有机—无机杂化材料负载CuCl催化剂的合成及对甲醇氧化羰化反应催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
均相催化剂虽然活性高但往往难以分离且有腐蚀性,而多相催化剂则易于分离、再生和回收使用,因此将均相催化剂进行负载化可使催化剂兼具均相与多相催化剂的优点。有机-无机杂化材料(Organic inorganic hybrid, OIH)既含有机成分又含无机成分,用作催化剂载体时,既利用了有机部分的活性位又利用了无机部分回收催化剂,具有重大的理论意义和很好的应用潜力;溶胶-凝胶(Sol-gel)技术在制备OIH方面具有很多优点,比如热稳定性好、呈化学惰性、具有高比表面和孔隙率等,因此溶胶-凝胶技术制备负载催化剂是一种很有发展前途的方法。
     本文首先研究了以γ-氨丙基三乙氧基硅烷(APTES)作偶联剂,2-乙酰基吡啶作有机改性配体,二者反应生成含有可水解基团-OEt的中间体,该产物与正硅酸乙酯(TEOS)通过溶胶-凝胶(Sol-gel)过程形成具有SiO2网络结构的OIH,进而与CuCl反应生成负载催化剂CuCl/OIH(A)。
     其次,以γ-氯丙基三乙氧基硅烷(CPTES)作偶联剂,5-氨基-1,10-菲罗啉(5-NH2-1,10-Phen)作有机配体,TEOS作硅源,采用Sol-gel法合成无定形OIH,并与CuCl反应生成负载催化剂CuCl/OIH(B)。探讨了反应温度、反应时间、原料配比、合成路线等因素对催化剂合成的影响,得出仲胺Phen-NH-(CH2)3-Si(OEt)3的最佳合成条件为:溶剂N,N-二甲基甲酰胺(DMF),NH_2-Phen用量10 mg/ml,CPTES:NH2-Phen=1.1:1(摩尔比),反应温度70℃,反应时间72 h。采用元素分析(EA)、傅立叶变换红外光谱(FT-IR)、热重分析(TGA)、差热分析(DTA)、核磁共振(~1HNMR, ~(29)Si-MAS-NMR)等分析手段对两种负载催化剂CuCl/OIH(A)和CuCl/OIH(B)及合成中间产物进行了表征,并采用火焰原子吸收光谱(AAS)测定了负载催化剂的铜负载量。
     第三,分别考察了两种负载催化剂用于甲醇氧化羰化合成碳酸二甲酯(DMC)反应的催化性能,并对负载催化剂与均相催化体系的催化活性进行了比较。在120℃,反应总压2.4 MPa,P_(CO):P_(O2)=2:1,CCu=0.1 mol/L,反应时间2 h的条件下,使用负载催化剂CuCl/OIH(B)与CuCl单独作催化剂相比,DMC产率提高了25.0 %,负载催化剂循环使用四次,DMC选择性和产率基本保持不变。采用AAS测得催化剂活性中心铜平均流失仅为2.3 wt%,表明CuCl与载体键合牢固。
Homogeneous catalytic systems often have disadvantages, such as difficult separation from the products and corrosive effect on the reactor materials. Heterogeneous catalytic systems have attractive advantages over homogeneous counterparts in liquid-phase reactions, including easy removal of catalysts from reaction mixtures and recycling of catalysts. Organic-inorganic hybrid materials (OIH), in which the organic groups are covalently attached to porous inorganic solids, can be used as catalyst support. The goal in this paper is to utilize the organic moiety as the active site and the inorganic solid to provide avenues for recovering the active site. This new kind of catalyst system is expected to contribute to the development of commercialization of homogeneous catalytic reactions. The Sol-gel technology offers several advantages employed in the preparation of heterogeneous catalysts. Inorganic Sol-gel supports are indeed superior in their thermal stability, inertness towards molecules, and in their porosity and high surface areas. Thus, the Sol-gel technology is a promising method using to synthesize the supported catalyst.
     Firstly, OIH was prepared by Sol-gel technique usingγ-aminopropyltriethoxysilane (APTES) as spacer, 2-acetylpyridine as organic ligand, and tetraethoxysilane (TEOS) as precursor, then the OIH was reacted with CuCl to prepare heterogeneous catalyst CuCl/OIH (A).
     Secondly, cuprous chloride catalysts CuCl/OIH (B) anchored on silica-based support were synthesized by Sol-gel technique usingγ-chloropropyltriethoxysilane (CPTES) as spacer, 5-amino-1,10-phenanthroline as organic ligands and TEOS as precursor. The effects of reaction temperature, reaction time and other factors on the synthesis of OIH were investigated. The results show that the optimum reaction conditions for synthesis of secondary ammonia are: the solvent DMF, the concentration of NH2-Phen 10 mg/ml, molar ratio of CPTES to NH_2-Phen 1.1:1, reaction temperature 70℃,reaction time 72 h. The structure of support and heterogeneous catalyst were characterized by EA, FT-IR, TGA, DTA and NMR (~1H NMR, ~(29)Si-MAS-NMR). The copper loading of the supported catalyst were detected by atomic absorption (AAS).
     Thirdly, the catalytic activity of CuCl/OIH in the oxidative carbonylation of methanol to dimethyl carbonate was studied in this paper. The catalyst CuCl/OIH (B) exhibited higher activity and selectivity than the homogeneous CuCl catalysts, the yield of dimethyl carbonate improved 25.0 %. It could be separated easily and reused several times, with slight loss of the active components. After recycling 4 times, the catalyst still showed high catalytic activity and selectivity under the reaction conditions of [Cu(I)]=0.1 mol/L, 2.4 MPa (P_(CO):P_(O2)=2:1), 2 h, 120℃.
引文
[1]李朝军,王东.绿色化学.北京:化学工业出版社, 2002, 1~8
    [2] Beck J S, Vartuli J C, Roth W J, et al. A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates. J Am Chem Soc, 1992, 114: 10834~10843
    [3]王波,顾彦龙,杨立明等.有机-无机杂化材料负载金属配合物催化剂—Sol-gel技术的新应用.分子催化, 2003, 17(6): 468~480
    [4] Mc Namara C A, Dixon M J, Bradley M. Recoverable Catalysts and Reagents Using Recyclable Polystyrene-Based Supports. Chem. Rev., 2002, 102: 3275~3300
    [5] Michacl A P, Christopher L M. Review of Dimethyl Carbonate (DMC) Manufacture and Its Characteristics as A Fuel Additive. Energy & Fuels, 1997, 11(1): 2~29
    [6]李大东,钟孝湘译.催化剂载体与负载型催化剂.北京:中国石化出版社, 1992, 25~26
    [7] Xue W, Zhang J, Wang Y, et al. Effect of Promoter Copper on the Oxidative Carbonylation of Phenol over the Ultrafine Embedded Catalyst Pd CuO/SiO2. J. Mol. Catal. A: Chem., 2005, 232(1-2): 77~81
    [8] Song H Y, Park E D, Lee J S. Oxidative Carbonylation of Phenol to Diphenyl Carbonate over Supported Palladium Catalysts. J. Mol. Catal. A: Chem., 2000, 154(1-2): 243~250
    [9] Kalinkin A V, Savchenko V I, Pashis A V. Mechanism of Low-temperature CO Oxidation on a Model Pd/Fe2O3 Catalyst. Catal. Lett., 1999, 59(2-4): 115~119
    [10] Dong G L, Wang J G, Gao Y B, et al. A Novel Catalyst for CO Oxidation at Low Temperature. Catal. Lett., 1999, 58(1): 37~41
    [11] Takagi M, Kujira K, Yoneyama T, et al. Method of Producing Aromatic Carbonate. US Patent 5726340, 1998.
    [12] Kim W B, Park E D, Lee J S. Effects of Inorganic Cocatalysts and Initial States ofPd on the Oxidative Carbonylation of Phenols over Heterogeneous Pd/C. Appl. Catal. A: Gen., 2003, 242(2): 335~345
    [13] Heidenreich R G, Krauter G E J, Pietsch J, et al. Control of Pd Leaching in Heck Reactions of Bromoarenes Catalyzed by Pd Supported on Activated Carbon. J. Mol. Catal. A: Chem., 2002, (182-183): 499~509
    [14] Yang H Q, Zhang G. Y, Hong X L, et al. Dicyano-functionalized MCM-41 Anchored-palladium Complexes as Recoverable Catalysts for Heck Reaction. J. Mol. Catal. A: Chem., 2004, 210(1-2): 143~148
    [15] Hussain M, Song S K, Lee J H, et al. Characteristics of Co/Mo Catalysts Supported on Modified MCM-41 and MCM-48 Materials for Thiophene Hydrodesulfurization. Ind. Eng. Chem. Res., 2006, 45(2): 536~543
    [16] Lee C H, Lin T S, Mou C Y. (VO)2+ Ions Immobilized on Functionalized Surface of Mesoporous Silica and Their Activity toward the Hydroxylation of Benzene. J. Phys. Chem. B., 2003, 107(11): 2543~2551
    [17]苏跃华,姜玄珍.用负载于中孔分子筛的钯催化剂合成碳酸二乙酯.应用化学, 2002, 19(10): 994~997
    [18]任永利,刘国柱,王莅等.铜磷铝分子筛的合成及其对苯液相氧化制苯酚的催化性能.催化学报, 2004, 25 (5): 357~362
    [19]任永利,米镇涛. Cr-AlPO-4-5的合成及其对苯直接氧化制苯酚反应的催化性能.催化学报, 2004, 25 (9): 757~761
    [20] Dams M, Drijkoningen L, Pauwels B, et al. Pd-zeolites as Heterogeneous Catalysts in Heck Chemistry. J. Catal., 2002, 209(1): 225~236
    [21] Chou B, Tsai J L, Cheng S. Cu-substituted Molecular Sieves as Liquid Phase Oxidation Catalysts. Microporous Mesoporous Mater., 2001, 48(1-3): 309~317
    [22] Hermans S, Wenkin M, Devillers M. Carboxylate-type Palladium(II) Complexes as Soluble Precursors for the Preparation of Carbon-supported Pd/C Catalysts. J. Mol. Catal. A: Chem., 1998, 136(1): 59~68
    [23] Baranowski K, Dula R, Gasior M, et al. Oxidation of Aromatic Hydrocarbons with Hydrogen Peroxide over Zn,Cu,Al-layered Double Hydroxides. Appl. Clay Science,2001, 18(1-2): 93~101
    [24]阮宇红,刘耀芳,刘植昌.二氧化硅负载杂多酸对异丁烷与丁烯烷基化的催化作用Ⅰ.催化剂的制备、表征和失活.催化学报, 2004, 25(12): 948~954
    [25] Iwane Hiroshi. Preparation of aromatic carbonate esters by carbonylation of phenols[ P ]. JP: 07 145107, 1995.
    [26]杨明星,张晓凤,黄秋锋等. HZSM25分子筛负载CuO/Bi2O3催化合成丁炔二醇研究.分子催化, 2007, 21(1): 58~60
    [27]蒋斯扬,孔岩,吴丞等.高Cu含量MCM-41在苯直接羟基化反应中的催化性能.催化学报, 27(5): 421~426
    [28]吴大青,徐秀梅.高分子金属络合物新进展.化学推进剂与高分子材料, 2003, 1(4): 32~34
    [29] Capka M. Polystyrene-platinum complexes and their catalytic properties[J]. Tetrahedro Lett, 1971, 47: 84
    [30] Ishii H, Takeuchi K, Asai M, et al. Oxidative Carbonylation of Phenol to Diphenyl Carbonate Catalyzed by Pd-pyridyl Complexes Tethered on Polymer Support. Catal. Commun., 2001, 2(3-4): 145~150
    [31] Drake R, Dunn R, Sherrington D C, et al. Remarkable activity, selectivity and stability of polymer-supported Pt catalysts in room temperature, solvent-less, alkene hydrosilylations [J].J Chem Soc, Chem Commun. 2000, (19):1931
    [32] De B B, Lohray B B, Sivaram S, et al. Tetrahedron: Asymmetry, 1995, 6: 21051
    [33] De B B, Lohray B B, Sivaram S, et al. J Polym Sci: Polym Chem, 1997, 35: 2631
    [34]万伯顺,廖世健,余道容.高分子负载钯基双金属催化苯胺氧化羰基化反应.高等学校化学学报, 1999, 6(6): 963~964
    [35]陈水平,汪玉庭.壳聚糖多孔微球负载PdCl2选择性催化氢化氯代硝基苯的研究.功能高分子学报, 2003, 16(1): 6212.
    [36]李淑霞.高分子负载催化剂催化烯烃的液相氧化反应.化学工程师, 2002, 93(6): 5~7
    [37] Astruc D, Chardac F. Dendritic Catalysts and Dendrimers in Catalysis. Chem. Rev.,2001, 101(9): 2991~3024
    [38] Ballard R L, Tuman S J, Fouquette D J, et al. Effects of an Acid Catalyst on the Inorganic Domain of Inorganic-organic Hybrid Materials. Chem. Mater., 1999, 11(3): 726~735
    [39] Clark J H., Macquarrie D J, Mubofu E B. Preparation of a Novel Silica-supported Palladium Catalyst and Its Use in the Heck Reaction. Green Chem., 2000, (2): 53~55
    [40] Schneller T, Auer F. Chemistry in Interphases-a New Approach to Organometallic Syntheses and Catalysis. Angew Chem. Int. Ed., 1999, 38(15): 2154~2174
    [41] Maillet C, Janvier P, Pipelier M, et al. Hybrid Materials for Catalysis? Design of New Phosphonate-Based Supported Catalysts for the Hydrogenation of Ketones under Hydrogen Pressure. Chem. Mater., 2001, 13(9): 2879~2884
    [42] Matteo Lagasi, Pietro Moggi. Anchoring of Pd on silica functionalized with nitrogen containing chelating groups and applications in catalysis Journal of Molecular Catalysis A: Chemical. 2002, (182-183): 61~72
    [43] Fan G Zh, Li G X, Li T, et al. Oxidative carbonylation of phenol to diphenyl carbonate catalyzed by palladium complexes bridged with N,N-ligands over functionalized silica. Appl. Organometal. Chem., 2006, 20: 656~662
    [44] Fan G Zh, Li G X, Li T, et al. PdCl2/Organic-Inorganic Hybrid Catalyst for Oxidative Carbonylation of Phenol to Diphenyl Carbonate. Chinese Journal of Catalysis, 2005, 26(8): 625~627
    [45]范国枝,李光兴,李志强等. PdCl2/O-MCM-41催化剂制备及其在苯酚氧化羰化反应中的应用.催化学报, 2006, 22(9): 1701~1705
    [46] Paul H, Basu S, Bhaduri S, et al. Efficient Synthesis of Polysubstituted Acylguanidines and Guanylureas. J. Org. Chem., 2004, 69(2): 309~313
    [47] Moreau J J E, Michel W C M. The Design of Selective Catalysts from Hybrid Silica-Based Materials. Coord Chem Rev, 1998, (178-180): 1073~1084
    [48] Blum J, Avnir D, Schumann H. Sol-gel encapsulated transition-metal catalysts. CHEMTECH, 1999, 29(2): 32~38
    [49]李亚玲,赵继全,郑严等.溶胶-凝胶包埋吡啶羧酸钴及其对甲醇氧化羰化反应的催化性能.催化学报, 2002, 23(5): 395~399
    [50]李亚玲,赵继全.溶胶-凝胶技术包容均相催化剂及催化性能的研究.河北工业大学学报, 2002, 31(3): 44~48
    [51] Li H R, Lin J, Zhang H J, et al. Novel, covalently bonded hybrid materials of europium (terbium) complexes with silica. JCS. Chem. Comm. 2001, 1212~1213
    [52] Sanchez C, Livage J, Henry M, Babonneau, F. J. Non-Cryst. Solids. 1988, 100, 650
    [53] Jia M, Seifert A, Thiel W. R. Mesoporous MCM-41 Materials Modified with Oxodiperoxo Molybdenum Complexes: Efficient Catalysts for the Epoxidation of Cyclooctene. Chem. Mater., 2003, 15(11): 2174~2180
    [54]刘晓蕾,刘孝波.溶胶-凝胶法制备有机/无机杂化材料研究进展.高分子材料科学与工程, 2004, 20(2), 28~31
    [55] Ling Zh, Zhao H Z, Wang J W, et al. Structure-Property Behavior of UV Curable Polyepoxy-Acrylate of Applied Polymer Hybrid Materials Prepared via Sol-Gel Process[J]. Journal Science, 2003, 87: 1654~1659.
    [56]尚修勇,朱子康,印杰等.偶联剂对PI/SiO2纳米复合材料形态结构与性能的影响.复合材料学报, 2000, 17(4): 15~19
    [57]容智敏,章明秋,郑永祥等.纳米SiO2增韧增强聚丙烯的界面效应与逾渗行为.复合材料学报, 2002, 19(1): 1~4
    [58] Lagasi M, Moggi P. Anchoring of Pd on Silica Functionalized with Nitrogen Containing Chelating Groups and Applications in Catalysis. J. Mol. Catal. A: Chem., 2002, 182-183: 61~72
    [59] Yang H Q, Zhang G. Y, Hong X L, et al. Dicyano-functionalized MCM-41 Anchored-palladium Complexes as Recoverable Catalysts for Heck Reaction. J. Mol. Catal. A: Chem., 2004, 210(1-2): 143~148
    [60] Dallmann K, Buffon R. Sol-gel Derived Hybrid Materials as Heterogeneous Catalysts for the Epoxidation of Olefins. Catal. Commun., 2000, 1 (1-4): 9~13
    [61] Poudres&Explosifs Ste Nale, FR Patent 2, I 63, 884, 1973-7-27.
    [62] Li Zh, Xie K Ch, R C T Slade. High Selective Catalyst for Oxidative Carbonylation of Methanol to Dimethyl Carbonate. Appl Catal A: General, 2001, 205: 85~92
    [63] Chin C S, Shin D, Won G, et al. The Effects of Catalyst Composition on the Catalytic Production of Dimethyl Carbonate. J Mol Catal A: 2000, 160: 315~321
    [64]莫婉玲,熊辉,李光兴等. Schiff碱在甲醇液相氧化羰化反应中的双功能作用.石油化工, 2003, 32(2): 89-92
    [65] Mo W L, X H, Li G X, et al. The catalytic performance and corrosion inhibition of CuCl/Schiff base system in homogeneous oxidative carbonylation of methanol. J. Mol. Catal. A: Chem., 2006, 247: 227~232
    [66] Cao Y, Hun J CH, Yang P, et al. CuCl catalyst heterogenized on diamide immobilized SBA-15 for efficient oxidative carbonylation of methanol to dimethylcarbonate. CHEM. COMMUN., 2003, 10: 908~909
    [67]刘海涛.聚苯乙烯负载邻菲咯啉-CuCl2配合物的合成及其对羰化反应催化性能研究:硕士学位论文.华中科技大学, 2005
    [68] Emil Koft, Francis H. Case. Substituted 1, 10-Phenanthrolines, X II. Benoand Pyride Derivatives. J. Org Chem, 1962, 27 (3): 8652868.
    [69]朱永强.铜盐/Schiff碱催化液相氧化羰化合成碳酸酯的研究:硕士学位论文.华中科技大学, 2003
    [70] Luo H K, Kou Y, Wang X W, et al. Studies on Palladium-bisphosphine Catalyzed Alternating Copolymerization of CO and Ethylene. J. Mol. Catal. A: Chem., 2000, 151(1-2): 91~113
    [71]孟令枝,何永炳.有机波谱分析.武汉:武汉大学出版社, 1997, 30, 92
    [72]郑春满,李效东,余煜玺等.聚铝碳硅烷纤维预氧化过程组成结构演变的研究.化学学报, 2006, 64(15): 1581~1586
    [73]亢宇,马鸿文,杨静.利用钾长石合成介孔分子筛Al MCM-41.非金属矿, 2005, 28(4): 12~14
    [74] Romano U, Tesel R, Maurl M M, et al. Synthesis of Dimethyl Carbonate from Methanol, Carbon Monoxide, and Oxygen Catalyzed by Copper Compounds. Ind Eng chem. Prod Res Dev, 1980, 19, 396~403
    [75]邢其毅,徐瑞秋,周政,裴伟伟.基础有机化学.高等教育出版社, 2002, 896~898

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700