含分布式发电的配电网规划研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球化石能源的日渐减少,能源和环境问题越发显得突出,世界各国都在大力发展绿色能源。分布式发电作为一种新型发电技术,具有节能、环保、高效和经济等优点,有效弥补了传统大规模集中式发电方式存在的不足,在环境保护、国家能源战略和电力系统安全可靠性等方面都有重要意义,因而近年来得到大力发展。但大量分布式电源接入配电网后,对配电网的节点电压、线路潮流等会产生很大影响,且其影响程度与分布式电源的位置和容量密切相关,必须对分布式发电接入配电网后的影响进行科学分析,合理地规划分布式电源在配电网中的分布。基于此,本文对含分布式发电的配电网规划问题进行了研究,主要工作及研究成果如下:
     (1)从技术类型角度详细分析了微型燃气轮机、风力发电、太阳能光伏发电和燃料电池4种分布式发电方式的工作原理及特点。从对电力系统潮流、网损、电压、继电保护、电能质量和可靠性6个方面较全面的归纳分析了分布式发电技术接入配电网后可能对系统造成的影响。
     (2)从原理、特点及优化效果方面对基本粒子群算法(PSO)、带惯性权重的粒子群算法(PSO-w)、带收缩因子粒子群算法(PSO-cf)和全面学习的粒子群算法(CLPSO)进行分析,并归纳分析了应用PSO算法求解规划问题时需要注意的几个问题。
     (3)从配电公司角度出发,综合考虑经济性和环保性,建立了以配电网年费最小为目标函数的含分布式发电配电网规划模型。应用边界变异CLPSO算法对模型进行优化求解,并以IEEE33节点配电网测试系统为算例进行仿真,仿真结果证明了CLPSO算法具有较好性能。算例仿真得出的DG最优规划方案中系统网损和各项费用均下降,各节点电压得到不同程度提升,体现出DG接入后对配电网经济性的提升效果明显,验证了本文得出的规划方案的优越性。对模型的二级指标分析发现,配电网DG安装总容量的变化在优化初期对模型函数影响较大,但随着其数值的确定,各项指标趋于稳定,变为小幅波动,之后的优化主要针对于DG在配电网中的安装位置和各节点安装容量进行,DG的分布方案不同直接影响到DG固定安装费用和网损费用,这也体现出DG接入配电网后对系统网损产生的影响。以IEEE69节点配电网测试系统为平台进行仿真,仿真结果说明本章建立的规划模型能够适用于规模较大的IEEEE69节点配电系统,验证了模型的普遍适应性。
     (4)对风力发电、光伏发电和燃料电池3种分布式电源的潮流计算模型以及对应的PQ、PI、PV节点的处理方法进行总结分析。将燃料电池在潮流计算中处理为PV节点,建立以配电网系统网损最小为目标函数的计及燃料电池的配电网规划模型,并以IEEE33节点系统为算例进行仿真分析。仿真结果对比显示系统网损进一步下降,节点电压得到进一步提高,但由于燃料电池设备成本较高,配电网年费有所上升,而如果从环境效益和节约能源的角度考虑未来应大力发展燃料电池发电。
With the decrease of global fossil energy, the energy sources and environment problem seem to stand out increasingly. Every country in the world is putting great effort to develop green energy resource. As a new type of power generation technology, the distributed generation has been well developed in recent years for advantages of energy saving, environmental protection, high efficiency and economical. It can cover the shortages of the traditional large-scale centralized power generation method, playing a crucial role in environment protection, the national energy strategy and the safe reliability of power system. However, there exists great influence on the node voltage and the line power flow of distribution network after massive DGs switch in the network. And the influence is closely related to the site and capacity of the distributed power, so that we have to carry scientific analysis on the influence brought out by the DGs switching in the network, and put rational planning on distribution. Based on this, my essay researchs the problem of distribution network planning including distributed generation, the main work and the chief research output are as follows:
     (1) It analyses the working principle and features of micro gas turbine, wind power generation, solar photovoltaic generation and fuel cell from technological type perspective.It also put forward an all-around induction and analysis of the influence brought by the DGs switching in the distribution network from6aspects that include the power flow, the transmission losses, the voltage, the relay protection, the quality and reliability of power.
     (2) It analyses PSO, PSO-w, PSO-cf and CLPSO from the principle, features, optimization effect, inducing and further analyzing several problems that need to be noticed in using the PSO to solve the planning problem.
     (3) It builds a model from the point of the power company that takes the minimum annual cost of distribution network as objective function through comprehensive consideration of the economy and the environmental protection. It optimizedly calculates the model using CLPSO algorithm and uses the IEEE33-bus system as simulation example. The result of simulation verifies that the CLPSO algorithm has good performance. The best planning program in simulation result reflects the transmission losses and general expenses are both declining, and the node voltages are rising to varying degrees. It gives the expression to the economical efficiency and the reliability of distribution network are rising obviously after the DGs switching in the distribution network, and also verifies the excellence of the planning program in this essay. Carrying out the analysis of the secondary index, it reflects the total capacity of DGs have great influence on the objective function at the beginning of the optimization process, and the indexes tend to be stable and become small after determining the total capacity of DGs. The later optimization mainly aims at the installation site of DGs and capacity of nodes in distribution network, the location difference of DGs directly influences the cost of installation and transmission losses, and this also reflects the influence of DGs switching in the network on system losses. It also uses the IEEE69-bus system as simulation example. The result of simulation shows that the model can be used in analyzing the IEEE69-bus system which has larger scale, and verifies the general applicability of the model.
     (4) It summarizes and analyses the power flow calculation models of wind power generation, photovoltaic power generation and fuel cell of DGs, and analyses the handling methods of corresponding PQ, PI, PV node type. A distribution network planning model is built that takes the minimum transmission losses of distribution network, and the fuel cell is processed as PV node type in power flow calculation, with the IEEE33-bus system being used as simulation example. The comparison of simulation results reflects the system losses drop further, and the node voltages are further improved. But the cost of fuel cell is high, and annual cost of distribution network goes up, so we should strive to develop the fuel cell as generation method in the future taking environmental benefits and energy saving into account.
引文
[1]梁才浩,段献忠.分布式发电及其对电力系统的影响[J].电力系统自动化,2001,Vol.25(12):53-56.
    [2]R.C.Dugan, T. E. McDermott, Ball, G. J. Distribution planning for distributed generation [C]. Rural Electric Power Conference.2000, C4/1-C4/7.
    [3]The Federal Energy Technology Center. Distributed generation:securing America's future with reliable and flexible power [EB/OL].2003-05-03. http://www.distributed generation. com/Library/FETC. pdf.
    [4]祁永福.含分布式电源的配电网双层优化规划研究[D].华北电力大学硕士学位论文,2011.
    [5]莫颖涛.分布式发电及其对系统规划的影响[D].浙江大学硕士学位论文,2006.
    [6]欧阳武.含分布式发电的配电网规划研究[D].上海交通大学工学博士学位论文,2009.
    [7]王成山,陈恺,谢莹华等.配电网扩展规划中分布式电源的选址与定容[J].电力系统自动化,2006,30(3):38-43.
    [8]叶德意,何正友,臧天磊.基于自适应变异粒子群算法的分布式电源选址与容量确定[J].电网技术,2006,35(6):155-160.
    [9]张婷婷.配电网规划中分布式电源的选址和定容的研究[D]:西南交通大学硕士学位论文,2010.
    [10]程站立,陈维荣,戴朝华,李奇,游志宇.计及分布式电源并网的配电网潮流计算[C].中国高校第26届电力系统及其自动化学术年会,2010.
    [11]陈琳.分布式发电接入电力系统若干问题的研究.浙江大学博士学位论文,2007.
    [12]何季明.分布式电源技术展望[J].东方电气评论,2003,17(1):9-14.
    [13]梁有伟,胡志坚,陈允平.分布式发电及其在电力系统中的应用研究综述[J].电网技术,2003,27(12):71-75,88.
    [14]白茜.分布式发电对配电网电压调整作用的机理研究[D].华北电力大学硕士学位论文,2007.
    [15]徐二树.分布式能量系统的研究与应用[D].华北电力大学(河北)博士学位论文,2003.
    [16]S.W.Hadley, T.K.Stovall. Customer-owned utilities and distributed energy: Potentials and benefits[S]. Oak Ridge National Laboratory, Tennessee, February, 2006:50-70.
    [17]梁志鹏,谢正武.中国分布式发电的机遇和挑战[J].节能与环保,2004,11:11-13
    [18]程站立.计及分布式电源的配电网潮流计算及其无功优化研究[D].西南交通大学工学硕士学位论文,2011.
    [19]孔涛,程浩忠,李钢,谢欢.配电网规划研究综述[J].电网技术,2009,33(19):92-99.
    [20]Wang Caisheng, Nehrir M. Hashem. Analytical approaches for optimal placement of distributed generation sources in power systems[J]. IEEE Transactions on Power Systems,2004,19(4): 2068-2076.
    [21]Brown Richard E., Pan Jiuping, Feng Xiaoming, et al., Siting distributed generation to defer t&d expansion[C]. Proceedings of the ieee power engineering society transmission and distribution conference,2001,622-627.
    [22]K.-H.Kim,Y.-J.Lee,S.-B,Rhee et al.Dispersed generator placement using fuzzy-GA in distribution systems[C].Proc.2002 IEEE Power Engineering Society. Aummer Meeting,2002,Vol.3:1148-1153.
    [23]W.El-Khattam,K.Bhattacharya,Y.Hegazy et al.Optimal investment planning for distributed generation in a competitive electricity market[J].IEEE transactions on Power Systems,2004,Vol.19(3):1674-1684.
    [24]Celli G,Ghiani E,Mocci S,Pilo F.Amultiobjective evolutionary algorithm for the sizing and siting of distributed generation[J].IEEE Transactions on Power Systems,2005,Vol.20(2):750-757.
    [25]Griffin T, Tomsovic K, Secret D, et al, Placement of dispersed generations systems for reduced losses[C]. Proceedings of the hawaii international conference on system sciences,2000,104.
    [26]Bae In-Su, Kim Jin-O., Kim Jae-Chul, et al. Optimal operating strategy for distributed generation considering hourly reliability worth[J]. IEEE Transactions on Power Systems,2004,19(1):287-292.
    [27]Dugan Roger C., McDermott Thomas E., Ball Greg J. Planning for distributed generation. IEEE Industry Applications Magazine[J],2001,7(2):80-88.
    [28]高笑,赵宏伟,冯璞.基于分布式发电的配网规划初探[J].江苏电机工程,2005,24(2):9-11.
    [29]Mori H., Iimura, Y. Application of parallel tabu search to distribution network expansion planning with distributed generation[C].2003 IEEE Power Tech Conference Proceedings,2003:580-587.
    [30]陈海焱,陈金富等.配电网中计及短路电流约束的分布式发电规划[J].电力系统自动化.2006,Vol.30(21):16-21.
    [31]Walid EI-Kattam,Y.G.Hegazy,M.M.A.Salama.An Integrated Distributed Generation Optimization Model for Distribution System Planning[J].IEEE Transactions on Power Systems,2005,Vol.20(2):1158-1165.
    [32]张节潭.含风电场的电源规划研[D].上海:上海交通大学工学博士学位论文,2009.
    [33]麻秀范,崔换君.改进遗传算法在含分布式电源的配电网规划中的应用[J].电工技术学报.2009,Vol.26(3):175-181.
    [34]倪秋龙,黄民翔.基于支路交换的模拟退火算法在配电网规划中的应用[J].电力系统及其自动化学报,2000,12(4):31-35.
    [35]陈根军,王磊,唐国庆.基于蚁群最优的配电网规划方法[J].电网技术,2003,27(3):71-75.
    [36]王成山,王赛一.基于空间GIS和Tabu搜索技术的城市中压配电网络规划[J].电网技术,2004,28(14):68-73.
    [37]伍力,吴捷,钟丹虹.多目标优化改进遗传算法在电网规划中的应用[J].电力系统自动化,2000,24(12):45-48.
    [38]叶在福,单渊达.多种群遗传算法在电网扩展规划中应用的改进[J].电力系统及其自动化学报,1999,11(5):55-61.
    [39]杨期余,潘力强.应用于城网规划中的新算法—Tabu搜索[J].电力自动化设备,2001,21(12):9-12.
    [40]梁振锋,杨晓萍,张娉.分布式发电技术及其在中国的发展[J].西北水电,2006,(1),51-53.
    [41]周莹.计及风电的配电网规划研究[D].华北电力大学硕士学位论文,2011.
    [42]郭剑峰.含分布式发电的配电网规划研究[D].华东交通大学硕士学位论文,2009.
    [43]衣宝廉.燃料电池—原理技术应用[M].北京:化学出工业出版社,2003:160-330.
    [44]程站立,陈维荣,刘小强.基于机理模型的质子交换膜燃料电池动态特性分析[J].工程设计学报,2009,16(5),374-378.
    [45]李艳昆,陈维荣,程站立,游志宇.基于PEMFC分布式发电系统的动态特性分析[J].可再生能源,2011,29(5):129-136.
    [46]陈维荣,钱清泉,李奇.燃料电池混合动力列车的研究现状与发展趋势[J].西南交通大学学报,2009,44(1),1-6.
    [47]李蓓,李兴源.分布式发电及其对配电网的影响[J].国际电力,2005,9(3):13-17.
    [48]Kennedy J, Eberhart R. Partiele swarm optimization. Proeeedings of IEEE International Conference on Neural Networks.1995(4):1942-1948.
    [49]汪兴旺,邱晓燕.基于改进粒子群算法的配电网分布式电源规划[J].电力系统保护与控制,2009,37(14):16-20.
    [50]王劲草.基于搜寻者优化算法的电力系统无功优化[D].西南交通大学硕士学位论文,2008.
    [51]王晶.计及分布式发电的配电网规划研究[D].山东大学硕士学位论文,2008.
    [52]Y Shi,R Eberhart.Empirical study of partiele swarm optimization,Proc.of the 1999 Congress on Evolutionary Computation,1999:1945-1950.
    [53]Clerc.M,Kennedy.J.The particle swarm-explosion,stability,and convergence in a multidimensional complex space.IEEE Trans.on Evolutionary Computation, 2002,6(1):58-73.
    [54]J.J.Liang,A.K.Qin,S.Baker.Comprehensive learing particle swarm optimizer for global optimization of multimodal functions[J].IEEE transactions on evolutionary computation,2006,10(3):281-295.
    [55]王维博,林川,郑永康.粒子群算法中参数的实验与分析[J].西华大学学报,2008,27(1):76-80.
    [56]章文俊,程浩忠,程正敏,姚茵,谷庆利.配电网优化规划研究综述[J].电力系统及其自动化学报,2008,20(5):16-23.
    [57]程站立,陈维荣,戴朝华,李奇,游志宇.计及分布式电源并网的配电网潮流计算[C].中国高校第26届电力系统及其自动化学术年会,2010.
    [58]王守相,王成山.现代配电系统分析[M].北京:高等教育出版社,2007.
    [59]王守相,黄丽娟,王成山等.分布式发电系统的不平衡三相潮流计算[J].电力自动化设备,2007,27(8):11-15.
    [60]付国江,王少梅,刘舒燕,李宁.含边界变异的粒子群算法[J].武汉理工大学学报,2005,27(9):101-103.
    [61]赵晶晶.含分布式发电的配电网优化运行研究[D].重庆大学博士学位论文,2009.
    [62]王守相,江兴月,王成山.含风力发电机组的配电网潮流计算[J].电网技术,2006,30(21):42-45,61.
    [63]李新,彭怡,赵晶晶,任亚英,张从力.分布式电源并网的潮流计算[J].电力系统保护与控制,2009,37(17):78-81.
    [64]陈海焱,陈金富,段献忠.含分布式电源的配电网潮流计算[J].电力系统自动 化,2006,30(1):35-40.
    [65]Rahman S. Fuel cell as a distributed generation technology[C]. Power Engineering Society Summer Meeting, Vancouver, Canada, July,2001: 551-552.
    [66]John B, O'Sullivan. Fuel cells in distributed generation[C]. IEEE Power Engineering Society Summer Meeting, Alberta, Canada, July,1999:568-572.
    [67]钱科军,袁越,石晓丹,ZHOU Chengke,鞠平.分布式发电的环境效益分析[J].中国电机工程学报,2008,28(29):11:15.
    [68]Dugan R C, McDermott T E. Operating conflicts for distributed generation on distribution systems[C]. Rural Electric Power Conference, Arkansas, April, 2001:a3/1-a3/6.
    [69]Jenkins N, Strbac G. Effects of small embedded generation on power quality [C]. IEE Colloquium on Issues in Power Quality, UK, November,1995:6/1-6/4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700