齿科修复用钛—锆—铌—锡合金研制及临床应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     本文针对钛及钛合金在临床应用上存在的问题研制新型口腔修复用钛合金,通过显微组织及力学性能优化合金成分,并对优化合金的摩擦磨损特性、腐蚀特性、生物学性能和铸造性能进行研究。
     方法:
     1、合金设计、优化及制备:应用d-电子合金设计理论,将合金设计为Ti-xZr-yNb-2.5Sn (x=2.5,10,12.5,15, y=0,1,2,3,4,5,10,15,20),通过不同配比合金的组织结构和力学性能筛选合金的最佳配比。按Ti-12.5Zr-3Nb-2.5Sn (wt%)比例称取原料配制合金,测定合金差热分析曲线,设定不同时间和温度对合金进行热处理。
     2、机械性能评价:试样经850℃吲溶1.5h,500℃时效3h后,测试力学性能;观察分析合金显微组织,断口形貌,物相结构,确定合金金相组织中各相的组成结构及种类。
     3、摩擦磨损性能评价:使用MMV-1立式万能摩擦磨损实验机,进行二体摩擦磨损实验,以纯钛(TA2)为对照组。观察试样表面磨损形貌,分析磨屑成分,测试表面硬度及体积损失量。
     4、耐腐蚀性能评价:观察合金和对照纯钛(TA2)及Ti6A14V在人工唾液中的电化学行为,比较极化曲线及极化阻力;检测合金和Ti6A14V合金在人工唾液中1、2、3、5、7、15 d的离子释出情况。
     5、生物学性能评价。采用细胞毒性实验、急性全身毒性实验、口腔粘膜刺激实验、致敏性实验等体内及体外实验,评价其生物学性能。
     6、铸造性能评价。采用国产LZ5型离心铸钛机铸造试样,测试合金的铸流率铸造反应层和线收缩率。
     结果:
     1、Ti-xZr-yNb-2.5Sn合金,在Zr含量为12.5%,Nb含量为3%时,与其他配比合金相比较,具有较高的抗拉强度、延伸率、弹性模量,机械性能较佳。
     2、合金相变点在769.9~841.1℃之间。合金在200℃,350℃时组织比较混乱,晶界不明显,而在500。C,3h时合金组织清楚,为等轴晶粒,晶粒大小合适,700℃时晶粒十分粗大。
     3、Ti-12.5Zr-3Nb-2.5Sn合金抗拉强度为652±34.5MPa,屈服强度为590±29.8MPa,延伸率为28.3±2.4%,弹性模量为93.8±7.9Gpa。试样断口处可见明显颈缩现象,呈典型的微孔聚合型断裂方式。金相结构中晶粒组织均匀,呈现针状α分布于粗大的β晶粒中。XRD显示合金为近α相。透射电镜衍射花样标定表明试样的品体结构为密排六方的α相结构。
     4、Ti-Zr-Nb-Sn合金的磨损量随载荷的增加而增大。载荷不同,合金表现为不同的磨损机制。Ti-Zr-Nb-Sn合金、天然牙釉质的磨损体积量<纯钛(P<0.05)。Ti-Zr-Nb-Sn合金磨损机制主要为磨粒磨损。磨屑成分分析Ti-Zr-Nb-Sn合金磨屑元素成分为Ti、Zr、Sn元素,未见Nb元素;纯钛磨损后磨屑成分主要为Ti元素。
     5、Ti-6A1-4V的击穿电位(Eb,0.8 V)低于Ti-Zr-Nb-Sn合金(>2.5 V);Ti-Zr-Nb-Sn合金的维钝电流密度(icon)低于Ti6A14V。合金极化阻力高于Ti-6A1-4V。随浸泡时间增加,两种钛合金的离子溶出量均有不同程度增加,且各个时间点Ti-6A1-4V的离子溶出量均高于Ti-Zr-Nb-Sn合金。
     6、合金的细胞毒性反应为0级,全身毒性实验中未见急性毒性反应,对口腔粘膜无刺激性,无皮肤致敏反应。
     7、400℃时铸造,合金铸流率为100%,铸造线收缩率,表面反应层满足修复支架的铸造要求。
     结论:
     1、合金的优化配比为Ti-12.5Zr-3Nb-2.5Sn。热处理方式为850℃固溶处理1.5小时,水淬,500℃时效处理3h。
     2、Ti-12.5Zr-3Nb-2.5Sn合金经热处理后,机械性能较纯钛明显提高。
     3、摩擦磨损实验表明,载荷增加可增大合金的的磨损量,导致磨损机制改变。Ti-12.5Zr-3Nb-2.5S合金较纯钛(TA2)具有更好耐磨损性能。
     4、耐腐蚀研究结果表明,合金的耐腐蚀性与纯钛相近,二者均优于Ti-6A1-4V。
     5、合金具有良好的生物相容性。
     6、合金铸造时表面反应层和铸造线收缩率能够满足口腔修复支架的精度要求。
Objective:A new titanium alloy (Ti-12.5Zr-3Nb-2.5Sn) was developed to meet the needs of clinical requirements for medical titanium alloys and improve the properties of existing titanium alloys.The microstructures, mechanical properties of Ti-Zr-Nb-Sn alloys were investigated to optimizes the alloying constituent.The compatibility wear resistance,corrosion resistance and casting characteristic of selected Ti-12.5Zr-3Nb-2.5Sn alloy that has the excellent properties have been studied.
     Methods:
     1. Design, optimize and preparation of alloy:Ti, Zr, Nb, Sn were selected as alloy elements. According to DV-Xa cluster method,design of alloy composition as Ti-xZr-yNb-2.5Sn (x=2.5,10,12.5,15, y=0,1,2,3,4,5,10,15,20) The microstructures, mechanical properties of Ti-Zr-Nb-Sn alloys were investigated to optimize the alloying constituent. Ti, Zr, Nb, Sn were selected as alloy elements. According to proportion of Ti-12.5Zr-3Nb-2.5Sn (wt%), the differential thermal analysis curve were investing. In order to optimize mechanical property, the samples were further aged at different conditions in vacuum resistance furnace and cooled in the furnace.
     2. Evaluation of mechanical properties:The mechanical properties was tested by universal tensile test machine after quenching process at 850℃for 1.5 hours and aging treatment at 850℃for 3 hours; the microstructure and the fracture morphology were scanned and observed; the alloy microstructure was analyzed with X-ray diffraction phase.
     3. Evaluation of wear resistance properties:A loading wear test was done by MMV-1 Vertical universal friction and wear testing machine. Ti-Zr-Nb-Sn alloy were two-body wear tested in vitro while the Pure Ti was used as control.Wear resistance was analyzed through measuring the volume wear loss, Wear surface morphology was observed with electron microscope, Debris element analysis was carried out.
     4. Evaluation of corrosion resistance:In simulated oral environment, the electrochemical behavior of Ti-Zr-Nb-Sn alloy for dental restoration was investigated together with that of Ti-6A1-4V and TA2 as control groups. The anodic polarization curve and polarization resistance of these alloys were analyzed and the element release of Ti-12.5Zr-3Nb-2.5Sn and Ti-6A1-4V alloy after immersion in artificial saliva forld,2d,3d,5d,7d,15dwere measured.
     5. Evaluation of biological performance:The cell toxicity test, toxicity test, oral mucosa stimulate experiment and sensitization experiments was made to study the biological safety of the new titanium alloys and evaluate its biological properties.
     6. Evaluation of casting performance:Samples were casted by LZ5-centrifugal casting machine, to study casting temperature of the titanium alloy and to test the alloy casting flow rate, evaluation of alloy casting reaction layer and linear shrinkage.
     Results:
     1. The Ti-xZr-yNb-2.5Sn alloy, when the Zr content was the 12.5%, Nb content was 3%, compared with other allocated proportion alloy, had the high tensile strength and elongation ratio, the elasticity coefficient. The mechanical property was good.
     2. The transition point of alloy was between 769.9 and 841.1℃. The organization was quite chaotic and the crystal boundary was not obvious when the aged temperature was 200℃and 350℃. When the aged temperature was 500℃the organization was quite clear and equiaxed grain was sizeable. But grain was very coarse at 700℃.
     3. Organizational structure and mechanical properties. The tensile strength, yield strength, elongation and elastic modulus hardness of alloy were 652±34.5MPa,of 590±29.8MPa,93.8±7.9GPa,28.3±2.4% respectively. It clearly showed necking phenomenon. Specimen fracture electron microscopy revealed the formation of organizations in the expansion area. In the metallographic structure, it was showed that the distribution of needle-like a in the thick of (3 grains. XRD display alloy was nearly a-Ti.
     4. As loads increased, the wear loss of Ti-Zr-Nb-Sn alloy increased.Under 20,50 and 100 N loads, the dominant wear form was different. Volume wear loss and rigidity value of Ti-Zr-Nb-Sn alloy, natural enamel were higher than that of TA2(P< 0.05). The main wear mechanism of Ti-Zr-Nb-Sn alloy was abrasive wear, and enamel and TA2 were adhesion and abrasive wear. Debris element analysis demonstrated that the major component of Ti-Zr-Nb-Sn alloy was Ti, Zr, and Sn, but no Nb; while, the major component of pure TA2 was Ti.
     5. Polarization curve indicated that Ti-6Al-4V alloy had lower breakdown potential (Eb 0.8V) than Ti-12.5Zr-3Nb-2.5Sn alloy did (> 2.5V). Ti-6Al-4V alloy showed higher passivation current density than Ti-12.5Zr-3Nb-2.5Sn alloy did. The polarization resistance volume Ti-12.5Zr-3Nb-2.5Sn alloy was higher than TA2. With the increasing of dipping time in artificial saliva, the ion release of Ti-12.5Zr-3Nb-2.5Sn alloy and Ti-6Al-4V alloy increased to different degrees. Ti-6Al-4V alloy always showed more ion release than Ti-12.5Zr-3Nb-2.5Sn alloy did in the experiment.
     6. Biology experiment showed that the alloy cytotoxicity reaction level was 0; no acute toxic reactions, irritation to the oral mucosa, or skin sensitization.
     7. Casting properties. The casting flow rate was 100% when the alloy were casted at 400℃. Linear shrinkage and the surface reaction layer met the demand.
     Conclusions:
     1. The optimized composition of alloy was Ti-12.5Zr-3Nb-2.5Sn. Heat treating regime was quenching process at 850℃for 1.5 hours and aging treatment at 850℃for 3 hours.The mechanical properties were surprior to Titanium obviously, after quenching process and aging treatment.
     2. The increase of loads enlarges the wear loss of Ti-12.5Zr-3Nb-2.5Sn alloy and changes its dominant wear form. The Ti-12.5Zr-3Nb-2.5Sn alloy had good surface wear resistance than pure Ti and were suitable for dental restoration application.
     3. Ti-12.5Zr-3Nb-2.5Sn alloy, as well as pure Ti, were superior to Ti-6Al-4V in corrosion resistance.
     4. Biology experiment showed that the alloy had the good Biological compatibility.
     5. The surface reaction layer and linear shrinkage met the accuracy requirements of dental demands.
引文
[1]陈治清.口腔材料学.北京:人民卫生出版社,2003:1-2
    [2]M.H.Fathi,M.Salehi,A.Saatchi,V.Mortazavi,S.B.Moosavi. In Vitro Corrosion Behavior of Bioceramic, Metallic, and Bioceramic-metallic Coated Stainless Steel Dental Implants. Dental Materials,2003,19:188-198
    [3]M.Browne,P.J.Gregson. Metal Ion Release from Wear Particles Produced by Ti-6A1-4V and Co-Cr Alloy Surfaces Articulating against Bone.Materials Letters,1995,24:1-6
    [4]张新平,于思荣,夏连杰,何镇明.钛及钛合金在牙科领域中的研究现状.稀有金属材料与工程,2002,31(4):246-251
    [5]于思荣.金属系牙科材料的应用现状及部分元素的毒副作用.金属功能材料,2000,7(1):1-6
    [6]何玉玲.牙科用塑料材料及使用配方.塑料科技,1999,3:23-26
    [7]Sultana T, Georgiev GL, Baird RJ,et al. Study of two different thin film coating methods in transmission laser micro-joining of thin Ti-film coated glass and polyimide for biomedical applications. J Mech Behav Biomed Mater,2009,2(3):237-242.
    [8]Oliveira NT, Guastaldi AC. Electrochemical stability and corrosion resistance of Ti-Mo alloys for biomedical applications. Acta Biomater.2009;5(1):399-405.
    [9]Tomozawa M, Kim HY, Miyazaki S. Shape memory behavior and internal structure of Ti-Ni-Cu shape memory alloy thin films and their application for microactuators. Acta Materialia,2009,57(2):441-452
    [10]Murr LE, Quinones SA, Gaytan SM,et al. Microstructure and mechanical behavior of Ti-6A1-4V produced by rapid-layer manufacturing, for biomedical applications. J Mech Behav Biomed Mater,2009,2(1):20-32
    [11]Oak JJ, Louzguine-Luzgin DV, Inoue A. Investigation of glass-forming ability, deformation and corrosion behavior of Ni-free Ti-based BMG alloys designed for application as dental implants. Materials Science & Engineering. C, Biomimetic Materials, Sensors and Systems.2009,29(1):322-327
    [12]汀大林,江中明.牙科合金材料应用研究现状.特种铸造及有色合金,1998, 3:42-44
    [13]K.Wang.The Use of Titanium for Medical Applications in the USA.Materials Scinence and Engineering A,1996,213:134-137
    [14]汪大林,罗远伦,戴玮霞,彭玉田.精密铸钛技术在义齿类铸件上的应用.铸造,1997,4:32-35
    [15]刘洪臣.王燕一.江南.口腔修复技术进展(二)[J].口腔颌面修复学杂志,152000,1(3):183-185
    [16]AI-Mesmar HS, Morgano SM, Mark LE. Investigation of the effect of three sprue designs on the porosity and the completeness of titanium cast removable partial denture frameworks[J]. J Prosthet Dent,1999,82(1):15-21
    [17]Ho WF, Chen WK, Wu SC, et al. Structure, mechanical properties, and grindability of dental Ti-Zr alloys [J]. J Mater Sci Mater Med,2008,19(10):3179-3186
    [18]Iijima D, Yoneyama T, Doi H, et al. Wear properties of Ti and Ti-6Al-7Nb casting for dental prostheses[J]. Biomaterials,2003,24(8):1519-1524
    [19]Viritpon S, Takayuki Y, Noriyuki W, et al. Properties of Ti-6Al-7Nb alloy casting for removable partital dentu.e frameworks[J]. DentalMaterials Journal,2004,23(4):497-503
    [20]Ho WF, Cheng CH, Pan CH, et al. Structure, mechanical properties and grindability of dental Ti-10Zr-X alloys[J]. Mater Sci Eng C,2009,29 (1):36-43.
    [21]T. Maeshima, S.Ushimaru,K.Yamauchi,M.Nishida.Effect of heat treatment on shape memory effect and superlasticity in Ti-Mo-Sn alloys.Materials Science and Engineering A.2006,438-440:844-847
    [22]N.Sakaguchi, M.Niinomi, T.Akahon, J.Takeda,H.Toda.Effect of Ta content on mechanical properties of Ti-30Nb-XTa-5Zr.Materials Science and Engineering C,2005,25:370-376
    [23]Y.Okazaki,E.Gotoh,T.Manabe,K.Kobayashi.Comparison of Metal Concentrations in Rat Tibia Tissues with Various Metallic Implants. Biomaterials,2004,25:5913-5920
    [24]R.Banerjee, S.Nag, J.Stechschulte,H.L.Fraser. Strengthening Mechanisms in Ti-Nb-Zr-Ta and Ti-Mo-Zr-Fe Orthopaedic Alloys. Biomaterials,2004,25:3413- 3419
    [25]T.Kasuga, M.Nogami,M.Niinomi,T.Hattori.Bioactive Calcium Phosphate Invert Glass-ceramic Coating onβ-type Ti-29Nb-13Ta-4.6ZrAlloy. Biomaterials,2003, 24:283-290
    [26]刘金城,高勃,郝玉琳等.牙用低弹性模量钛铌锆锡合金的机械性能研究[J].实用口腔医学杂志,2006,22(1):57-59
    [27]Banerjee R, Nag S, Fraser H L. Materials Science and Engineering C[J],2005,25: 282
    [28]Morinaga M, Kato M, Kamimura T et al. Proc 7th Int Conf On Titanium[C]. San Diego:CA, USA,1992:276
    [29]Daisuke Kuroda, Mitsuo Niinomi et al. Mater Sci Eng A[J],1998,243:244
    [30]Zhang Xinping((张新平)et al. Rare Metal Materials and Engineering(?)(稀有金属材料与工程)[J],2003,32(9):727
    [31]Zhang Xinping(张新平)et al. Chinese Journal of Nonferrous Metal中国有色金属学报[J],2002,12(4):753
    [32]张济山,崔华,胡壮麒.d电子合金理论及其在合金设计中的应用.材料科学与工程学报,1993,3(11):1-10
    [33]Y.Okazaki,Y.Ito,K.Kyo,T.Tateishi.Corrosion Resistance and Corrosion Fatigue Strength of New Titanium Alloys Formedical Implants Without V and Al.Materials Science and Engineering A,1996,213:138-147
    [34]张新平,于思荣,何镇明,韩秋华.新型Ti-Fe-Mo-Mn-Nb-Zr系钛合金的力学性能.中国有色金属学报,2002,5(12):78-82
    [35]徐丽娟.牙科用钛合金组织与性能的研究.哈尔滨工业大学博士学位论文,2007,3:61-63
    [36]费玉环.Ti-700合金的显微结构分析.东北大学硕士学位论文,2007,2:3-12
    [37]RamachandraC, Singh A K, Sarma G M K.Metal.Trans,1993,A(24):1273
    [38]毛彭龄.两相钛合金的相变特征及热处理规范[J].上海钢研,1995,3:50-58
    [39]Zhang Tingjie(张廷杰)Rare Metal Materials and Engineering (稀有金属材料与工程)[J],1989,18(4):71
    [40]常辉,周廉,张廷杰.钛合金固态相变的研究进展.稀有金属材料与工程,2007,9(36):1505-1510
    [41]Dobromyslov AV, Elkin VA. Scripta Mater[J],2001,44:905
    [42]丁弘仁,马轩祥.牙用低贵金属合金机械性能的研究.实用口腔医学杂志,2002,18(2):109-110
    [43]熊菲,周新聪,李爱农等.天然牙和牙科材料的摩擦学研究现状与进展.摩擦学学报,2005,25(4):379-384
    [44]Heintze SD, Cavalleri A, Forjanic M, et al.A comparison of three different methods for the quantification of the in vitro wear of dentalmaterials. Dent Mater, 2006,22(11):1051-1062
    [45]Hu X, Shortall AC, Marquis PM. Wear of three dental composites under different testing conditions. J Oral Rehabil,2002,29 (8):756-764
    [46]Heintze SD. Dent Mater,2006,22 (8):712-734
    [47]Heintze SD, Cavalleri A, Forjanic M, et al. Dent Mater,2008,24 (4):433-449.
    [48]Chan KS, Koike M, Okabe T. Modeling wear of cast Ti alloys. Acta Biomater, 2007,3 (3):383-389
    [49]Heintze SD, Cavalleri A, Forjanic M, et al.A comparison of threedifferent methods for the quantification of the in vitro wear of dentalmaterials. Dent Mater, 2006,22(11):1051-1062
    [50]Ghazal M, Yang B, Ludwig K, et al. Two-body wear of resin andceramic denture teeth in comparison to human enamel. DentMater,2008,24(4):502-507
    [51]Hu X, Marquis PM, Shortall AC. Two-body in vitro wear study of some current dental composites and amalgams.J Prosthet Dent,1999;82(2):214-220
    [52]高秀芳,张连云,李长义.牙科材料磨损的机制及评价方法[J].国际口腔医学杂志,2008,35(1):83-84
    [53]Okabe T, Kikuchi M, Ohkubo C, et al. The grind ability and wear of Ti-Cu alloys for dental applications. J Metals,2004;56:46-48
    [54]Monasky GE, Taylor DF. Study on the wear of porcelain, enamel and gold. J Dent Res,1971,25(3):299-306
    [55]Alessandra Cremasco,WisleiR.Osorio,CeliaM.A.et al. Electrochemical corrosion behavior of a Ti-35Nb alloy for medical prostheses. Electrochimica Acta,2008 (53):4867-4874
    [56]D.Q.Martins, M.E.P.Souza,S.A.Souza, et al. Solute Segregation, its Influence on the Microstructure and Electrochemical Behavior of Ti-Nb-Zr Alloys. Journal of Alloys and Compounds,2008 (478):111-116
    [57]B. L. Wang, Y. F. Zheng, L. C. Zhao. Electrochemical corrosion behavior of biomedical Ti-22Nband Ti-22Nb-6Zr alloys in saline medium. Materials and Corrosion,2009 (60):1-7
    [58]International organization for standardization, ISO TR10271.Dentistry Detrimination of Tarnish and Corrosion of Metal and Alloys [M].Geneve Switzerland,1993,3
    [59]Phillps R W.Shinner's science of Dental Materials 8th ed.W.B.Saunders Co.1982,1-35
    [60]曹洪喜.牙科合金腐蚀产物及其致突变性和致癌性.国外医学生物医学工程分册,1999,22(2):110-112
    [61]Meyer RD,Meyer J,Taloumis LJ.Intraoral galvanic corrosion:literature review and case report.J Prosthet Dent,1993,69(2):141-143
    [62]周伟舫.电化学测量.上海:上海科学技术出版社,1985,287-331
    [63]宋应亮,徐君伍,马轩祥.口腔环境中钛及钛合金腐蚀研究现状.国外医学生物医学工程分册,2000,23(4):243-246
    [64]I.Berit and J.BoBergman.Corrosion of titanium and amalgam couples:effect of fluoride,area size,and surface preparation and fabrication procedures.Dental Materials,1995,11(1):41-61
    [65]S.P.Kedici,A.A.Aksut,M.A.Kilicarslan.Corrosion behaviors of dental metals and alloys in different media.J Oral Retail,1998,25(10):800-808
    [66]R.Venugopalan and L.C.Lucas.Evaluation of restorative and implant alloys galvanic alloy coupled t otitanium.Dental Materials,1998,14(3):165-172
    [67]B.Grosgogeat,L.Reclaru,M.Lissac.Measurement and evaluations of galvanic corrosion between titanium/Ti6Al4V implants and dental alloys by electrochemical techniques and auger spectrometry.Biomaterials,1999,20:933-941
    [68]王革 程祥荣.阳极氧化对纯钛氧化膜影响的电化学腐蚀研究.中华口腔医学杂志,2002,37(1):74
    [69]Okazaki Y, Gotoh E. Biomaterials,2005,26(1):11-21
    [70]Mabilleau G, Bourdon S, Joly-Guillou ML, et al. Acta Biomater,2006,2 (1):121- 129.
    [71]KoikeM,Fujii H. Biomaterials,2001,22 (21):2931-2936
    [72]Khan MA, Williams RL, Williams DF. Biomaterials,1999,20 (7):631-637
    [73]Tervahartiala T, Koski H,XuJW, etal.J Dent Res,2001,80 (6):1535-1539
    [74]Ide K, Hattori M, Yoshinari M, et al. Dent Mater J,2003,22 (3):359-370
    [75]Huang HH. Biomaterials,2003,24 (2):275-282
    [76]Huang HH. Biomaterials,2002,23 (1):59-63
    [77]Takemoto S, Hattori M, Yoshinari M, et al. Biomaterials,2005,26 (8):829-837
    [78]Mabilleau G, Bourdon S, Joly-Guillou ML, et al. Acta Biomater,2006,2 (1):121-129
    [79]Matono Y, Nakagawa M, Matsuya S, et al. Dent Mater J,2006,25 (1):104-112.
    [80]Nakagawa M, Matono Y, Matsuya S, et al. Biomaterials,2005,26 (15):2239-2246.
    [81]孙秋霞.材料腐蚀与防护[M].北京:冶金二业出版社,2000:31
    [82]B. L. Wang, Y. F. Zheng, L. C. Zhao. Electrochemical corrosion behavior of biomedical Ti-22Nband Ti-22Nb-6Zr alloys in saline medium. Materials and Corrosion,2009(60):1-7
    [83]D. Q.Martins, W. R. Osorio, M.E.P. Souza, et al. Effects of Zr content on microstructure and corrosion resistance of Ti-30Nb-Zr casting alloys for biomedical applications. ElectrochimicaActa,2008 (53):2809-2817
    [84]Strang R, Whitters CJ,Brown D,et al.Dental materials:1996 literature review. Part 2.J Dent,1998(26):237-291
    [85]M.L.Villarraga,R.C.Anderson,R.T.Hart.Mechanisms of titanium release from posterior cervical spine plates in a canine model based on computational and biocompatibility studies.Key Engineering Materials,.2001,198-199:69-100
    [86]H.Matsuno,A.Yokoyama,F.Watari,M.Uo,T.Kawasaki. Biocompatibility and osteogenesis of refractory metal implants,titanium,hafnium,niobium, tantalum and rhenium.Biomaterials,2001,22(11):1253-1262
    [87]K.Yamaguchi, H.Konishi,S.Hara,Y.Motomura.Biocompatibility studies of titanium-based alloy pedicle screw and rod system:histological aspect.The Spine Jornal,2001,1:260-268
    [88]D.Bogdanski,M.K?ller,D.Muller,G.Muhr,M.Bram,H.P.Buchkremer, D. Stover, J. Choi,M.Epple.Easy assessment of the biocompatibility of Ni Ti alloys by in vitro cell culture experiments on a functionally grades Ni-NiTi-Ti material, Biomaterials.2002,23:4549-4555
    [89]D.Krupa,J. Baszkiewicz,J.A.Kozubowski,A.Barcz,J.W.Effect of phosphorous-ion implantation on the corrosion resistance and biocompatibility of titanium. Biomaterials,2002,23:3329-3340
    [90]S.Mandl,R.Sader,G.Thorwarth,D.Krause,H.F.Zeilhofer,H.H.Horch,B.Rauschenbah. Biocompatibility of titanium based implants treated with plasma immersion ion implantation.Nuclear Instruments and Methods in Physics Research B,2003,206:517-521
    [91]杨晓芳,奚廷斐.生物材料生物相容性评价进展.生物医学工程学杂志,2001,18(1):123-128
    [92]M.D.Yourtee,P.Y.Tong,L.A.Rose.Effect of spivoorthocarbonate volume modifier comonomers on the in vitro toxicology of evial non-shrinlering dental epoxycopolymers. Research Communications in Molecular Pathology and Pharmacology,1994,86(3):347
    [93]Richardson RR, Miller JA, Reichert MW. Polyimidesas biomaterials:Preliminary biocompatibility testing [J].Biomaterials,1993,14(8):627-635
    [94]吴亭熹,杨为中,李亚东,等.双相磷酸钙/聚乳酸复合生物材料的生物相容性[J].中国组织工程研究与临床康复,2009,13(21):4025-4028
    [95]刘斌钰,马晓红,李宁毅,等.煅烧骨的生物相容性及细胞相容性评价[J].中国组织工程研究与临床康复,2008,12(41):8055-8058
    [96]Galia CR, Macedo CA, Rosito R,et al. In vitro and in vivo evaluation of lyophilized bovine bone biocompatibility. Clinics (Sao Paulo),2008,63(6):801-806
    [97]Ren J, Zhao P, Ren T,et al. Poly (D,L-lactide)/nano-hydroxyapatite composite scaffolds for bone tissue engineering and biocompatibility evaluation. J Mater Sci Mater Med,2008,19(3):1075-1082
    [98]Huang XL, Zhang B, Ren L,et al. In vivo toxic studies and biodistribution of near infrared sensitive Au-Au(2)S nanoparticles as potential drug delivery carriers. J Mater Sci Mater Med,2008,19(7):2581-2588
    [99]De Souza R, Zahedi P, Allen CJ,et al. Biocompatibility of injectable chitosan-phospholipid implant systems. Biomaterials,2009,30(23-24):3818-3824
    [100]Teply BA, Tong R, Jeong SY,et al. The use of charge-coupled polymeric microparticles and micromagnets for modulating the bioavailability of orally delivered macromolecules. Biomaterials,2008,29(9):1216-1223
    [101]Hudson SP, Padera RF, Langer R,et al. The biocompatibility of mesoporous silicates. Biomaterials,2008,29(30):4045-4055
    [102]De Jong WH, Hagens WI, Krystek P,et al. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials, 2008,29(12):1912-1919
    [103]励永明,孙皎.评价生物材料不同给予方法致急性全身毒性作用的实验初探[J].口腔材料器械杂志,2000,9(2):83-85
    [104]Huang Y, Jin X, Zhang X,et al. In vitro and in vivo evaluation of akermanite bioceramics for bone regeneration. Biomaterials,2009,30(28):5041-5048
    [105]Gu X, Zheng Y, Cheng Y,et al. In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials,2009,30(4):484-498
    [106]李晓征,白玉盛.骨髓细胞形态学临床带教的体会与思考[J].临床和实验医学杂志,2007,6(7):179-181.
    [107]Hao H P.The practical guide of the standards on biological evaluation of medical devices.Beijing:China Standard Press,2000:1292
    [108]Luo X P,Guo T W, Ou Y G et al.Titanium Cast ing Into Phosphat e Bonded Investment with Zirconite. Dental Materials,2002,18(7):512-515
    [109]Anderson M, Bergman B, Bessing C, et al. Clinical results with titanium crowns fabricated with machine duplication and spark erosion[J].Act a Odontol Scand, 1989,47:279-286
    [110]周彦邦.钛合金铸造概论.北京:航空工业出版社,2000:103
    [111]Vincent PF, Stevens L, Basford KE. A comparison of the casting ability of precious and non-precious alloy forporcelain veneering [J]. J ProsthetDent,1977, 37(5):527-536
    [112]Hinman RW, Tesk JA, Whitlock RP, et al. A technique forcharacterizing casting behavior of dental alloy [J].J Dent Res,1985,64(2):134-138
    [113]张玉梅,郭天文,李佐臣.铸模温度对牙科用Ti-Zr合金铸流率影响的研究.华西口腔医学杂志,2001,19(3):178-180
    [114]周彦邦.钛合金铸造概论[M].北京:航空工业出版社,2000:175
    [115]Watanabe I, Watkins JA, Nakajimi H, et al. Effect of presure difference on the quality of titanium casting [J]. J Dent Res,1997,76(3):773-779
    [116]Sunnerkrantz PA, Syverud M, Hero H. Effect of casting atmosphere on the quality of Ti-crowns [J]. Scand J Dent Res,1990,98:268-272
    [117]Mori T, Jean Louis M, Yabugami M, et al. The effect of investments type on the fit of cast titanium crowns [J]. Aust Dent J,1994,39:348-352
    [118]Takahashi J, Kimura H, Lautenschlager EP, et al. Casting pure titanium into commercial phosphate-bonded SiO2 investment molds [J]. J Dent Res,1990, 69(2):1800-1805
    [119]Shanley JJ, Ancowitz SJ, Fenster RK, et al. A comparative study of the centrifugal and vacuum pressure techniques of casting removable partial frameworks [J].J Prosthet Dent,1981,45:18-23
    [120]Blackman R, Barghi N, Tran C. Dimensional changes in casting titanium removable partial denture frameworks [J]. J Prosthet Dent,1991,65:309-315
    [121]Carter TJ, Kidd JN. The Precision casting of cobalt-chromium alloy. Part 1. The influence of casting varibles on demensions and finish [J]. Br Dent J,1965, 118:383-390
    [1]K.Wang.The Use of Titanium for Medical Applications in the USA.Materials Scinence and Engineering A,1996,213:134-137
    [2]E.Berg. Dentists'Opinions on Aspects of Cast Titanium Restorations.Journal of Dentistry,1997,25(2):113-117
    [3]K.Yokoyama,T.Ichikawa,H.Murakami,Y.Miyamoto,K.Asaoka. Fracture Mechanisms of Retrieved Titanium Screw Thread in Dental Implant. Biomaterials,2002, 23:2459-2465
    [4]冯颖芳,康浩芳,张震.钛合金医用植入物材料的研究及应用.稀有金属2001,25(5):349-354
    [5]C.Leinenbach,C.Fleck,D.Eofler.The Cyclic Deformation Behaviour andFatigue Induced Damage of the Implant Alloy Ti6A17Nb in Simulated Physiological Media. International Journal of Fatigue,2004,26:857-864
    [6]郭天文主编,口腔用钛理论和技术.北京:人民军医出版社,2005.4-6
    [7]MacDonald DE,Markovic B,Allen-M,et al.Surface analysis of human plasma fibronectin adsorbed to commercially pure titanium materials.J Biomed Mater Res,1998,41(1):120-30
    [8]Hannig M.Transmission electron microscopic study of in vivo pellicle formation on dental restorative materials.Eur J Oral Sci,1997,105(5 Pt 1):422-33
    [9]徐君伍主编.口腔修复学.第三版.1994:319
    [10]Maurer AM,Merritt K,Brown SA.Cellular uptake of titanium and vanadium from addition of salts or fretting corrosion in vitro.J Biomed Mater Res.1994,28(2):241-6
    [11]Akagi K, Okamoto Y, Matsuura T, Horibe T.Properties of test metal ceramic titanium alloys.J Prosthet Dent,1992,68(3):462-7
    [12]Pang IC, Gilbert JL, ChAl J, Lautenschlager EP.Bonding characteristics of low-fusing porcelAln bonded to pure titanium and palladium-copper alloy. J Prosthet Dent,1995,73(1):17-25
    [13]Gilbert JL, Covey DA, Lautenschlager EP.Bond characteristics of porcelain fused to milled titanium. Dent Mater,1994,10(2):134-40
    [14]Kaus T,Probster L,Weber H.Clinical follow-up study of ceramic veneered titanium restotations-three-year results.Int J Prosthodont,1996,9(1):9-15
    [15]Seidenbusch W, Manhartsberger C.Measuring equipment for determining the elastic behavior of various wire configurations of orthodontic metal alloys, Biomed Tech Berl.1994,39(5):123-127
    [16]陈文静综述.β-钛丝的性能及其临床应用.国外医学口腔医学分册,1996,23(5):269-271
    [17]H.J.Rack,J.I.Qazi.Titanium alloys for biomedical applications.Materials Science and Engineering C,2006,26:1269-1277
    [18]H.M.Silva,S.G.Schneider,C.M.Neto.Study of nontoxic aluminum and vanadium-free titanium alloys for biomedical applications.Science and Engineering C,2004,24:679-682
    [19]Z.Cai,H.Nakajima,M.Woldu,A.Berglund,M.Bergman,T.Okabe.In Vitro Corrosion Resistance of Titanium Made Using Different Fabrication Methods. Biomaterials, 1999,20:183-190
    [20]M.Koike and H.Fujii.The Corrosion Resistance of Pure Titanium in Organicacids. Biomaterials,2001,22:2931-2936
    [21]K.Ida, Y.Tani, S.Tsutsumi, T.Togaya,T.Nambu,K.Suese, T.Kawazoe, M.Nakamura, H.Wada. Clinical Application of Pure Titanium Crowns. Dental Materials Journal, 1985,4:191-195
    [22]T.Hirata,T.Nakamura,F.Takashima,T.Maruyama,M.Taira,J.Takahashi. Studies on Polishing of Ag-Pd-Cu-Au Alloy with Five Dental Abrasives.Journal of Oral Rehabilitation,2001,28(8):773-777
    [23]A.Kuroiwa and Y.Igarashi.Application of Pure Titanium to Metal Framework. Journal of Japan Prosthodont Society,1998,42:547-558
    [24]P.G.Laing.Clinical Experience with Prosthetic Materials:Historical Perspectives, Current Problems and Future Directions.ASTM-STP,1979,684:199-211
    [25]D.Iijima,T.Yoneyama,H.Doi,H.Hamanaka,N.Kurosaki.Wear Properties of Ti and Ti-6Al-7Nb Castings for Dental Protheses.Biomaterials,2003,24:1519-1524
    [26]Y.Okazaki,S.Rao,T.Tateishi,Y.Ito. Cytocompatibility of Various Metal and Development of New Titanium Alloys for Medical Implants.Materials Science and Engineering A,1998,243:250-256
    [27]W.F.Ho,C.P.Ju,C.Lin.Structure and Properties of Cast Binary Ti-Mo Alloys. Biomaterials,1999,20:2115-2112
    [28]M.Kikuchi, Y.Takada, S.Kiyosue, M.Yoda, M.Woldu,Z.Cai,O.Okuno,T.Okabe. Grindability of Cast Ti-Cu Alloys.Dental Materials,2003,19:375-381
    [29]K.Watanabe,O.Miyakawa,Y.Takada,O.Okuno,T.Okabe.Casting Behavior of Titanium Alloys in a Centrifugal Casting Machine.Biomaterials,.2003,24:1737-1743
    [30]M.Yoda,T.Konno,Y.Takada,K.Iijima,J.Griggs,O.Okuno,K.Kimura,T.Okabe.Bond Strength of Binary Titanium Alloys to Porcelain.Biomaterials,2001,22:1675-1681
    [31]J.Zhu,A.Kamiya,T.Yamada,W.Shi,K.Nagamuma.Influence of Boron Addition on Microstructure and Mechanical Properties of Dental Cast Titanium Alloys. Materials Science and Engineering A,2003,339:53-62
    [32]新家光雄.生体用β型チタソ合金和开发.齿材器,1998,10:843-846
    [33]T.Maeshima,S.Ushimaru,K.Yamauchi,M.Nishida.Effect of heat treatment on shape memory effect and superlasticity in Ti-Mo-Sn alloys. Materials Science and Engineering A,2006,438-440:844-847
    [34]N.Sakaguchi,M.Niinomi,T.Akahon,J.Takeda,H.Toda.Effect of Ta content on mechanical properties of Ti-30Nb-XTa-5Zr.Materials Science and Engineering C,2005,25:370-376
    [35]R.Banerjee,S.Nag,J.Stechschulte,H.L.Fraser.Strengthening Mechanisms in Ti-Nb-Zr-Ta and Ti-Mo-Zr-Fe Orthopaedic Alloys. Biomaterials,2004,25:3413-3419
    [36]M.Geetha,A.K.Singh,K.Muraleedharan,A.K.Gogia,R.Asokamani. Effect of Thermomechanical Processing on Microstructure of a Ti-13Nb-13Zr Alloy. Journal of Alloys and Compounds,2001,329:264-271
    [37]T.Kasuga,M.Nogami,M.Niinomi,T.Hattori.Bioactive Calcium Phosphate Invert Glass-ceramic Coating onβ-type Ti-29Nb-13Ta-4.6Zr Alloy. Biomaterials, 2003,24:283-290
    [38]E.Eisenbarth,D.Velten,M.M?ller,R.Thull,J.Breme.Biocompatibility ofβ-stabilizing Elements of Titanium Alloys.Biomaterials,2004,25:5705-5713
    [39]S.J.Li,M.Niinomi.T.Akahori,T.Kasuga,R.Yang,Y.L.Hao. Fatigue Characteristics of Bioactive Glass-ceramic-coated Ti-29Nb-13Ta-4.6Zr for Biomedical Application.Biomaterials,2004,25:3369-3378
    [40]S.J.Li,R.Yang,M.Niinomi,Y.L.Hao,Y.Y.Cui.Formation and Growth of Calcium Phosphate on the Surface of Oxidized Ti-29Nb-13Ta-4.6Zr Alloy.Biomaterials, 2004,25:2525-2532
    [41]M.Niinomi.Fatigue Performance and Cyto-toxicity of Low Rigidity Titanium Alloy,Ti-29Nb-13Ta-4.6Zr.Biomaterials,2003,24:2673-2683
    [42]D.Zaffe,C.Bertoldi,U.Consolo.Element Release from Titanium Devices Used in Oral and Maxillofacial Surgery.Biomaterials,2003,24:1093-1099

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700