高效滤清器旋风级性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
因效率高、功率大、重量轻、尺寸小、机动性好等优点,燃气轮机成为大中型水面舰船的主动力装置。船舶燃气轮机以空气为工作介质,在海洋环境条件下,空气中含有大量的盐雾颗粒以及油污、沙尘等杂质,这些都会对燃气轮机造成危害。为了保证在海洋环境条件下运行的燃气轮机的性能和可靠性,绝大多数舰艇都装备有进气滤清装置。因此对燃气轮机进气滤清器进行数值模拟及实验研究具有重要的现实意义,能为高性能船用进气滤清器的设计制造提供有力的依据。
     本文所研究的旋风级(由顺序排列的多个旋风子构成)是组合式滤清器中的第一级,它能够起到缓减波浪对后级滤清器的冲击、快速疏水以及分离大直径液滴的作用,是组合式滤清器不可缺少的一个重要组成部分。旋风子的两个主要指标是阻力和分离效率,本文通过数值模拟与实验研究相结合的方法对其进行研究,主要进行了如下几个方面的工作:
     1.对现有旋风子模型采用结构化网格进行数值模拟,考查其阻力特性,分析其内部流场分布情况,并且以降低阻力为目标而进行改型设计。通过在旋风子出气口处加装扩压段,达到降低阻力的目的。
     2.采用非结构化网格对旋风子原型和改进型进行数值模拟,并同结构化网格数值模拟结果进行对比分析。结果显示,对于旋风子来说,采用两种结构不同的网格,其数值模拟结果基本一致。
     3.考虑到旋风级的实际情况,采用周期性边界条件对旋风子原型和改进型进行单相数值模拟,之后进行了两相流的数值模拟。两相流计算的结果表明,旋风子捕捉大颗粒的效果更好。
     4.利用小型风洞对旋风子进行阻力和效率的实验研究,对数值模拟结果加以验证。阻力实验易于实现,实验结果验证了数值模拟的准确性;对于分离效率实验,借助附加装置形成组合滤清器来获得系统的分离效率特性。
Because of the advantages of high efficiency, great power, small volume, lightness, good flexibility and so on, marine gas turbine has become the main power plant of large and middle sized marine warship. Marine gas turbine uses air as working medium. The air in the marine environment always sustains large numbers of salt particles, smear and sand-dust, which will harm the gas turbine. In order to ensure the performance and reliability of the marine gas turbine, most naval ships use the filter system. So investigating the mechanism of the air-intake filter installation in the gas turbine by using numerical simulation method and experimental method has important realistic significance of providing relative reference to the design and manufacture of the marine air-intake filter installation.
     In this article, the object of study is a cyclone stage which is combined by some serial cyclone separators. As the first stage of the combinational filter with high efficiency, cyclone stage can mitigate wave impact to the back stage of the filter; fleetly drain off the water and separate large diameter droplet. It is one of the most important parts of the combinational filter. Two main characteristics of the cyclone separator are the resistance and the separation efficiency. In this article, using the method of combining numerical simulation with experimental research to investigate the cyclone separator, some works have been done as followed:
     Firstly, applying structural grid to simulate the original model of cyclone separate, studying its resistance characteristic, analyzing the distributing situation of the inner flow field in the cyclone separator; and making relative design to reduce the resistance. Through installing diffuser on the gas outlet of the cyclone separator to reach the purpose of reducing the resistance;
     Secondly, applying unstructured grid to simulate the antetype model and the modified model of the cyclone separator; comparing with the results of structural grid model and making relevant analysis. The results show that, the numerical simulation results of two different grids are nearly the same for the cyclone separator;
     Thirdly, considering the actual condition of the cyclone stage, applying the periodicity boundary condition to investigate the antetype and the modified model of the cyclone separator by using single-phase numerical simulation method, then simulating two-phase flow field. The results of two-phase flow field simulation indicate that the effect of catching big granules is better for the cyclone separator;
     Finally, using pint-sized wind tunnel to carry out resistance experiment and efficiency experiment of the cyclone separator in order to validate the numerical simulation results. The resistance experimentalize is easily achieved, and the results validate the veracity of the numerical simulation results of resisitance characteristics; For the efficiency experiment, by dint of additive equipments to form combined filter, then obtain the separate efficiency characteristics of the system.
引文
[1]金介荣,金琰.舰船燃气轮机的现状与发展趋势.现代舰船.2007(5):18-19页
    [2]吉贵明.船舶燃气轮机技术和应用的展望.舰船科学技术.2000(5):36-40页
    [3]吉桂明,刘长和.燃气轮机的技术和应用:现状和展望.热能动力工程.2000,15(88):339-343页
    [4]陈绍明,吴光兴等.除尘技术的基本理论与应用.北京:中国建筑工业出版社,1981:154-194
    [5]刘金红.旋风分离器的发展与理论研究现状.化工技术装备.1998,19(5):49-50页
    [6]孙国刚,李双权,时铭显.PX型高效旋风分离器的研究开发.炼油技术与工程.2006,36(6):30-34页
    [7]师蓓蓓.气垫船沙滩环境下进气滤清技术研究.哈尔滨工程大学硕士学位论文.2007:2-4页
    [8]李万平.计算流体力学.武汉:华中科技大学出版社,2004:1页59页,181页
    [9]傅德薰,马延文.计算流体力学.北京:高等教育出版社,2002:1-5页
    [10]吴江航,韩庆书.计算流体力学的理论、方法及应用.北京:科学出版社,1988:12-16页
    [11]P.J.罗奇.计算流体动力学.北京:科学出版社,1983:50-80页
    [12]陈义良.湍流计算模型.合肥:中国科学技术大学出版社,1991:26-987页
    [13]马铁犹.计算流体动力学.北京:科学航空学院出版社,1986:10-15页
    [14]陈懋章.粘性流体动力学基础.北京:高等教育出版社,2002:13页
    [15]王福军.计算流体动力学分析-CFD软件原理与应用.北京:清华大学 出版社,2004:116-118页,161页
    [16]周力行著.湍流气粒两相流动和燃烧的理论与数值模拟.陈文芳,林文漪译.北京:科学出版社,1994:153页,126-127页
    [17]P.Rollet-Miet,D.Laurence,J.Ferziger.LES and RANS of turbulent flow in tube bundles.International Journal of Heat and Fluid Flow.1999,20(3):241-254P
    [18]Fluent Inc.,FLUENT User's Guide.Fluent Inc.,2003:4-5P,17P
    [19]J.O.Hinze.Turbulence.McGraw-Hill,New York,1975:40-85P
    [20]蔡树棠.刘宇陆.湍流理论.上海:上海交通大学出版社,1993:249页
    [21]陶文铨.数值传热学.第二版.西安:西安交通大学出版社,2001:427页,428页
    [22]Spalart P R,Allmaras S R.A one-equation turbulence model for aerodynamicflow.AIAA.92-0439,American Institute of Aeronautics and Astronautics,1992
    [23]Baldwin B S,Barth T.A one-equation turbulence transport model for high Reynolds number wall bounded flows.AIAA.91-0610,1996
    [24]宁方飞,徐立平.Spalart-Allmaras湍流模型在内流流场数值模拟中的应用.工程热物理学报.2001,22(3):304-306页
    [25]B.E.Launder,D.B.Spalding.Lectures in Mathematical Model of Turbulence.Academic Press,London,1972
    [26]郭鸿志.传输过程数值模拟.北京:冶金工业大学出版社,1998:62页
    [27]V.Yakhot,S.A.Orszag.Renormalised group analysis of turbulence:I.Basic theory.J Sci Comput,1986,1:3-51P
    [28]T.H.Shin,W.W.Liou,A.Shabbir,Z.G.Yang,J.Zhu.Anew κ-ε eddy viscosity model for high Reynolds number turbulent flows.Comput Fluids.1995,24(3):227-238P
    [29]David C.Wilcox.Reassessment of the Scale-Determining Equation for Advanced Turbulence Models.AIAAJ.1988,26(11):1299-1310P
    [30]Coakley T J.Turbulence modeling methods for the compressible Navier-Stokesequations.AIAA Journal.1992,30(6):1651-1659P
    [31]袁新.可压缩粘性流动中双方程湍流模型的选择.工程热物理学报.1998,4(19):427-432页
    [32]刘顺隆,郑群.计算流体力学.哈尔滨:哈尔滨工程大学出版社,1998:22-26页
    [33]阎超.计算流体力学方法及应用.北京:北京航空航天大学出版社,2006:35-38页,183页
    [34]李人宪.有限体积法基础.北京:国工业出版社,2005:5-8页
    [35]周雪漪.计算水力学.北京:清华大学出版社,1995:148-149页
    [36]赵锐.可逆风机叶型设计及离心压缩机窄通道级研究.大连理工大学硕士研究生学位论文.2005:17页,32页
    [37]姚福锋.蒸汽轮机抽气口及其附近透平级流场的数值研究.华北电力大学硕士学位论文.2006:19页
    [38]周天孝,白文.CFD多块网格生成新进展.力学进展.1999,29(3):344-367页
    [39]朱自强等著.应用计算流体力学.北京:北京航空航天大学出版社,1998:92页,109页,122页
    [40]Thompson J F,Weatherill N P.Aspects of numerical grid generation:current and art.AIAA 93-3593,1993:1-42P
    [41]Wil liamson,C.H.K.,Prasad,A.A new mechanism for oblique wave resonance on the natural far wake.J.Fluid Mech.1993,256:269-313P
    [42]Taneda,S.Downstream development of the wakes behind cylinder.J.Phys.Soc.Japan.1959,14:843-848P
    [43]A.Haider and O.Levenspiel.Drag Coefficient and Terminal Velocity of Spherical and Nonspherical Particles.Powder Technology,1989,63-70P
    [44]A.Li and G.Ahmadi.Dispersion and Deposition of Spherical Particles from Point Sources in a Turbulent Channel Flow.Aerosol Science and Technology,1992,16:209-226P
    [45]Saffman P G.The Lift on a Small Sphere in a Slow Shear Flow.J.Fluid Mech.1965,22:385-400P
    [46]崔佃飞.高性能船用燃机进气滤清器性能研究.哈尔滨工程大学硕士 研究生学位论文.2003:20页
    [47]袁敏.600MW机组斜流式循环水泵三维流场分析及叶型优化设计.华北电力大学硕士学位论文.2006:16页
    [48]张健.G4-73-8D风机叶轮改造数值模拟与实验研究.华北电力大学硕士学位论文.2006:25-26页,22页
    [49]Chow,C Y.An Introduction to computational Fluid Mechanics.John Wiley and Sons,1979
    [50]Brandt A.Multi-level adaptive solutions to boundary-value problems.Math Comput,1977,31:330-390P
    [51]刘超群.多重网格及其在计算流体力学中的应用.北京:清华大学出版社.1995:1-64页.
    [52]周爱平.过流截面突然扩大和突然缩小时局部阻力的测量与分析.焦作工学院(自然科学版).2000,19(1):45-49页
    [53]秦志坚,庞明军,张锁龙,裴峻峰.相邻过流截面突然缩小与扩大阻力相互影响的研究.江苏工业学院学报.2006,18(4):1-4页
    [54]赵宝峰,门宝辉.关于管路突然扩大局部阻力系数的研究.华北水利水电.2000:25-26页
    [55]Spalding,D B.A general purpose computer program for multidimensional one and two phase flows.J.Math Comput.1981,Simul.23..267-276P
    [56]魏学孟.不同采样方法对洁净度的影响.洁净与空调技术.2002(3):12-16页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700