahar E., Hung G. and Lee B. S.. Electromagnetic scattering and depolarization across rough surfaces: Full wave analysis. Radio Science. 1995, 30(3): 525-544
    [75] Bahar E. and Lee B. S.. Full wave solutions for rough-surface bistatic radar cross sections: Comparison with small perturbation, physical optics, numerical, and experimental results. Radio Science. 1994, 29(2): 407-429
    [76] Collin R. E.. Full wave theories for rough surface scattering: An updated assessment. Radio Science. 1994, 29(5): 1237-1254
    [77] Bahar E.. Full wave solutions for the depolarization of the scattered radiation fields by rough surfaces with arbitrary slope, IEEE Transactions on Antennas and Propagation. 1981, 2: 443-454
    [78] Collin R. E.. Scattering of an incident Gaussian beam by a perfectly conducting rough surface. IEEE Transactions on Antennas and Propagation. 1994,42: 70 -74
    [79] Sharhabeel Alyones, Charles W. Bruce, and Andrei K. Buin. Numerical Methods for Solving the Problem of Electromagnetic Scattering by a Thin Finite Conducting Wire. IEEE Transactions on Antennas and Propagation. 2007,6,55(6): 1856~1861
    [80] Karl F. Warnick and Wen Cho Chew. Numerical simulation methods for rough surface scattering. Waves in Random Media. 2001, 11: 1~30
    [81] M. Saillard and A. Sentenac. Rigorous solutions for electromagnetic scattering from rough surfaces. Waves in Random Media. 2001, 11: 103~137
    [82] A. K. Fung, M. R. Shah and S. Tjuatja. Numerical simulation of scattering from three- dimensional randomly rough surfaces. IEEE Trans. Geosci. Remote Sensing. 1994,9, 32(5): 986~994
    [83] 高本庆, 刘波. 电磁场时域数值技术新进展. 北京理工大学学报. 2002,8, 22(4): 401~406
    [84] 胡来平, 刘占军. 电磁学计算方法的比较. 现代电子技术. 2003,10(10): 75~78
    [85] K S Yee. Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media. IEEE Trans. Antennas Propag. 1966,5, 14(5): 302~307
    [86] A. K. Fung, S. Tjuatja and C. Terre. Numerical simulation of omnidirectional scattering from three-dimensional randomly rough dielectric surfaces. International Geoscience and Remote Sensing Symposium. 1994, 1: 261~263
    [87] 葛德彪, 闫玉波. 电磁波时域有限差分方法. 西安: 西安电子科技大学出版社, 2002
    [88] 王长清, 祝西里. 电磁场计算中的时域有限差分法. 北京: 北京大学出版社, 1994
    [89] T. Namiki. 3-D ADI-FDTD method-unconditionally stable time-domain algorithm for solving full vector Maxwell's equations. IEEE Trans. Microwave Theory Tech. 2000,10, 48(10): 1743~1748
    [90] T. Dogaru and L. Carin. Time-domain sensing of targets buried under a Gaussian, exponential, or fractal rough interface. IEEE Trans. Geosci. Remote Sensing. 2001,8, 39(8): 1807~1819
    [91] Xianyang Zhu and Carin, L. Multiresolution time-domain analysis of plane-wave scattering from general three-dimensional surface and subsurface dielectric targets. IEEE Trans. Antennas Propag. 2001,11, 49(11): 1568~1578
    [92] Harrigton R F. Field Computation by Moment Method. New York: Macmillan Company, 1968
    [93] W. C. Chew, C. C. Lu, and Y. M. Wang Review of efficient computation of three-dimensional scattering of vector electromagnetic waves. J. Opt. Soc. Am. A. 1994, 11: 1528~1537
    [94] W. C. Chew, J. M. Jin and C. C. Lu et al. Fast solution methods in electromagnetics. IEEE Trans. Antennas Propag. 1997,5, 45(5): 533~543
    [95] L. Tsang, C. H. Chan and Kyung Pak. Monte-Carlo simulations of large-scaleproblems of random rough surface scattering and applications to grazing incidence with the BMIA/canonical grid method. IEEE Trans. Antennas Propag. 1995,8, 43(8): 851~859
    [96] Robert L. Wagner, Jiming Song and Weng C. Chew. Monte Carlo simulation of electromagnetic scattering from two-dimensional random rough surfaces. IEEE Trans. Antennas Propag. 1997,2, 45(2): 235~245
    [97] Donohue D J, et al. Application of Iterative Moment-Method Solutions to ocean surface radar scattering. IEEE Trans. Antennas Propag. 1998,1, 46(1): 121~132
    [98] Joel. T. Johnson. A numerical study of low-grazing-angle backscatter from ocean-like impedance surfaces with the canonical grid method. IEEE Trans. Antennas Propag. 1998,1, 46(1): 114~120
    [99] J. T. Johnson. On the canonical grid method for two-dimensional scattering problems. IEEE Trans. Antennas Propag. 1998,3, 46(3): 297~302
    [100] V. Rokhlin. Rapid solution of integral equations of scattering theory in two dimensions. J. Comput. Phys. 1990,2, 86(2): 414~439
    [101] C. C. Lu and W. C. Chew. Fast algorithm for solving hybrid integral equations. IEE Proceedings-H, 1993, 140(6): 455~460
    [102] 聂在平, 胡俊, 姚海英. 用于复杂目标三维矢量散射分析的快速多极子方法. 电子学报. 1999,6, 27(6): 104~109
    [103] S. Q. Li, C. H. Chan and M. Y. Xia. Multilevel expansion of the sparse-matrix canonical grid method for two-dimensional random rough surfaces. IEEE Trans. Antennas Propag. 2001,11, 49(11): 1579~1589
    [104] M. Y. Xia, C. H. Chan and S. Q. Li et al. An efficient algorithm for electromagnetic scattering from rough surfaces using a single integral equation and multilevel sparse-matrix canonical-grid method. IEEE Trans. Antennas Propag. 2003,6, 51(6): 1142~1149
    [105] C. H. Chan, L. Tsang and Qin Li. Monte Carlo simulations of large-scale one-dimensional random rough-surface scattering at near-grazing incidence: Penetrable case. IEEE Trans. Antennas Propag. 1998,1, 46(1): 142~149
    [106] C. C. Lu and W. C. Chew. A multilevel algorithm for solving boundary integral equations of wave equations of wave scattering. Micro. Opt. Tech. Lett. 1994,7, 7(10): 466~470
    [107] J. M. Song and W. C. Chew. Multilevel fast multipole algorithm ror solving combined field integral equation of electromagnetic scattering. Micro. Opt. Tech. Lett. 1995,9, 10(1): 14~19
    [108] V. Jandhyala, E. Michielssen and S. Balasubramaniam et al. A combined steepest descent-fast multipole algorithm for the fast analysis. IEEE Trans. Geosci. Remote Sensing. 1998,5, 36(3): 738~748
    [109] R. L. Wagner and W. C. Chew. A ray-propagation fast multipole algorithm. Microwave and Opt. Tech. Lett. 1994,7, 7(10): 435~438
    [110] C. C. Lu and W. C. Chew. Fast far field approximation for calculating the RCS of large objects. Microwave and Opt. Tech. Lett. 1995,5, 8(5): 238~241
    [111] M. El-Shenawee. Scattering from multiple objects buried beneath two-dimensional random rough surface using the steepest descent fast multipole method. IEEE Trans. Antennas Propag. 2003,4, 51(4): 802~809
    [112] M. El~Shenawee, V. Jandhyala and E. Michielssen. The steepest descent fast multipole method (SDFMM) for solving combined field integral equation pertinent to rough surface scattering. IEEE International Antennas and Propagation Symposium. 1999,7: 534~537
    [113] D.S. Weile, B. Shanker and E. Michielssen. An accurate scheme for the numerical solution of the time domain electric field integral equation. IEEE International Antennas and Propagation Symposium. 2001,7: 516~519
    [114] B. Hu and W. C. Chew. Fast inhomogeneous plane wave algorithm for electromagnetic solutions in layered medium structures: 2-D case. Radio Sci.. 2000, 35(1): 31–43
    [115] King Wai Lam, Lizhi Zheng and Qin Li. Statistical distributions of fields in scattering by random rough surfaces based on Monte Carlo simulations of Maxwell equations. IEEE International Antennas and Propagation Symposium. 2003,6: 573~576
    [116] Ergün Simsek, Jianguo Liu and Qing Huo Liu. A Spectral Integral Method (SIM) for Layered Media. IEEE Trans. Antennas Propagat. 2006,6, 54(6): 1472~1479
    [117] Alireza Tabatabaeenejad and Mahta Moghaddam. Bistatic Scattering From Three-Dimensional Layered Rough Surfaces. IEEE Trans. Geosci. Remote Sensing. 2006,8, 44(8): 2102~2114
    [118] Chih-Hao Kuo and Mahta Moghaddam. Scattering From Multilayer Rough Surfaces Based on the Extended Boundary Condition Method and Truncated Singular Value Decomposition. IEEE Trans. Antennas Propagat. 2006,10, 54(10): 2917~2929
    [119] G. Franceschetti, P. Imeratore, A. Iodice, D. Riccio, and G. Ruello. Scattering from layered medium with one rough interface: Comparison and physical interpretationof different methods,” in Proc. IEEE IGARSS, Toulouse, France, Jul. 2003: 2912–2914.
    [120] Ergün Simsek, Jianguo Liu and Qing Huo Liu. A Spectral Integral Method and Hybrid SIM/FEM for Layered Media. IEEE Trans. Microwave and techniques. 2006,11, 54(11): 3878~3884
    [123] K. A. Michalski and D. Zheng. Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media: part I: theory. IEEE Trans. Antennas Propag..1990,3,38: 335–344
    [124] Magda El-Shenawee. Polarimetric Scattering From Two-Layered Two-Dimensional Random Rough Surfaces With and Without Buried Objects. IEEE Trans. Geosci. Remote Sensing. 2004,1, 42(1): 67~76
    [125] Xincheng Ren and Lixin Guo. Study on optical wave scattering from slightly Gaussian rough surface of layered medium. Chinese Optics Letters. 2007, 5(10): 605-608
    [126] A. K. Sultan-Salem, G. L. Tyler. Validity of the Kirchhoff approximation for electromagnetic wave scattering from fractal surfaces[J]. IEEE Trans. on Geosci. Remote Sensing, 2004, 42(9): 1860-1870.
    [127] Guo Lixin, Jiao Licheng, Wu Zhensen. Electromagnetic scattering from two-dimensional rough surface using Kirchhoff approximation [J]. Chin. Phys. Lett., 2001, 18(2):214-216.
    [128] 郭立新, 王运华, 吴振森. 双尺度动态分形粗糙海面的电磁散射及多普勒谱研究[J].物理学报, 2005, 54(1): 96-101.
    [129] 郭立新, 任玉超. 动态分形粗糙海面散射遮蔽效应和多普勒谱研究[J]. 电子与信息学报, 2005, 27(10): 1666-1670.
    [130] 郭立新, 官秀国. 分形粗糙面单站散射的遮蔽效应研究[J]. 西安电子科技大学学报, 2003, 30(5): 617-622.
    [131] J. W. Ra, H. L. Bertoni, and L. B. Felsen, “Reflection and transmission of beams at a dielectric interface,” SIAM J. Appl. Math., 1973, 24: 396–413
    [132] M. Tanaka, K. Tanaka, and O. Fukumitsu. Transmission and reflection of a Gaussian beam at oblique incidence on a dielectric slab. J. Opt.Soc. Amer., 1977, 67(6): 819–825
    [133] Q. Li and R. J.Vernon, “Reflection and transmission of a Gaussian beam from a dielectric window at the Brewster angle,” in Proc. IRMMW-THz Joint Int. Conf., Sep. 2005, 2(19-23): 513–514.
    [134] 金亚秋, 黄兴忠, 殷杰羿. 具有泡沫白帽的粗糙海面的后向散射. 海洋学报.1994,7, 16(4): 63~72
    [135] 金亚秋. 电磁散射和热辐射的遥感理论. 北京: 科学出版社, 1993
    [136] 金亚秋, 李中新. 下视雷达对海杂波中船目标监测的散射回波数值模拟. 科学通报. 2002,8, 47(16): 1211~1216
    [137] 李中新,金亚秋. 数值模拟低掠角入射海面与船目标的双站散射, 电波科学学报, 2001,6, 16(2): 231~240
    [138] 康士峰, 葛德彪, 罗贤云. 多波段多极化海杂波特性的实验研究. 微波学报. 2000,12, 16(5): 463~468
    [139] 康士峰, 张忠治, 葛德彪. L 波段 HH 极化机载雷达杂波特性分析. 电子学报. 2001,12, 29(12): 1608~1610
    [140] Xia, M.Y., Chan, C.H., Li, S.Q., Zhang, B., Tsang, L.. An efficient algorithm for electromagnetic scattering from rough surfaces using a single integral equation and multilevel sparse-matrix canonical-grid method. IEEE Transactions on Antennas and Propagation. 2003, 51(6): 1142-1149
    [141] Xia, M.Y., Chan, C.H.. Parallel analysis of electromagnetic scattering from random rough surfaces. Electronics Letters. 2003, 39(9): 710-712
    [142] Xia, M.Y., Chan, C.H.; Li, S.-Q.; Hu, J.-L.; Tsang, L.. Wavelet-based simulations of electromagnetic scattering from large-scale two-dimensional perfectly conducting random rough surfaces. IEEE Transactions on Geoscience and Remote Sensing. 2001, 39(4): 718-725
    [143] 夏明耀,伍振兴. 基于单积分方程矩量法的海洋表面微波散射模拟. 电子学报. 2005, 33(3): 385-388
    [144] H. Y. Lee, J. D. Barter, K. L. Beach, et al. Scattering from breaking gravity waves without wind. IEEE Trans. Antennas Propagat. 1998,1, 46(1): 14~26
    [145] J. V. Toporkov, G. Brown. Numerical simulations of scattering from time-varying randomly rough surfaces. IEEE Trans. Geosci. Remote Sensing. 2000,7, 38(4): 1616~1625
    [146] J. T. Johnson, J. V. Toporkov, G. S. Brown. A numerical study of backscattering from time- evolving sea surfaces: Comparison of hydrodynamic models. IEEE Trans. Geosci. Remote Sensing. 2001,11, 39(11): 2411~2419
    [147] J .V. Toporkov, G. S. Brown. Numerical study of the extended Kirchhoff approach and the lowest order small slope approximation for scattering from ocean-like surfaces: Doppler analysis. IEEE Trans. Antennas. Propagat. 2002,4, 50(4): 417~425
    [148] M.W.Long. Radar Reflectivity of Land and Sea. 2nd ed. Norwood, MA: Artech,1983
    [149] Olga M. Conde, Jesus Perez, Manuel Felipe Catedra, Stationary phase method application for the analysis of radiation of complex 3-D conducting structures, IEEE Trans. Antennas Propag. 2001,5, 49(5): 724~731
    [150] J.T.Johnson. A study of the four-path model for scattering from an object above a half space. Microwave and Opt. Tech. Lett., 2001, 30(2):130-134
    [151] 朱国强,孙劲,郑立志等. 平板目标与随机粗糙面对电磁波的复合散射. 武汉大学学报,2000,46(1): 99-103
    [152] 向长青, 朱国强, 杨河林. 平板与正弦型组合粗糙面的电磁波复合散射. 电波科学学报. 1998,9, 13(3): 256~260
    [153] 朱国强,杨河林.导体条带与周期粗糙面对电磁波的复合散射.武汉大学学报 , 1999, 33(3): 103-107
    [154] 王运华. 海面及其与上方目标的复合电磁散射研究, 西安电子科技大学博士论文, 2006.8
    [155] 王运华, 郭立新.一维随机导体微粗糙面与其上方金属平板复合电磁散射研究, 电波科学学报, 2005, 20(5): 580-585.
    [156] 郭立新, 王运华, 吴振森. 二维导体微粗糙面与其上方金属平板的复合电磁 射研究. 物理学报, 2005, 54(11): 5130-5139.
    [157] 郭立新, 王运华, 吴振森. 等效原理和互易性定理在两个相邻球形目标电磁散射中的应用, 物理学报, 2006, 55(11):5815~5823
    [158] Berizzi F., Mese E Dalle. One-dimensional fractal model of the sea surface. IEE Proc. Radar Sonar Navigation. 1999, 146(1): 55~63
    [159] Zavorotny V. U., Voronovich A. G... Two-scale model and ocean radar doppler spectra at moderate and low-grazing angles. IEEE Trans. Antennas Propagat. 1998, 46(1): 84~91
    [160] Billingsley J. B.. Measurements of L-band inland-water surface-clutter Doppler spectra. IEEE Trans Aerospace and Electronic Systems. 1998, 34(2): 378~390
    [161] Guo Lixin, Ren Yuchao. Study on the Doppler Spectrum from the Time-Varying Sea Surface Using Kirchhoff Approximation. Asia-Pacific Radio Science Conference Proceedings. 2004, 8: 47-49, QingDao, China.
    [162] Yang Du, J. A. Kong, Wenzhe Yan, Zhuoyuan Wang, and Liang Peng. A Statistical Integral Equation Model for Shadow-Corrected EM Scattering From a Gaussian Rough Surface. IEEE Trans. on Antenna and Propagat., 2007,6, 55(6):1843~1855
    [163] Octavien Cmielewski, Hervé Tortel, Amélie Litman, and Marc Saillard. A Two-Step Procedure for Characterizing Obstacles Under a Rough Surface FromBistatic Measurements. IEEE Trans Geosci Remote Sensing, 2007,9, 45(9): 2850~2858
    [164] Peng Xu and Leung Tsang. Bistatic Scattering and Emissivities of Lossy Dielectric Surfaces With Exponential Correlation Functions. IEEE Trans Geosci Remote Sensing, 2007,1, 45(1): 62~72
    [165] Lei Kuang and Ya-Qiu Jin. Bistatic Scattering From a Three-Dimensional Object Over a Randomly Rough Surface Using the FDTD Algorithm. IEEE Trans. on Antenna and Propagat., 2007,8, 55(8): 2302~2312
    [166] Nicolas Déchamps and Christophe Bourlie. Electromagnetic Scattering From a Rough Layer: Propagation-Inside-Layer Expansion Method Combined to an Updated BMIA/CAG Approach. IEEE Trans. on Antenna and Propagat., 2007,10, 55(10): 2790~2802
    [167] Andreas Colliander and Pasi Yl?-Oijala. Electromagnetic Scattering From Rough Surface Using Single Integral Equation and Adaptive Integral Method. IEEE Trans. on Antenna and Propagat., 2007,12, 55(12): 3639~3646
    [168] Daniel E. Lawrence and Kamal Saraband. Electromagnetic Scattering From a Dielectric Cylinder Buried Beneath a Slightly Rough Surface. IEEE Trans. on Antenna and Propagat., 2002,10, 50(10):1368~1376
    [169] Kamal Sarabandi and Tsenchieh Chiu. Electromagnetic Scattering from Slightly Rough Surfaces with Inhomogeneous Dielectric Profiles. IEEE Trans. on Antenna and Propagat., 1997,9, 45(9):1419~1430
    [170] Tsenchieh Chiu and Kamal Sarabandi. Electromagnetic Scattering Interaction Between a Dielectric Cylinder and a Slightly Rough Surface. IEEE Trans. on Antenna and Propagat., 1999,5, 47(5): 902~913
    [171] Yisok Oh and Jin-Young Hong. Effect of Surface Profile Length on the Backscattering Coefficients of Bare Surfaces. IEEE Trans Geosci Remote Sensing, 2007,3, 45(3): 632~638
    [172] Xu Li, Allen Taflove and Vadim Backman. Modified FDTD Near-to-Far-Field Transformation for Improved Backscattering Calculation of Strongly Forward-Scattering Objects. IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2005,4: 35~38
    [173] Ilari H?nninen, Mikko Pitkonen, Keijo I. Nikoskinen and Jukka Sarvas. Method of Moments Analysis of the Backscattering Properties of a Corrugated Trihedral Corner Reflector. IEEE Trans. on Antenna and Propagat., 2006,4, 54(4):1167~1173
    [174] R. AlexanderRoss. Backscattering from Square Plates Illuminated With VerticalPolarization. IEEE Trans. on Antenna and Propagat., 2006,1, 54(1):272~275
    [175] Christophe Bourlier, Nicolas Déchamps and Gérard Berginc. Comparison of Asymptotic Backscattering Models (SSA, WCA, and LCA) From One-Dimensional Gaussian Ocean-Like Surfaces. IEEE Trans. on Antenna and Propagat., 2005,5, 53(5): 1640~1652
    [176] Antonio Collaro, Giorgio Franceschetti, Maurizio Migliaccio and Daniele Riccio. Gaussian Rough Surfaces and Kirchhoff Approximation. IEEE Trans. on Antenna and Propagat., 1999,2, 47(2): 392~398
    [177] Jakov V. Toporkov and Gary S. Brown.. Numerical Study of the Extended Kirchhoff Approach and the Lowest Order Small Slope Approximation for Scattering From Ocean-Like Surfaces: Doppler Analysis. IEEE Trans. on Antenna and Propagat., 2002,4, 50(4): 417~425
    [178] 任新成,郭立新. 高斯粗糙面电磁散射的基尔霍夫驻留相位法研究. 延安大学学报. 2007, 26(3): 20-27
    [179] 任新成,郭立新. 基尔霍夫近似下高斯粗糙面的电磁散射研究. 延安大学学报. 2005, 24(4): 50-53
    [180] 任新成,郭立新,刘生春. 基于微扰法的高斯粗糙面电磁散射研究. 延安大学学报. 2006, 25(1): 26-30
    [181] 郭立新, 王运华, 吴振森.平行柱体对平面波/高斯波束电磁散射. 物理学报, 2007, 56(1): 186~194
    [182] 郭立新, 陈建军, 韦国晖, 吴春雨. 粗糙面电磁散射的小斜率近似方法研究.西安电子科技大学学报(自然科学版). 2005, 32(3): 408-413
    [183] Xianyang Zhu, Traian Dogaru and Lawrence Carin.. Three-Dimensional Biorthogonal Multiresolution Time-Domain Method and Its Application to Electromagnetic Scattering Problems. IEEE Antennas Propag..2003,5,51(5): 1085–1092
    [184] Jerry R. Smith, Jr. and Robert J. Burkholder. Channeling Phenomenon in Electromagnetic Forward Scattering at Low Grazing. IEEE Trans. Geosci. Remote Sensing. 2004,8, 42(8): 1731~1738
    [185] Mei Song Tong and Weng Cho Chew. A Higher-Order Nystr?m Scheme for Electromagnetic Scattering by Arbitrarily Shaped Surfaces. IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS,2005, 4: 277~280
    [186] K. Inan and V. B. Ertürk. Application of Iterative Techniques for Electromagnetic Scattering From Dielectric Random and Reentrant Rough Surfaces. IEEE Antennas Propag..2006,11,44(11): 3320–3329
    [187] Hwar-Ching Ku, Ra’id S. Awadallah Robert L. McDonald and Nancy E. Woods. Fast and Accurate Algorithm for Electromagnetic Scattering From 1-D Dielectric Ocean Surfaces. IEEE Antennas Propag..2006,8,54(8): 2381–2391
    [188] Nicolas Déchamps and Christophe Bourlier.Electromagnetic Scattering From a Rough Layer: Propagation-Inside-Layer Expansion Method Combined to an Updated BMIA/CAG Approach. IEEE Antennas Propag..2007,10,55(10): 2790–2802
    [189] Voronovich A G. Small-slope approximation in wave scattering by rough surfaces . Sov. Phys.–JETP. 1985, 62: 65-70.
    [190] Charnotskii M I and Tatarskii V I. Tilt-invariant theory of rough surface scattering . Waves Random Media. 1995, 5: 361~380.
    [191] Isers A B, Puzenko A A and Fuks IM. The local perturbation method for solving the problem of diffraction from a surface with small slope irregularities. J. Electromagn. Wave Appl. 1991, 5: 1419~1435.
    [192] Bahar E. Scattering cross sections for composite random surfaces: fullwave analysis . Radio Sci. 1981,16: 1327~1335.
    [193] Winebrenner D P and Ishimaru A. Investigation of a surface-field phase-perturbation technique for scattering from rough surfaces . Radio Sci. 1985, 20: 161~170.
    [194] A. K. Sultan-Salem, G. L. Tyler. Validity of the Kirchhoff approximation for electromagnetic wave scattering from fractal surfaces . IEEE Trans. on Geosci. Remote Sensing, 2004, 42 (9): 1860-1870.
    [195] N.P. Zhuck. Scattering of EM waves from a slightly rough surface of a generally anisotropic plane-layered half space . IEEE Trans. Anten. and Prop. 1997, 45: 1774~1782.
    [196] Ergün Simsek, Jianguo Liu and Qing Huo Liu. A Spectral Integral Method (SIM) for Layered Media. IEEE Trans. Antennas Propagat. 2006,6, 54(6),pp. 1472~1479
    [197] Ergün Simsek, Jianguo Liu and Qing Huo Liu. A Spectral Integral Method and Hybrid SIM/FEM for Layered Media. IEEE Trans. Microwave and techniques. 2006,11, 54(11),pp. 3878~3884
    [198] Chih-Hao Kuo and Mahta Moghaddam. Scattering From Multilayer Rough Surfaces Based on the Extended Boundary Condition Method and Truncated Singular Value Decomposition. IEEE Trans. Antennas Propagat. 2006,10, 54(10),pp. 2917~2929
    [199] Alireza Tabatabaeenejad and Mahta Moghaddam. Bistatic Scattering FromThree-Dimensional Layered Rough Surfaces. IEEE Trans. Geosci. Remote Sensing. 2006,8, 44(8): 2102~2114
    [200] Magda El-Shenawee. Polarimetric Scattering From Two-Layered Two-Dimensional Random Rough Surfaces With and Without Buried Objects. IEEE Trans. Geosci. Remote Sensing. 2004,1, 42(1): 67~76
    [201] G. Franceschetti, P. Imeratore, A. Iodice, D. Riccio, and G. Ruello, “Scattering from layered medium with one rough interface: Comparison and physical interpretation of different methods,” in Proc. IEEE IGARSS, Toulouse, France, Jul. 2003: 2912–2914.
    [202] REN Xin-Cheng, GUO Li-Xin. Study on electromagnetic wave transmission from slightly Gaussian rough surface of layered medium. Chinese Physics Letters. 2008, 25(1) : 101-104
    [203] David E. Freund, Nancy E. Woods, Hwar-Ching Ku, and Ra’id S. Awadallah. Forward Radar Propagation Over a Rough Sea Surface: A Numerical Assessment of the Miller-Brown Approximation Using a Horizontally Polarized 3-GHz Line Source. IEEE Trans. Antennas Propagat. 2006,4, 54(4): 1292~1304
    [204]Jakov V. Toporkov, and Mark A. Sletten. Statistical Properties of Low-Grazing Range-Resolved Sea Surface Backscatter Generated Through Two-Dimensional Direct Numerical Simulations. IEEE Trans. Geosci. Remote Sensing. 2007,5, 45(5): 1181~1197
    [205] Osama M. Abo-Seida, Samira Tadros Bishay, and Khaled Mohamed El-Morabie. Far-Field Radiated From a Vertical Magnetic Dipole in the Sea With a Rough Upper Surface. IEEE Trans. Geosci. Remote Sensing. 2006,8, 44(8): 2135~2142
    [206] Ming Li. A Method for Requiring Block Size for Spectrum Measurement of Ocean Surface Waves. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2006, 55(6): 2207~2215
    [207] Yan Zhang, Jie Lu, Joe Pacheco, Jr., Christopher D. Moss, Chi O. Ao, Tomasz M. Grzegorczyk and Jin A. Kong. Mode-Expansion Method for Calculating Electromagnetic Waves Scattered by Objects on Rough Ocean Surfaces. IEEE Trans. Antennas Propagat. 2005,5, 53(5): 1631~1639
    [208] Jerry R. Smith, Jr., Steven J. Russell etc. Electromagnetic Forward-Scattering Measurements Over a Known, Controlled Sea Surface at Grazing. IEEE Trans. Geosci. Remote Sensing. 2004,6, 42(6): 1197~1207
    [209] 郭立新,王运华,吴振森.修正双尺度模型在非高斯海面散射中的应用.电波科学学报,2007, 22(2): 212-218
    [210] T Elfouhaily, B Chapron and K Katsaros. A unified directional spectrum for long and short wind-driven waves. J. Geophys. Res. 1997, 102(C7): 15781~15789.
    [211] F Berizzi, E Dalle Mese. Sea-wave fractal spectrum for SAR remote sensing, IEE Proc-Radar, Sonar Navig. 2001,4, 148(2): 56~65
    [212] F.Berizzi, E. Dalle Mese, Scattering Coefficient Evaluation From a Two-Dimension Sea Fractal Surface, IEEE Trans. Antennas. Propagat. 2002,4, 50(4): 426~433
    [213] F. Berizzi, E. Dalle Mese. Scattering From a 2-D Sea Fractal Surface: Fractal Analysis of the Scattered Singal[J]. IEEE Trans. Antennas. Propagat. 2002, 50(7): 912~925
    [214] 王运华,郭立新,吴振森.改进的二维分形模型在海面电磁散射中的应用[J].物理学报.2006, 55(10): 5191-5199
    [215] Eric.I.Thorsos. The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum. J. Acoust. Soc. Am. 1988, 83(1): 78~92
    [216] Yan Shi and Chang-Hong Liang. Application of the Spatial–Spectral CG-FFT Method for the Solution of Electromagnetic Scattering by Buried Flat Metallic Objects. IEEE Trans. Geosci. Remote Sensing. 2007,1, 45(1): 37~40
    [217] Giovanni Bozza, Claudio Estatico, Matteo Pastorino. Application of an Inexact-Newton Method Within the Second-Order Born Approximation to Buried Objects. IEEE Trans. Geosci. Remote Sensing. 2007,1, 45(1): 51~55
    [218] Reza Firoozabadi, Eric L. Miller Carey M. Rappaport and Ann W. Morgenthaler Subsurface Sensing of Buried Objects Under a Randomly Rough Surface Using Scattered Electromagnetic Field Data. IEEE Trans. Geosci. Remote Sensing. 2007,1, 45(1): 104~117
    [219] Zhong-Xin Li. Bistatic Scattering From Rough Dielectric Soil Surface With a Conducting Object Partially Buried by Using the GFBM/SAA Method. IEEE Trans. Antennas Propagat. 2006,7, 54(7): 2072~2080
    [220] Yasemin Altuncu, Ibrahim Akduman and Ali Yapar. Detecting and Locating Dielectric Objects Buried Under a Rough Interface. IEEE Trans. Geosci. Remote Sensing. 2007,2, 45(2): 251~255
    [221] Octavien Cmielewski, Marc Saillard, Kamal Belkebir, and Hervé Tortel. On the Characterization of Buried Targets Under a Rough Surface Using the Wigner–Ville Transformation. IEEE Trans Geosci Remote Sensing letters, 2006,10, 3(4): 442~446
    [222] Kamal Sarabandi, Mojtaba Dehmollaian, and Hossein Mosallaei. Hybrid FDTD and Single-Scattering Theory for Simulation of Scattering From Hard Targets Camouflaged Under Forest Canopy. IEEE Trans Geosci Remote Sensing, 2006,8,44(8): 2072~2082
    [223] M. R.Pino, F.Obelleiro, J. L.Rodriguez. An Efficient Solution Based on the Forward-Backward Method to Analyze the Scattering from Electrically Large Targets Placed on Oceanic Rough Surfaces, IEEE Antennas and Propagation Society International Symposium, 2000, 4: 2340-2343
    [224] D.Colak, R. J.Burkholder, E. H.Newman. Multiple Sweep Method of Monents Analysis of Electromagnetic Scattering from 3D Targets on Ocean-like Rough Surfaces, Microwave and Optical Technology Letters, 2007, 49(1): 241-247.
    [225] U.Jakobus, F. M Landstorfer. Improved PO-MM Hybrid Formulation for Scattering from Three-dimensional Perfectly Conducting Bodies of Arbitrary Shape, IEEE Transaction on Antennas and Propagation, 1995, 43(2): 162-169
    [226] J.T. Johnson. A Numerical Study of Scattering from an Object above Rough Surface, IEEE Transaction on Antennas and Propagation, 2002, 50: 1361- 1367

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700