家蚕B型清道夫受体(Class B Scavenger Receptor)基因的克隆鉴定及功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
家蚕是一种重要的农业经济昆虫,蚕丝业是我国农业经济的重要组成部分,一直在改善民生和可持续发展中发挥着积极作用,深入研究家蚕生命活动规律和基因功能对蚕丝业的持续稳定发展具有重要意义。随着家蚕基因组框架图和精细图的完成,家蚕全基因组的遗传基因信息逐步得到诠释,为广泛和深入开展基因组及各种功能基因的研究提供了坚实的基础条件。清道夫受体(scavenger receptor, SR)是细胞表面的一种跨膜糖蛋白,能结合多种多聚阴离子并将其转移到细胞中降解,具有多种功能。B型清道夫受体(class B scavenger receptor, SR-B)是清道夫受体家族中具有CD36结构域的一个小超基因家族,它们能够结合多种配体,参与机体一系列的生命代谢活动,在动脉粥样硬化及其它心血管疾病的形成或抑制、机体免疫防御、凋亡细胞清除、类胡萝卜素代谢和转运、信息素感知与传导以及视觉传导等生理过程中起着重要作用。这种功能的多样性,引起了人们对家蚕SR-B基因家族研究的兴趣。家蚕作为鳞翅目的模式生物,对其SR-B基因家族的研究,既能够解析这些基因在家蚕中行使的功能,也可为其它昆虫特别是鳞翅目昆虫的相关研究提供重要参照和理论依据,这对揭示SR-B基因家族的功能多样性和作用机制有重要意义。本论文利用家蚕9×基因组及基因芯片数据,通过生物信息学方法对家蚕SR-B基因家族进行了鉴定与分析,并对家族中BmSCRBQ1、BmSCRBQ4基因的结构特征、表达模式和组织定位进行了研究,在体外细胞水平上初步探索了这两个基因的功能。主要研究结果如下:
     1.家蚕SR-B基因家族的生物信息学及表达模式分析
     基于家蚕9倍全基因组数据库,应用生物信息学方法,鉴定获得了14个家蚕B型清道夫受体基因,这些基因分布在至少5条染色体上,共包含120个内含子,平均每个基因拥有8.5个内含子。家蚕SR-B家族的基因数目接近果蝇、按蚊、赤拟谷盗等昆虫的SR-B基因数目,较人、小鼠、线虫、斑马鱼和原鸡等物种的SR-B基因数目多,说明昆虫SR-B基因在物种分化后形成了更多的拷贝。
     家蚕SR-B家族基因均具有CD36结构域的特征序列,不同基因的氨基酸序列相似性在20%~39%之间,保守位点分散,没有连续的氨基酸保守序列。家蚕SR-B基因与小鼠、人的SR-B基因的氨基酸序列相似性在20%-35%之间,与果蝇、按蚊、蜜蜂和赤拟谷盗的SR-B基因的氨基酸序列相似性在19~63%之间。
     系统发生分析的结果表明,昆虫的SR-B基因明显分成3个类群,每个类群又分别形成了若干亚群,家蚕与其它4个昆虫的SR-B基因构成了直向同源关系,没有一个物种形成独特的分群,说明该类基因的各个亚家族在物种分化之前就已经形成,表明SR-B基因家族在昆虫物种间具有相对保守的功能。
     EST数据、芯片数据和RT-PCR检测分析结果表明,家蚕SR-B基具有不同的表达模式,多数基因的表达存在组织特异性,在家蚕幼虫的主要组织中均有SR-B基因转录表达。
     2.家蚕BmSCRBQ1、BmSCRBQ4基因的克隆、序列分析与鉴定
     对BmSCRBQ1、BmSCRBQ4基因的全长CDS进行克隆测序,序列分析表明,BmSCRBQ4基因的核苷酸序列与家蚕数据库预测的序列完全一致,而BmSCRBQ1基因的核苷酸序列在家蚕品种间存在3种不同形式:一些品种的BmSCRBQ1核苷酸序列与数据库预测序列完全一致,即完整型;另一些品种的BmSCRBQ1核苷酸序列存在2种选择性剪切方式,即完整型和缺失了第8外显子的缺失型;还有一些品种的BmSCRBQ1核苷酸序列与数据库序列相比存在14个或15个碱基突变,即点突变型。
     BmSCRBQ1基因完整型或点突变型的ORF长1482 bp,编码493个氨基酸,由10个外显子和9个内含子组成;BmSCRBQ1基因缺失型的ORF长1377 bp,编码458个氨基酸,含9个外显子和8个内含子。BmSCRBQ4基因的ORF长1371bp,编码456个氨基酸,由9个外显子和8个内含子组成。
     利用Smart、TMHMM2.0和Motif scan软件进行结构域和跨膜结构分析表明,BmSCRBQ1基因编码的蛋白含有2个跨膜区,2个胞质区和1个胞外区,含有9个N-连接糖基化位点、5个酪蛋白激酶Ⅱ磷酸化位点、4个豆蔻酰化位点和1个蛋白激酶C磷酸化位点。BmSCRBQ1基因缺失型除了缺少靠近C-羧基端的2个豆蔻酰化位点外,其余结构域特征与BmSCRBQ1的一致。BmSCRBQ4基因编码的蛋白含有1个C-羧基端跨膜区,1个C-羧基端胞质区和1个含N-端区域的胞外区,在N-氨基端没有预测到跨膜区,序列中存在7个N-连接糖基化位点、7个酪蛋白激酶Ⅱ磷酸化位点、5个蛋白激酶C磷酸化位点、4个豆蔻酰化位点和1个酪氨酸激酶磷酸化位点。这些分析结果表明,BmSCRBQ1、BmSCRBQl两个基因均含有典型的CD36结构域,属于SR-B受体基因。
     BmSCRBQ1、BmSCRBQ4两个基因间氨基酸序列的相似性约为30%,其中蛋白激酶C共有序列、5个糖基化位点、3个酪蛋白激酶Ⅱ磷酸化位点和6个半胱氨酸高度保守。BmSCRBQ1、BmSCRBQ4基因氨基酸序列与人CD36、小鼠SR-BI和果蝇ninaD基因的氨基酸序列比较,它们中的蛋白激酶C共有序列和6个半胱氨酸以及几个甘氨酸、苯丙氨酸、脯氨酸等高度保守。
     3.家蚕BmSCRBQ1、BmSCRBQ4基因的表达模式
     RT-PCR检测结果表明,BmSCRBQ1、BmSCRBQ4基因在大造未受精卵和整个胚胎期、幼虫期的大多数时期以及家蚕BmE、BmN细胞系中都有表达。在大造5龄第3天的幼虫组织中,BmSCRBQl基因在中肠、血液、中部丝腺、卵巢、头部、体壁、精巢、脂肪体、后部丝腺和马氏管中均有表达;BmSCRBQ4基因在中肠、中部丝腺、头部、体壁、脂肪体、精巢、卵巢中均有表达,在血液、后部丝腺和马氏管中未检测到表达。BmSCRBQ1、BmSCRBQ4两个基因在大多数发育时期和多个组织均有表达,暗示着2个基因可能有持家基因的功能。
     Western blotting的结果表明,在大造5龄第3天幼虫的卵巢、血液、后部丝腺、中部丝腺、精巢、马氏管、脂肪体等组织中均能检测到BmSCRBQ1蛋白的阳性信号,在中肠中未检测到目的蛋白的阳性信号,BmSCRBQ1蛋白大小约为60kDa。仅在大造5龄第3天幼虫的中部丝腺、脂肪体和精巢中检测到BmSCRBQ4蛋白的阳性信号,其它组织未检测到目的蛋白的阳性信号,BmSCRBQ1蛋白大小在组织间存在差异,中部丝腺中约为50kDa,脂肪体中约为55kDa,精巢中约为60kDa。在N4 5龄第4天幼虫的精巢、卵巢中均检测到两个蛋白的阳性信号,BmSCRBQ1蛋白仅有一条阳性条带,大小约为60kDa,而BmSCRBQ4蛋白在两个组织中均有3条阳性条带,大小分别约为50kDa、57kDa和70kDa。在家蚕BmE、BmN细胞系中也能检测到两个蛋白的阳性信号,BmSCRBQ1蛋白在两个细胞中均出现一条明显的阳性条带,大小约为60kDa,而BmSCRBQ4蛋白在两个组织中均有2条阳性条带,大小分别约为50kDa和57kDa(或55kDa)。这些结果表明,BmSCRBQ1基因的表达蛋白形式单一,大小稳定;而BmSCRBQ4基因的表达蛋白大小不一,形式各样,推测可能与组织特异性、蛋白糖基化程度或与其结构和功能的多样性有关。
     4.家蚕BmSCRBQ1、BmSCRBQ4蛋白的组织定位
     基于BmSCRBQ1、BmSCRBQ4基因在转录水平和蛋白水平上的表达结果,利用石蜡切片技术和免疫组织化学的方法在家蚕品种大造5龄第3天幼虫的组织(精巢、脂肪体、中部丝腺、血细胞和卵巢)中对两个基因表达的蛋白进行组织定位。结果表明,BmSCRBQ1蛋白主要存在于精巢的生精囊膜和内膜中、脂肪细胞的细胞膜上、中部丝腺丝腺细胞的内缘与外缘细胞膜上、血液中原白血球和颗粒细胞的细胞膜上以及卵巢中卵泡细胞的细胞膜区域中。而BmSCRBQ4蛋白则存在于在精巢的精原细胞的细胞膜和外膜中、脂肪细胞的细胞膜上和中部丝腺丝腺细胞的外缘细胞膜上,在血细胞和卵巢中未检测到BmSCRBQ4蛋白的阳性信号。在不同组织中的定位结果表明,两个蛋白主要分布在组织的组成膜和细胞的细胞膜上,推测其功能可能与各组织中脂类物质的流动和代谢、代谢产物和外源物的结合与吞噬、转运以及信号传递等活动有关。
     5.家蚕BmSCRBQ1、BmSCRBQ4基因真核表达蛋白结合细菌的初步研究
     将BmSCRBQ1、BmSCRBQ4基因ORF框全长序列克隆进哺乳动物细胞表达载体pcDNA3.1,构建重组载体,在HEK293细胞中进行表达,利用真核细胞表达系统在体外细胞水平上研究BmSCRBQ1、BmSCRBQ4基因的功能。转染结果表明,两个基因的重组载体都能在HEK293细胞中表达目的蛋白,表达的目的蛋白明显位于细胞的细胞膜区域。通过优化转染条件,重组载体的转染效率可保持在20%-30%。将FITC标记的大肠杆菌和金黄色葡萄球菌分别与转染后的细胞孵育,免疫荧光处理后在荧光显微镜下观察,发现两种细菌的部分菌体附于表达BmSCRBQ1、BmSCRBQ4蛋白的细胞边缘,推测两种蛋白可能均具有结合细菌的能力,对它们之间的结合关系尚需进一步研究。
Silkworm is an important insect of agricultural economy, the silk industry is an important part in China's agricultural economy, and has been playing an active role in improving people's livelihood and sustainable development constantly. Researching in the law of silkworm vital movement and gene function in-depth is a significance for maintaining sustained and steady development of silk industry. As the accomplishing of silkworm genome framework map and detailed map, the genie informations of silkworm complete genome have been being annotated gradually, and providing a solid foundation conditions for studying on genomes and functions of various genes widespreadly and thoroughly. Scavenger receptors (SR) is a transmembrane glycoprotein in the cell surface, they can bind varied polyanions and transfer these polyanions to cells on degradation, performing many kinds of functions. The family of class B scavenger receptor (SR-B) is a small super-gene family of scavenger receptors family, these genes with CD36 domain can bind a variety of ligands, and participate in a series of the life metabolic activities, and plays an important role in physiological processes, such as in the formation and inhibition of cardiovascular disease including atherosclerosis, immune defense, clearing apoptotic cells, carotenoid metabolism and transport, pheromone sensory conduction and visual transduction and so on. This functional diversity evokes people's interest to study silkworm SR-B genes. Bombyx mori is a Lepidoptera model insect, researching the silkworm SR-B genes not only can resolve the functions of the silkworm SR-B genes, but also provides an important reference and theoretical study basis for relevant studies of other insects, specially for Lepidoptera insects, it is an importantance of revealing the functional diversity and mechanism of action of SR-B genes family. In this thesis, utilizing 9×genome data and microarray database. SR-B genes family of silkworm was identified and analyzed through bioinformatics. The structural features, expression patterns and tissues localizations of BmSCRBQ1 and BmSCRBQ4 genes from this family have been researched and analyzed, and the functions of these two genes were initially explored in cell level in vitro. The main results are as follows:
     1 Analysis in bioinformatics and expression patterns of silkworm SR-B genes family
     Based on silkworm 9×whole genome database, utilizing bioinformatics methods,14 class B cavenger receptor genes of silkworm are identified, these genes distributed in at least five chromosomes, containing a total of 120 introns, one gene has 8.5 introns in average.. The number of silkworm SR-B genes is close to Drosophila melanogaster's. Anopheles gambiae's and Tribolium castaneum's, and more than the numbers of SR-B genes from Homo sapiens, Mus musculus, Caenorhabditis elegans, Danio rerio and Gallus gallus, indicating insect SR-B genes developed more copies after species differentiation.
     All SR-B genes of silkworm have characteristic domain of CD36, the similarities of amino acid sequences between silkworm SR-B genes are 20% to 39%, and conservative sites scattered, no continuous conserved sequences of amino acids in silkworm SR-B genes. The similarities amino acid sequences between silkworm SR-B genes and D.melanogaster's, A.gambiae's, A.mellifera's and T.castaneum's are 19% to 63%, between silkworm SR-B genes and mice's and human's are 20% to 35%.
     The results of phylogenetic analysis showed that insect SR-B genes divided into three groups, each group formed several subgroups respectively, SR-B genes from silkworm and other five insects formed orthologous relationship, no a insect species formed a unique grouping, indicating that each sub-group of such genes had been formed before species differentiato, and that the SR-B gene family in insect species could have relatively conservative functions.
     The results from silkworm EST and microarray database,analysis and RT-PCR testing showed that the SR-B genes of silkworm have different expression patterns, the exepression of most genes presented tissue specificity, there are the transcriptional expression of SR-B genes in main larval tissues of silkworm.
     2 Clone, sequences analysis and identification of silkworm BmSCRBQl and BmSCRBQ4 genes
     Full CDS length of BmSCRBQ1 and BmSCRBQ4 genes were cloned and sequenced. Sequence analysis showed that nucleotide sequences of BmSCRBQ4 is concordant with predicted sequences of silkworm databases, but there are three differenct types for the nucleotide sequences of BmSCRBQ1 in the silkworm strains and tissues:the nucleotide sequences of BmSCRBQ1 in some strains are consistent with database sequence predicted, called integrated type; the nucleotide sequences of BmSCRBQ1 in some strains show two alternative splicing, this is the integrity type and the deletion type which deleted exon 8; and the nucleotide sequences of BmSCRBQ1 in other strains exist 14or 15 bases mutation comparing with database sequences, called the point mutant type.
     The ORF lengths of BmSCRBQl integrated type or point mutant type is 1482bp, encoding 493 amino acids, with 10 exons and 9 introns; the ORF length of BmSCRBQ1 deletion type is 1377bp, encoding 458 amino acids, with nine exons and eight introns. The ORF length of BmSCRBQ4 gene is1371bp, encoding 456 amino acids, with 9 exons and 8 introns.
     Analyzing the structural domain and transmembrane domain by Smart, TMHMM2.0 and Motif Scan software revealed that the protein encoded by BmSCRBQ1 gene has two transmembrane domains, two terminal cytoplasmic region and an extracellular domain. There are nine N-linked glycosylation site, five casein kinase II phosphorylation sites,4 myristoylation site and a protein kinase C phosphorylation site in the protein encoded by BmSCRBQ1 gene. The protein domain characteristics of BmSCRBQl deletion type is consistent with BmSCRBQl's except the lack of two myristoylation site close to C-carboxyl terminal. The protein encoded by BmSCRBQ4 gene has a transmembrane domain in the C- carboxyl terminal with a C-carboxyl terminal cytoplasmic region and an extracellular domain including N-terminal area, no the N-amino terminal transmembrane domain was predicted. There are 7 N-linked glycosylation sites, seven casein kinaseⅡphosphorylation sites, five protein kinase C phosphorylation sites,4 myristoylation site and one tyrosine kinase phosphorylation site in the protein encoded by BmSCRBQ4 gene. These analyzing results showed that two genes do have CD36 domain, belonging to SR-Bgene.
     Similarity of amino acid sequences between BmSCRBQ1 and BmSCRBQ4 is about 30%, there are high conserved protein kinase C consensus sequence,5 conserved glycosylation sites, three conserved casein kinaseⅡphosphorylation sites and six conserved cysteine residues. Comparing with human CD36's and mouse SR-BI's and Drosophila ninaD's reveals high conserved protein kinase C consensus sequence, six conserved cysteine residues, and several conserved glycine, phenylalanine, and proline residues.
     3 The expression patterns of BmSCRBQl and BmSCRBQ4 genes
     RT-PCR results showed that BmSCRBQ1 and BmSCRBQ4 genes expressed in in unfertilized eggs and whole embryonic period, in majority of larvae period of Dazao strain and in cell lines BmE and BmN of silkworm. In silkworm strain Dazao tissues of 3-days-old 5th instar larvae, BmSCRBQ1 gene expressed in midgut, hemolymph, middle silk gland, ovary, head, integumentum, testis, fat body, posterior silk gland and in malpighian tubules; BmSCRBQ4 gene expressed in midgut, silk gland, head, integumentum, fat body, testis and in ovary, no expressions were detected in hemolymph, posterior silk gland and in malpighian tubules. The expression patterns of BmSCRBQ1 and BmSCRBQ4 genes expressing in mostly growth periods and in majority of larvae tissues hinted that two genes may act as housekeeping genes.
     Western blotting results showed that the positive signals of BmSCRBQ1 protein can be detected in ovary, hemolymph, posterior silk gland, middle silk gland, testis, malpighian tubules, fat body, head and in integumentum of 3-days-old 5th instar larvae of Dazao, no positive signal of target protein was detected in midgut. The size of BmSCRBQ1 protein is approximately 60kDa in each tissue (about 65kDa in). But. in tissues of 3-days-old 5th instar larvae of Dazao, the positive signals of BmSCRBQ4 protein were be detected only in the middle silk gland, fat body and in testes, no positive signals of the target proteins were not detected in other tissues. There are different in protein size between tissues, about 50kDa in the middle silk gland, approximately 55kDa in fat body, and approximately 60kDa in testis. In testis and ovary of 4 days 5th instar larvae of N4 stains, the positive signals of two proteins were detected, and BmSCRBQ1 protein has only one positive band with the size of about 60kDa; BmSCRBQ4 protein has three positive bands in each tissue, with the size of approximately 50kDa,57kDa and 70kDa respectively. In silkworm two cell lines BmE and BmN, the positive signals of two proteins were detected also, BmSCRBQl protein has one apparently positive band with the size of about 60kDa, BmSCRBQ4 protein has two positive bands in each cell, with the size of approximately 50kDa,57kDa(or 55 kDa) espectively. These results indicated that the proteins expressed by BmSCRBQ1 gene have single pattern and and stable size, but the proteins expressed by BmSCRBQ4 gene showed no uniform size and variform patterns, guessing that this may be related to the tissue specificity, degree of protein glycosylation or to the diversity of its structure and function.
     4 Tissue positioning of BmSCRBQl and BmSCRBQ4 proteins
     Based on the expression results of BmSCRBQ1 and BmSCRBQ4 genes in the transcription level and protein level, using paraffin section and immunohistochemistry methods, tissues of 3-days-old 5th instar larvae of Dazao strain(such as testis, fat body, middle silk gland, haemocyte and ovaries)were selected to locate two protein in tissues. The results showed that BmSCRBQ1 protein were detected mainly in the spermatotheca membrane and intima of testis. in the plasma membrane of adipocyte, in both inner and outer membrane of silk gland cells of the middle silk gland, in the plasma membrane of original leukocyte and granulosa cells in haemocyte, and in the membrane area of follicle cells of ovary. However, BmSCRBQ4 protein were detected in the spermatogonia membrane and the outer membrane of testis, in the plasma membrane of adipocyte and in the outer membrane of silk gland cells of the middle silk gland, but no BmSCRBQ4 protein can be detected in haemocyte and ovary. The location results in different tissues showed that all two proteins exist in the constitutive tunicas of tissues and (or) in the plasmalemma area of cells, guessing that the functions of two proteins may be involved in lipid flow and metabolism, recognition and phagocytosis and transportation of metabolic waste and xenobiotics, and signaling transduction and so on.
     5 Initiatory study on the proteins of eukaryotic expression of BmSCRBQ1 and BmSCRBQ4 genes binding bacteria
     Full ORF sequences of BmSCRBQl and BmSCRBQ4 genes were amplified and subcloned into the mammalian expression vector pcDNA3.1 after enzyme to construct the recombinant vector for expression in HEK293 cells, in order to study the functions of BmSCRBQ1 and BmSCRBQ4 genes in the cellular level in vitro using eukaryotic cell expression system. Transfection results have shown that the two recombinant vectors can express the target proteins in HEK293 cells and the target proteins obviously located in the cell membrane area of HEK293 cells.Optimizing conditions of transfection showed that the expression efficiency of the recombine vectors can be maintained in 20% to 30%. The HEK293 cells after transfection incubated with the FITC labeled E.coli and Staphylococcus aureus respectively, the samples were observed under a fluorescence microscope after immunofluorescence treatment, found that a small number of two bacteria were adhere to the edge of cell expressing BmSCRBQ1 and BmSCRBQ4 proteins, guessing that two proteins may be able to bind bacteria, further study on the binding action between them would be needed.
引文
[1]Goldstein J L, Ho Y K, Basu S K, et al. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci USA.,1979,76(1):333-337.
    [2]Annette Pluddemann, Claudine Neyen, Siamon Gordon. Macrophage scavenger receptors and host-derived ligands. Methods.,2007,43:207-217.
    [3]Krieger M, Acton S, Ashkenas J, et al. Molecular flypaper, host defense, and atherosclerosis. Structure, binding properties, and functions of macrophage scavenger receptors. J Biol Chem., 1993,268(7):4569-4572.
    [4]Gough P J, Gordon S. The role of scavenger receptors in the innate immune system. Microbes. Infect.,2000,2(3):305-311.
    [5]Yamada Y, Doi T, Hamakubo T, et al. Scavenger receptor family proteins:roles for atherosclerosis,host defence and disorders of the central nervous system. Cell. Mol. Life. Sci., 1998,54(7):628-640.
    [6]Febbraio M, Hajjar D P, Silverstein R L. CD36:a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J. Clin. Invest.,2001,108(6): 785-791.
    [7]Peiser L, Mukhopadhyay S, Gordon S. Scavenger receptors in innate immunity. Curr. Opi.Immunol.,2002,14(1):123-128.
    [8]Murphy J E, Tedbury P R, Homer-Vanniasinkam S, et al. Biochemistry and cell biology of mammalian scavenger receptors. Atherosclerosis,2005,182(1):1-15.
    [9]Areschoug T, Gordon S. Scavenger receptors:role in innate immunity and microbial pathogenesis. Cell. Microbiol.,2009,11 (8):1160-1169.
    [10]Okumura I, Lombart C, Jamieson GA. Platelet glycocalicin.Ⅱ. Purification and characterization. J Biol Chem.,1976,251:5950-5955.
    [11]Rac M E, Safranow K, Poncyljusz W. Molecular basis of human CD36 gene mutations. Mol Med.,2007,13 (5-6):288-296.
    [12]Talle M A, Rao P E, Westberg E, Allegar N, Makowski M, Mittler RS, et al. Patterns of antigenic expression on human monocytes as defined by monoclonal antibodies. Cell Immunol., 1983,78:83-99.
    [13]Endemann G, Stanton L W, Madden K S, Bryant C M, White R T, Protter A A. CD36 Is a Receptor for Oxidized Low Density Lipoprotein. J. Biol. Chem.,1993,268:11811-11816.
    [14]Fernandez-Ruiz E, Armesilla A L, Sanchez-Madrid F, Vega M A. Gene encoding the collagen type I and thrombospondin receptor CD36 is located on chromosome 7q11.2. Genomics.,1993, 17:759-61.
    [15]Armesilla A L, Vega M A. Structural organization of the gene for human CD36 glycoprotein. J. Biol. Chem.,1994,269:18985-91.
    [16]Armesilla A L, Calvo D, Vega M A. Structural and functional characterization of the human CD36 gene promoter:identification of a proximal PEBP2/CBF site. J. Biol. Chem.,1996,271: 7781-7.
    [17]Andersen M, Lenhard B, Whatling C, Eriksson P, Odeberg J. Alternative promoter usage of the membrane glycoprotein CD36. BMC. Mol. Biol.,2006,7:8.
    [18]Noushmehr H, D'Amico E, Farilla L.Hui H, Wawrowsky K A, Mlynarski W, et al. Fatty acid translocase (FAT/CD36) is localized on insulincontaining granules in human pancreatic beta-cells and mediates fatty acid effects on insulin secretion. Diabetes,2005,54:472-81.
    [19]Sato O, Kuriki C, Fukui Y, Motojima K. Dual promoter structure of mouse and human fatty acid translocase/CD36 genes and unique transcriptional activation by peroxisome proliferator-activated receptor alpha and gamma ligands. J Biol Chem.,2002,277:15703-11.
    [20]Zingg JM. Ricciarelli R, Andorno E, Azzi A. Novel 5'exon of scavenger receptor CD36 is expressed in cultured human vascular smooth muscle cells and atherosclerotic plaques. Arterioscler. Thromb. Vasc Biol.2002,22:412-7.
    [21]Oquendo, P., Hundt, E., Lawler, J., and Seed, B. CD36 directly mediates cytoadherence of Plasmodium falciparum parasitized erythrocytes. Cell,1989,58:95-101.
    [22]Greenwalt D E, Lipsky R H, Ockenhouse C F, Ikeda H, Tandon N N, Jamieson G A. Membrane glycoprotein CD36:a review of its roles in adherence, signal transduction, and transfusion medicine. Blood,1992,80:1105-15.
    [23]Tang Y, Taylor K T, Sobieski D A, Medved E S, Lipsky R H. Identification of a human CD36 isoform produced by exon skipping. Conservation of exon organization and pre-mRNA splicing patterns with a CD36 gene family member, CLA-1. J. Biol. Chem.,1994,269:6011-5.
    [24]Gruarin P, Sitia R, Alessio M. Formation of one or more intrachain disulphide bonds is required for the intracellular processing and transport of CD36. Biochem J.,1997,328:635-42.
    [25]Puente Navazo MD, Daviet L, Ninio E, McGregor JL. Identification on human CD36 of a domain (155-183) implicated in binding oxidized low-density lipoproteins (Ox-LDL). Arterioscler Thromb Vasc Biol.,1996,16:1033-9.
    [26]Ohgami N. Nagai R, Ikemoto M, Arai H, Kuniyasu A, Horiuchi S. et al. Cd36, a member of the class b scavenger receptor family, as a receptor for advanced glycation end products. J Biol Chem.,2001,276:3195-202.
    [27]Demers A, McNicoll N, Febbraio M, Servant M. Marleau S, Silverstein R, et al. Identification of the growth hormone-releasing peptide binding site in CD36:a photoaffinity cross-linking study. Biochem. J.,2004,382:417-24.
    [28]Navazo M D. Daviet L, Savill J. Ren Y, Leung L L, McGregor J L. Identification of a domain (155-183) on CD36 implicated in the phagocytosis of apoptotic neutrophils. J Biol Chem., 1996.271:15381-5.
    [29]Pearce S F, Roy P, Nicholson A C, Hajjar D P, Febbraio M, Silverstein RL. Recombinant glutathione S-transferase/CD36 fusion proteins define an oxidized low density lipoprotein-binding domain. J Biol Chem.,1998,273:34875-81.
    [30]Collot-Teixeira S, Martin J, McDermott-Roe C, et al. CD36 and macrophages in atherosclerosis. Cardiovascular Research.,2007,75:468-477.
    [31]Acton S L, Scherer P E, Lodish H F, Krieger M. Expression cloning of SR-BI, a CD36-related class B scavenger receptor. J Biol Chem.,1994,269:21003-21009.
    [32]Acton S, Rigotti A, Landschulz K T, Xu S, Hobbs H H, Krieger M. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science,1996,271:518-520.
    [33]Webb N R, de Villiers W J, Connell P M, de Beer F C, van der Westhuyzen D R. Alternative forms of the scavenger receptor BI (SR-BI). JLipid Res.,1997,38:1490-1495.
    [34]Calvo D, Vega M A. Identification, primary structure, and distribution of CLA-1, a novel member of the CD36/LIMPII gene family. J Biol Chem.,1993,268:18929-18935
    [35]Nancy R W, Patrice M C, Gregory A G, et al. SR-BI1, an Isoform of the scavenger receptor Bl containing an alternate cytoplasmic tail, mediates lipid transfer between high density lipoprotein and cells. J Biol Chem.,1998,273(24):15241-15248.
    [36]Hirano K, Tsukamoto K, Zhongyan Z, Matsuyama A, Tsujji K, Shishio N, Yamashita S, Matsuzawa Y. Macrophage-specific variant of human scavenger receptor class B type I (SR-BI), SR-BⅢ, has possible function to regulate direction of SR-BI-mediated cholesterol flux as an accessory protein. Circulation.,2000,102:1186.
    [37]Calvo D, Dopazo J, Vega M A. The CD36, CLA-1 (CD36L1), and LIMPⅡ (CD36L2) gene family:cellular distribution, chromosomal location, and genetic evolution. Genomics,1995,25: 100-106
    [38]高丽萍,范春雷,沃兴德.B族Ⅰ型清道夫受体研究新进展Medical Recapitulate.,2003,Vol.9,No.7:385-387
    [39]Steinbrecher U P. Receptors for oxidized low density lipoprotein. Biochimica et Biophysica Acta.,1999,1436:279-298.
    [40]Rigotti A, Miettinen H E, Krieger M. The Role of the High-Density Lipoprotein Receptor SR-BI in the Lipid Metabolism of Endocrine and Other Tissues. Endocrine Reviews,2003, 24(3):357-387.
    [41]Krieger M. Charting the fate of the "good cholesterol":identification and characterization of the high-density lipoprotein receptor SR-BI. Annu. Rev. Biochem.,1999,68:523-558.
    [42]Krieger M. Scavenger receptor class B type I is a multiligand HDL receptor that influences diverse physiologic systems. J. Clin. Invest.,2001,108:793-797.
    [43]Babitt J, Trigatti B, Rigotti A, Smart E J, Anderson G W, Xu S Z, Krieger M. Murine SR-BI, a high density lipoprotein receptor that mediates selective lipid uptake, is N-glycosylated and fattya cylated and colocalizes with plasma membrane caveolae. J Biol Chem.,1997,272 (20):13242-13249. J. Biol. Chem.1997.272:13242-13249.
    [44]Gu X, Trigatti B, Xu S, Acton S, Babitt J, Krieger M. The efficient cellular uptake of high density lipoprotein lipids via scavenger receptor class B type 1 requires not only receptor-mediated surface binding but also receptor-specific lipid transfer mediated by its extracellular domain. J Biol Chem.,1998,73:26338-26348.
    [45]Tao N, Wagner S J, Lublin D M. CD36 is palmitoylated on both N- and C-terminal cytoplasmic tails. J Biol Chem.,1996,271:22315-22320.
    [46]Vinals M, Xu S, Vasile E, Krieger M. Identification of the N-linked glycosylation sites on the high density lipoprotein (HDL) receptor SR-BI and assessment of their effects on HDL binding and selective lipid uptake. J. Biol. Chem.,2003,278:5325-5332.
    [47]Connelly M A, Klein S M, Azhar S. Abumrad N A, Williams D L. Comparison of class B scavenger receptors, CD36 and scavenger receptor BI (SR-BI), shows that both receptors mediate high density lipoprotein-cholesteryl ester selective uptake but SR-BI exhibits a unique enhancement of cholesteryl ester uptake. J. Biol. Chem.,1999,274(1):41-7.
    [48]Connelly M A, de la Llera-Moya M, Monzo P, et al. Analysis of Chimeric Receptors Shows That Multiple Distinct Functional Activities of Scavenger Receptor, Class B, Type Ⅰ (SR-BI), are localized to the extracellular receptor domain. Biochemistry,2001,40,5249-5259
    [49]Connelly M A, De La Llera-Moya M, Peng Y, Drazul-Schrader D, Rothblat G H, Williams D L. Separation of lipid transport functions by mutations in the extracellular domain of scavenger receptor class B, type I. J Biol Chem.,2003,278:25773-82.
    [50]Fukuda, M.. Lysosomal membrane glycoproteins. J. Biol.Chem.,1991,266:21327-21330.
    [51]Vega M A, Segui-Real B, Garcia J A, Cales C, Rodriguez F, Vanderkerckhovev J, Sandoval I V. Cloning, sequencing, and expression of a cDNA encoding RaLt IMP11, a novel 74-kDa lysosomal membrane protein related to the surface adhesion protein CD36. J. Biol. Chem.,1991, 266:16818-16824.
    [52]Vega, M A, Rodriguez, F, Segui, B, Cales, C, Alcalde, J, Sandoval, I V. Targeting of lysosomal integral membrane protein LIMP II. J. Biol. Chem.,1991,266:16269-16272.
    [53]Ogata S, Fukuda, M. Lysosomal targeting of LIMPI1 membrane glycoprotein requires a novel Leu-Ile motif at a particular position in its cytoplasmic tail. J. Biol. Chem.,1994,269: 5210-5217.
    [54]Landschulz K, Pathak R. Rigotti A. Krieger M, Hobbs H. Regulation of scavenger receptor, class B, type I, a high density lipoprotein receptor, in liver and steroidogenic tissues of the rat. J Clin Invest.,1996,98:984-995.
    [55]Cai SF, Kirby RJ, Howles PN, Hui DY. Differentiation-dependent expression and localization of the class B type Ⅰ scavenger receptor in intestine. J Lipid Res..2001,42:902-909.
    [56]Voshol P J, Schwarz M, Rigotti A, Krieger M, Groen AK, Kuipers F. Down-regulation of intestinal scavenger receptor class B, type Ⅰ (SR-BI) expression in rodents under conditions of deficient bile delivery to the intestine. Biochem.J.,2001,356:317-325.
    [57]Hatzopoulos AK, Rigotti A, Rosenberg RD, KriegerM. Temporal and spatial pattern of expression of the HDL receptor SR-BI during murine embryogenesis. J Lipid Res.,1998,39: 495-508.
    [58]Wyne K L, Woollett L A. Transport of maternal LDL and HDL to the fetal membranes and placenta of the Golden Syrian hamster is mediated by receptor-dependent and receptor-independent processes. J Lipid Res.,1998,39:518-530
    [59]Ramachandran S, Song M, Murphy A A, Parthasarathy S. Expression of scavenger receptor class B1 in endometrium and endometriosis. J Clin Endocrinol Metab.,2001,86:3924-3928.
    [60]Kolleck I, Schlame M, Fechner H, Looman A C, Wissel H, Rustow B. HDL is the major source of vitamin E for type Ⅱ pneumocytes. Free Radic Biol Med.,1999,27:882-890.
    [61]Miquel J F, Moreno M. Santiban~ ez E, Amigo L, Wistuba I, Acton S, Rigotti A. Expression and regulation of scavenger receptor class B type Ⅰ (SR-BI) in human and murine gallbladder epithelial cells. Gastroenterology,2000,188:A134
    [62]Murao K, Terpstra V, Green S R. Kondratenko N, Steinberg D, Quehenberger O. Characterization of CLA-1, a human homologue of rodent scavenger receptor BI, as a receptor for high density lipoprotein and apoptotic thymocytes. J Biol Chem.,1997,272:17551-17557.
    [63]Ji Y, Jian B, Wang N. Sun Y, Moya M L, Phillips M C. Rothblat G H, Swaney J B, Tall A R. Scavenger receptor BI promotes high density lipoprotein-mediated cellular cholesterol efflux. J Biol Chem.,1997,272:20982-20985.
    [64]Chinetti G. Gbaguidi FG, Griglio S, Mall at Z, Antonucci M, Poulain P, Chapman J, Fruchart JC. Tedgui A. Najib-Fruchart J, Staels B. CLA-1/SR-BI is expressed in atherosclerotic lesion macrophages and regulated by activators of peroxisome proliferator-activated receptors. Circulation,2000,101:2411-2417.
    [65]Uittenbogaard A, Shaul P W, Yuhanna I S, Blair A, Smart E J. High density lipoprotein prevents oxidized low density lipoprotein-induced inhibition of endothelial nitric-oxide synthase localization and activation in caveolae. J Biol Chem.,2000,275:11278-11283.
    [66]Marsche G, Levak-Frank S. Quehenberger O, Heller R, Sattler W, Malle E. Identification of the human analog of SR-BI and LOX-1 as receptors for hypochlorite-modified high density lipoprotein on human umbilical venous endothelial cells. FASEB J.,2001,15:1095-1097.
    [67]Yeh YC, Hwang GY, Liu IP, Yang VC Identification and expression of scavenger receptor SR-BI in endothelial cells and smooth muscle cells of rat aorta in vitro and in vivo. Atherosclerosis,2002,61:95-103.
    [68]Nakagawa-Toyama Y, Hirano K, Okamoto Y, Nishida M, Miyagawa J, Fujimura H, Yamashita S, Matsuzawa Y Expression on high density lipoprotein receptor scavenger receptor class B type I in human central nervous system. Atherosclerosis,2000,151:295
    [69]Duncan K G, Bailey K R, Kane J P, Schwartz D M. Human retinal pigment epithelial cells express scavenger receptors BI and BII. Biochem Biophys Res Commun.,2002, 292:1017-1022.
    [70]Tsuruoka H, Khovidhunkit W, Brown BE, Fluhr JW, Elias PM,Feingold KR Scavenger receptor class B type I is expressed in cultured keratinocytes and epidermis. Regulation in response to changes in cholesterol homeostasis and barrier requirements. J Biol Chem.,2002, 277:2916-2922
    [71]Stangl H, Graf GA, Yu L, Cao G, Wyne K. Effect of estrogen on scavenger receptor BI expression in the rat. JEndocrinol.,2002,175:663-672
    [72]Mardones P, Pilon A, Bouly M, Duran D, Nishimoto T, Arai H, Kozarsky K F, Altayo M, Miquel J F, Luc GV, Staels B, Rigotti A. Fibrates down-regulate hepatic scavenger receptor class B type Ⅰ (SR-BI) protein expression in mice. J Biol Chem.,2003,278:7884-7890
    [73]Fluiter K, van der Westhuijzen D R, van Berkel T J. In vivo regulation of scavenger receptor BI and the selective uptake of high density lipoprotein cholesteryl esters in rat liver parenchymal and Kupffer cells. JBiol Chem.,1998,273:8434-8438
    [74]Malerod L. Juvet K, Gjoen T, BergT. The expression of scavenger receptor class B, type Ⅰ (SR-BI) and caveolin-1 in parenchymal and nonparenchymal liver cells. Cell Tissue Res.,2002, 307:173-180.
    [75]Rigotti A, Edelman ER, Seifert P, Iqbal SN, DeMattos RB, Temel RE, Krieger M, Williams DL 1996 Regulation by adrenocorticotropic hormone of the in vivo expression of scavenger receptor class B type I (SR-BI), a high density lipoprotein receptor, in steroidogenic cells of the murine adrenal gland. JBiol Chem.,1996,271:33545-33549.
    [76]Svensson P A, Johnson M S, Ling C, Carlsson L M. Billig H, Carlsson B. Scavenger receptor class B type I in the rat ovary:possible role in high density lipoprotein cholesterol uptake and in the recognition of apoptotic granulosa cells. Endocrinology,1999,140:2494-2500.
    [77]Reaven E, Nomoto A, Leers-Sucheta S, Temel R, Williams DL, Azhar S. Expression and microvillar localization of scavenger receptor, class B, type I (a high density lipoprotein receptor) in luteinized and hormone-desensitized rat ovarian models. Endocrinology,1998, 139:2847-2856
    [78]Azhar S, Nomoto A, Leers-Sucheta S, Reaven E Simultaneous induction of an HDL receptor protein (SR-BI) and the selective uptake of HDL-cholesteryl esters in a physiologically relevant steroidogenic cell model. J Lipid Res.,1998,39:1616-1628.
    [79]Shiratsuchi A, Kawasaki Y, Ikemoto M, Arai H, Nakanishi Y. Role of class B scavenger receptor type I in phagocytosis of apoptotic rat spermatogenic cells by Sertoli cells. J Biol Chem.,1999,274:5901-5908
    [80]Hauser H, Dyer J H, Nandy A, Vega M A, Werder M, Bieliauskaite E, Weber F E, Compassi S, Gemperli A, Boffelli D, Wehrli E, Schulthess G, Phillips M C. Identification of a receptor mediating absorption of dietary cholesterol in the intestine. Biochemistry,1998, 37:17843-17850.
    [81]Asch, A. S., J. Barnwell, R. L. Silverstein, and R. L. Nachman. Isolation of the thrombospondin membrane receptor. J. Clin. Invest.,1987,79:1054-1061.
    [82]Silverstein, R. L., M. Baird, S. K. Lo, and L. M. Yesner. Sense and antisense cDNA transfection of CD36 (glycoprotein IV) in melanoma cells. J. Biol. Chem.,1992, 267:16607-16612.
    [83]Tandon, N. N., U. Kralisz. and G. A. Jamieson. Identification of glycoprotein IV (CD36) as a primary receptor for platelet-collagen adhesion. J. Biol. Chem.,1989,264:7576-7583.
    [84]Asch, A. S., I. Liu, F. M. Briccetti, J. W. Barnwell, F. Kwakye-Berko, A. Dokun, J. Goldberger, and M. Pernambuco. Analysis of CD36 binding domains:ligand specificity controlled by dephosphorylation of an ectodomain. Science,1993,262:1436-1440.
    [85]Rigotti, A., S. L. Acton, and M. Krieger. The class B Scavenger receptors SR-BI and CD36 are receptors for anionic phospholipids. J. Biol. Chem.,1995,270:16221-16224.
    [86]Barnwell, J. W., C. F. Ockenhouse, and D. M. Knowles. Monoclonal antibody OKM5 inhibits the in vitro binding of Plasmodium falciparum-infected erythrocytes to monocytes, endothelial, and C32 melanome cells. J. Immunol.,1985,135:3494-3497.
    [87]Calvo D, Gomez-Coronado D, Suarez Y, A. Lasuncion M, A. Vega M. Human CD36 is a high affinity receptor for the native lipoproteins HDL, LDL, and VLDL. J. Lipid Res.,1998, 39:777-788.
    [88]Savill J, Hogg N, Ren Y, Haslett C. Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis. J. Clin. Invest.,1992, 90:1513-1522.
    [89]Ren Y, Silverstein R L, Allen J, Savill J. CD36 gene transfer confers capacity for phagocytosis of cells undergoing apoptosis. J. Exp. Med.,1995,181:1857-1862.
    [90]Abumrad N A, El-Maghrabi R, Amri E, Lopez E, Grimaldi P A. Cloning of a rat adipocyte membrane protein implicated in binding of transport of long chain fatty acids that is induced during preadipocyte differentiation. J. Biol. Chem.,1993.268:17665-17668.
    [91]Podrez E A, Poliakov E, Shen Z, Zhang R, Deng Y, Sun M, et al. Identification of a novel family of oxidized phospholipids that serve as ligands for the macrophage scavenger receptor CD36. J Biol Chem..2002.277:38503-16.
    [92]Gillotte-Taylor K, Boullier A, Witztum J L. Steinberg D. Quehenberger O. Scavenger receptor class B type I as a receptor for oxidized low density lipoprotein. J Lipid Res.,2001. 42:1474-1482
    [93]Marsche G, Hammer A, Oskolkova O, Kozarsky K F, Sattler W, Malle E Hypochlorite-modified high density lipoprotein, a high affinity ligand to scavenger receptor class B, type Ⅰ impairs high density lipoprotein-dependent selective lipid uptake and reverse cholesterol transport. J Biol Chem.,2002,77:32172-32179
    [94]Calvo D, Gomez-Coronado D, Lasuncion M A, Vega M A. CLA-1 is an 85-kD plasma membrane glycoprotein that acts as a high-affinity receptor for both native (HDL, LDL, and VLDL) and modified (OxLDL and AcLDL) lipoproteins. Arterioscler Thromb Vasc Biol.,1997, 17:2341-2349.
    [95]Fukasawa M. Adachi H, Hirota K, Tsujimoto M, Arai H, Inoue K. SRB1, a class B scavenger receptor, recognizes both negatively charged liposomes and apoptotic cells. Exp Cell Res.1996, 222:246-250
    [96]Paresce D M, Ghosh R N, Maxfield F R. Microglial cells internalize aggregates of the Alzheimer's disease amyloid β-protein via a scavenger receptor. Neuron,1996,17:553-565
    [97]Huh H Y, Pearce S F, Yesner L M, Schindler J L, Silverstein R L. Regulated expression of CD36 during monocyte-to-macrophage differentiation:potential role of CD36 in foam cell formation. Blood,1996,87:2020-2028.
    [98]Griffin E, Re A, Hamel N, Fu C, Bush H, McCaffrey T, Asch A S. A link between diabetes and atherosclerosis:Glucose regulates expression of CD36 at the level of translation. Nat. Med., 2001,7:840-6.
    [99]Liang C P, Han S, Okamoto H, Carnemolla R, Tabas I, Accili D, Tall A R. Increased CD36 protein as a response to defective insulin signaling in macrophages. J. Clin. Invest.,2004, 113:764-73.
    [100]Han J, et al. Transforming growth factor-beta1 (TGF-beta1) and TGF-beta2 decrease expression of CD36, the type B scavenger receptor, through mitogen-activated protein kinase phosphorylation of peroxisome proliferator-activated receptor-gamma. J. Biol. Chem.,2000, 275:1241-1246.
    [101]Feng J, Han J, Pearce S F, Silverstein R L, Gotto A M Jr, Hajjar D P, Nicholson A C. Induction of CD36 expression by oxidized LDL and IL-4 by a common signaling pathway dependent on protein kinase C and PPAR-gamma. J. Lipid Res.,2000,41:688-696.
    [102]Yesner L M, Huh H Y, Pearce S F, Silverstein R L. Regulation of monocyte CD36 and thrombospondin-1 expression by soluble mediators. Arterioscler. Thromb. Vasc. Biol.,1996, 16:1019-25.
    [103]Bastie C C, Hajri T, Drover V A, Grimaldi P A, Abumrad N A. CD36 in myocytes channels fatty acids to a lipase-accessible triglyceride pool that is related to cell lipid and insulin responsiveness. Diabetes,2004,53:2209-16.
    [104]Nagy L, Tontonoz P, Alvarez J G, Chen H, Evans R.M. Oxidized LDL regulates macrophage gene expression through ligand activation of PPAR gamma. Cell,1998,93:229-240.
    [105]Tontonoz P, Nagy L, Alvarez J G. Thomazy V A, Evans R M. PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell,1998,93:241-252.
    [106]Huang J T, et al. Interleukin-4-dependent production of PPARgamma ligands in macrophages by 12/15-lipoxygenase.Nature,1999,400:378-382.
    [107]Sfeir Z, Ibrahimi A, Amri E, Grimaldi P, Abumrad N. Regulation of FAT/CD36 gene expression:further evidence in support of a role of the protein in fatty acid binding/transport. Prostaglandins Leukot. Essent. Fatty Acids.,1997,57:17-21.
    [108]Shiffman D, Mikita T, Tai JT, Wade D P, Porter J G, Seilhamer J J, et al. Large scale gene expression analysis of cholesterol-loaded macrophages.J Biol Chem.,2000,275:37324-32.
    [109]Zhao M, Liu Y, Wang X, New L, Han J, Brunk U T. Activation of the p38 MAP kinase pathway is required for foam cell formation from macrophages exposed to oxidized LDL. Apmis,2002,110:458-68.
    [110]Munteanu A, Taddei M, Tamburini I, Bergamini E, Azzi A, Zingg JM. Antagonistic effects of oxidized low density lipoprotein and alphatocopherol on CD36 scavenger receptor expression in monocytes:involvement of protein kinase B and peroxisome proliferator-activated receptor-gamma. J Biol Chem.,2006,281:6489-97.
    [111]Lim HJ, Lee S, Lee KS, Park JH, Jang Y, Lee EJ, et al. PPARgamma activation induces CD36 expression and stimulates foam cell like changes in rVSMCs. Prostaglandins Other Lipid Mediat.,2006,80:165-74.
    [112]Jedidi I, Couturier M, Therond P, et al. Cholesteryl ester hydroperoxides increase macrophage CD36 gene expression via PPAR-alpha. Biochem Biophys Res Commun.,2006,351 (3): 733-738.
    [113]孙颖,常志文.B类清道夫受体CD36与动脉粥样硬化研究进展.心脏杂志,2008,20(2):232-236
    [114]Han J, Hajjar D P, Zhou X, et al. Regulation of peroxisome proliferator-activated receptor-gamma-mediated gene expression:a new mechanism of action for high density lipoprotein. J Biol Chem.,2002,277 (26):23582-23586
    [115]Glass C, Pittman R C, Civen M, Steinberg D. Uptake of highdensity lipoprotein-associated apoprotein A-I and cholesterol esters by 16 tissues of the rat in vivo and by adrenal cells and hepatocytes in vitro. J Biol Chem.,1985,260:744-750
    [116]Pittman R C, Steinberg D. Sites and mechanisms of uptake and degradation of high density and low density lipoproteins. J Lipid Res.,1984,25:1577-1585
    [117]Goldberg D I, Beltz W F, Pittman R C. Evaluation of pathways for the cellular uptake of high density lipoprotein cholesterol esters in rabbits. J Clin Invest.,1991,87:331-346
    [118]Spady D K, Kearney D M, Hobbs H H. Polyunsaturated fatty acids up-regulate hepatic scavenger receptor B1 (SR-BI) expression and HDL cholesteryl ester uptake in the hamster. J Lipid Res.,1999,40:1384-1394
    [119]Loison C, Mendy F, Serougne C, Lutton C. Dietary myristic acid modifies the HDL-cholesterol concentration and liver scavenger receptor B1 expression in the hamster. Br J Nutr.,2002,87:199-210
    [120]Milliat F, Ferezou J, Delhon A, Lutton C. Overexpression of SR-BI in hamsters treated with a novel ACAT inhibitor (F12511). CR Acad Sci Ⅲ.,2001,324:229-234
    [121]Khovidhunkit W, Moser A H, Shigenaga J K, Grunfeld C. Feingold K R. Regulation of scavenger receptor class B type I in hamster liver and Hep3B cells by endotoxin and cytokines. J Lipid Res.,2001,42:1636-1644
    [122]Dubrac S, Parquet M, Gripois D, Blouquit M F. Serougne C, Loison C, Lutton C. Diet-dependent effects of insulin infusion on the hepatic lipoprotein receptors and the key enzymes of bile acid synthesis in the hamster. Life Sci..2001,69:2517-2532
    [123]Serougne C. Feurgard C. Hajri T. Champarnaud G, Ferezou J, Mathe D, Lutton C. Catabolism of HDL 1 cholesteryl ester in the rat Effect of ethinyl estradiol treatment. C R Acad Sci Ⅲ.,1999,322:591-596
    [124]Graf G A, Roswell K L, Smart E J.17β-Estradiol promotes the up-regulation of SR-BII in HepG2 cells and in rat livers. J Lipid Res..2001,42:1444-1449
    [125]Milliat F, Gripois D. Blouquit M E, Ferezou J, Serougne C, Fidge N H. Lutton C. Short and long-term effects of streptozotocin on dietary cholesterol absorption, plasma lipoproteins and liver lipoprotein receptors in RICO rats. Exp Clin Endocrinol Diabetes.,2000,108:436-446
    [126]Galman C, Angelin B, Rudling M. Prolonged stimulation of the adrenals by corticotropin suppresses hepatic low-density lipoprotein and high-density lipoprotein receptors and increases plasma cholesterol. Endocrinology,2002,143:1809-1816
    [127]Witt W, Kolleck I, Fechner H, Sinha P, Rustow B. Regulation by vitamin E of the scavenger receptor BI in rat liver and HepG2 cells. J Lipid Res.,2000,41:2009-2016
    [128]Malerod L. Juvet LK, Hanssen-Bauer A, Eskild W, Berg T. Oxysterol-activated LXRα/RXR induces hSR-BI-promoter activity in hepatoma cells and preadipocytes. Biochem Biophys Res Commun.,2002,299:916-923
    [129]Schoonjans K, Annicotte J S, Huby T, Botrugno O A, Fayard E, Ueda Y, Chapman J, Auwerx J. Liver receptor homolog 1 controls the expression of the scavenger receptor class B type I. EMBO Rep.,2002,3:1181-1187
    [130]Lambert G, Amar MJ, Guo G, Brewer H B J, Gonzalez F J, Sinal C J. The Farnesoid X-receptor is an essential regulator of cholesterol homeostasis. J Biol Chem.,2003, 278:2563-2570
    [131]Wang N, Weng W, Breslow J L, Tall A R. Scavenger receptor BI (SR-BI) is up-regulated in adrenal gland in apolipoprotein A-I and hepatic lipase knockout mice as a response to depletion of cholesterol stores. J Biol Chem.,1996,271:21001-21004
    [132]Sun Y, Wang N, Tall A R. Regulation of adrenal scavenger receptor-BI expression by ACTH and cellular cholesterol pools. J Lipid Res.,1999,40:1799-1805
    [133]Liu J, Voutilainen R, Heikkila P, Kahri AI. Ribonucleic acid expression of the CLA-1 gene, a human homolog to mouse high density lipoprotein receptor SR-BI, in human adrenal tumors and cultured adrenal cells. JClin Endocrinol Metab.,1997,82:2522-2527
    [134]Cao G, Garcia C K, Wyne K L, Schultz R A, Parker K L, Hobbs H H. Structure and localization of the human gene encoding SRBI/CLA-1. Evidence for transcriptional control by steroidogenic factor 1. J Biol Chem.,1997,272:33068-33076
    [135]Lopez D, Sanchez M D. Estrogen activates the high-density lipoprotein receptor gene via binding to estrogen response elements and interaction with sterol regulatory element binding protein-lA. Endocrinology,2002,143:2155-2168.
    [136]Li X, Peegel H, Menon K. In situ hybridization of high density lipoprotein (scavenger, type 1) receptor messenger ribonucleic acid (mRNA) during folliculogenesis and luteinization: evidence for mRNA expression and induction by human chorionic gonadotropin specifically in cell types that use cholesterol for steroidogenesis. Endocrinology,1998,139:3043-3049
    [137]Reaven E, Zhan L, Nomoto A, Leers-Sucheta S, Azhar S. Expression and microvillar localization of scavenger receptor class B, type I (SR-BI) and selective cholesteryl ester uptake in Leydig cells from rat testis. JLipid Res.,2000,41:343-356
    [138]Johnson M S, Svensson P A, Boren J, Billig H, Carlsson L M. Carlsson B. Expression of scavenger receptor class B type I in gallbladder columnar epithelium. J Gastroenterol Hepatol., 2002,17:713-720
    [139]Altmann S W, Davis H R, Yao X. Laverty M, Compton D S, Zhu L, Crona J H. Caplen M A, Hoos L M, Tetzloff G, Priestley T, Burnett D A, Strader C D, Graziano M P. The identification of intestinal scavenger receptor class B, type I (SR-BI) by expression cloning and its role in cholesterol absorption. Biochim Biophys Acta.,2002,1580:77-93
    [140]Husemann J, Silverstein S C. Expression of scavenger receptor class B, type I, by astrocytes and vascular smooth muscle cells in normal adult mouse and human brain and in Alzheimer's disease brain. Am JPathol.,2001,158:825-832
    [141]Zuckerman S H, Panousis C, Mizrahi J, Evans G. The effect of γ-interferon to inhibit macrophage-high density lipoprotein interactions is reversed by 15-deoxy-δ12,14-prostaglandin J2. Lipids,2000,35:1239-1247
    [142]Langer C, Gansz B, Goepfert C, Engel T, Uehara Y, von Dehn G, Jansen H, Assmann G, von Eckardstein A. Testosterone upregulates scavenger receptor BI and stimulates cholesterol efflux from macrophages. Biochem Biophys Res Commun.,2002,296:1051-1057
    [143]Iwashima Y, Eto M, Hata A, Kaku K, Horiuchi S, Ushikubi F, Sano H. Advanced glycation end products-induced gene expression of scavenger receptors in cultured human monocytederived macrophages. Biochem Biophys Res Commun.,2000,277:368-380
    [144]Buechler C, Ritter M, Quoc C D, Agildere A, Schmitz G. Lipopolysaccharide inhibits the expression of the scavenger receptor Cla-1 in human monocytes and macrophages. Biochem Biophys Res Commun.,1999,262:251-254
    [145]Zuckerman S H, Panousis C, EvansG. TGF-β reduced binding of high-density lipoproteins in murine macrophages and macrophage-derived foam cells. Atherosclerosis,2001,155:79-85
    [146]Hullinger T G, Panek R L, Xu X, Karathanasis S K. p21-activated kinase-1 (PAK1) inhibition of the human scavenger receptor class B, type 1 promoter in macrophages is independent of PAK1 kinase activity, but requires the GTPase-binding domain. J Biol Chem., 2001,276:46807-46814
    [147]Baranova I, Vishnyakova T, Bocharov A, Chen Z, Remaley A T, Stonik J, Eggerman T L, Patterson A P Lipopolysaccharide down regulates both scavenger receptor B1 and ATP binding cassette transporter A1 in RAW cells. Infect Immun.,2002,70:2995-3003
    [148]Han J, Nicholson A C, Zhou X, Feng J, Gotto A M J. Hajjar D P. Oxidized low density lipoprotein decreases macrophage expression of scavenger receptor B-I. J Biol Chem.,2001, 276:16567-16572
    [149]Trigatti B, Rigotti A, Krieger M. The role of the high-density lipoprotein receptor SR-BI in cholesterol metabolism. Curr. Opin. Lipidol.,2000,11:123-131.
    [150]Ryeom S, Sparrow J, Silverstein R L. CD36 participates in the phagocytosis of rod outer segments on retinal pigment epithelium. J Cell Sci.,1996,109:387-395.
    [151]Kunjathoor V V, Febbraio M, Podrez E A, Moore K J, Andersson L. Koehn S, et al. Scavenger receptors class A-Ⅰ/Ⅱ and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages. J Biol Chem.,2002,277:49982-8.
    [152]Nozaki S. Kashiwagi H, Yamashita S, Nakagawa T, Kostner B, Tomiyama Y, et al. Reduced uptake of oxidized low density lipoproteins in monocyte-derived macrophages from CD36-deficient subjects. J Clin Invest.,1995,96:1859-65.
    [153]Podrez EA. Schmitt D, Hoff H F. Hazen S L. Myeloperoxidase-generated reactive nitrogen species convert LDL into an atherogenic form in vitro. J. Clin. Invest.1999.103:1547-1560.
    [154]Podrez E A, et al. Macrophage scavenger receptor CD36 is the major receptor for LDL modified by monocyte-generated reactive nitrogen species.2000,105:1095-1108.
    [155]Rahaman S O, Lennon D J, Febbraio M, Podrez E A. Hazen S L, Silverstein R L. A CD36-dependent signaling cascade is necessary for macrophage foam cell formation. Cell Metab.,2006,4:211-21.
    [156]Lipsky R H, Eckert D M, Tang Y, Ockenhouse C F. The carboxylterminal cytoplasmic domain of CD36 is required for oxidized lowdensity lipoprotein modulation of NF-kappaB activity by tumor necrosis factor-alpha. Recept Signal Transduct.,1997,7:1-11.
    [157]Han C Y. Park S Y, Pak Y K. Role of endocytosis in the transactivation of nuclear factor-kappaB by oxidized low-density lipoprotein. Biochem J.,2000,350(Pt 3):829-37.
    [158]Janabi M, Yamashita S, Hirano K, Sakai N, Hiraoka H, Matsumoto K, et al. Oxidized LDL-induced NF- kappa B activation and subsequent expression of proinflammatory genes are defective in monocyte derived macrophages from CD36-deficient patients. Arterioscler Thromb Vasc Biol.,2000,20:1953-60.
    [159]Zhang Y. Wahl L M. Synergistic enhancement of cytokine-induced human monocyte matrix metalloprotein- ase-1 by C-reactive protein and oxidized LDL through differential regulation of monocyte chemotactic protein-1 and prostaglandin E2. Leukoc Biol.,2006,79:1052113.
    [160]Nicholson A C, Frieda S, Pearce A, Silverstein R L. Oxidized LDL binds to CD36 on human monocyte-derived macrophages and transfected cell lines. Evidence implicating the lipid moiety of the lipoprotein as the binding site. Arterioscler Thromb Vase Biol.,1995, 15:269-75.
    [161]Boullier A, Gillotte KL, Horkko S, Green SR, Friedman P, Dennis EA, et al. The binding of oxidized low density lipoprotein to mouse CD36 is mediated in part by oxidized phospholipids that are associated with both the lipid and protein moieties of the lipoprotein. J Biol Chem..2000,275:9163-9.
    [162]Doi T, Higashino K, Kurihara Y, Wada Y, Miyazaki T, Nakamura H, et al. Charged collagen structure mediates the recognition of negatively charged macromolecules by macrophage scavenger receptors. J Biol Chem.,1993,268:2126-33.
    [163]Zeng Y, Tao N, Chung K N, Heuser J E, Lublin D M. Endocytosis of oxidized low density lipoprotein through scavenger receptor CD36 utilizes a lipid raft pathway that does not require caveolin-1. J Biol Chem.,2003,278:45931-6.
    [164]陈俊华,张向阳.CD36抗原在动脉粥样硬化发生机制中的作用.心血管病学进展,2008,Vol.29.No.5:795-798.
    [165]Zhou J, Febbraio M, Zhai Y, Kuruba R, Wada T, Khadem S, Ren S, Li S, Silverstein R L, Xie W. LXR, PXR, and PPARy cooperate in regulating fatty acid transporter CD36 and promoting hepatic lipogenesis. Gastroenterology,2008,134:556-567.
    [166]Coburn C T, Knapp F F Jr. Febbraio M, Beets A L, Silverstein R L, Abumrad NA. Defective uptake and utilization of long-chain fatty acids in muscle and adipose tissues of CD36 knockout mice. J.Biol. Chem.,2000,275:32523-32529.
    [167]Drover V A, Nguyen D V, Bastie C C, Darlington Y F, Abumrad N A, Pessin J E, London E, Sahoo D, Phillips M C. CD36 mediates both cellular uptake of very long chain fatty acids and their intestinal absorption in mice. J. Biol. Chem.,2008,283:13108-13115.
    [168]Nickerson JG, Momken I, Benton CR, Lally J, Holloway GP, Han XX, Glatz JF, Chabowski A. Luiken JJ, Bonen A. Protein-mediated fatty acid uptake:Regulation by contraction. AMP-activated protein kinase, and endocrine signals. Appl. Physiol. Nutr. Metab.,2007,32:865-873.
    [169]Ibrahimi A, et al. Muscle-specific overexpression of FAT/CD36 enhances fatty acid oxidation by contracting muscle, reduces plasma triglycerides and fatty acids, and increases plasma glucose and insulin. J. Biol. Chem.,1999,274:26761-26766.
    [170]Aitman T J, et al. Identification of Cd36 (Fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats. Nat. Genet.,1999,21:76-83.
    [171]Urban S, Zieseniss S, Werder M, Hauser H, Budzinski R, Engelmann B. Scavenger receptor BI transfers major lipoprotein associated phospholipids into the cells. J Biol Chem.,2000,275:33409-33341
    [172]Greene D J, Skeggs J W, Morton R E. Elevated triglyceride content diminishes the capacity of high density lipoprotein to deliver cholesteryl esters via the scavenger receptor class B type I (SR-BI). J Biol Chem.,2001.276:4804-4811
    [173]Goti D, Hrzenjak A, Levak-Frank S, Frank S, van Der Westhuyzen D R, Malle E, Sattler W. Scavenger receptor class B, type Ⅰ is expressed in porcine brain capillary endothelial cells and contributes to selective uptake of HDL-associated vitamin E. JNeurochem.,2001,76:498-508
    [174]Connelly M A, Williams D L. Scavenger receptor BI:a scavenger receptor with a mission to transport high density lipoprotein lipids. Current Opinion In Lipidology.,2004,15,287-295
    [175]Rhainds D, Brissette L. The role of scavenger receptor class B type Ⅰ (SR-BI) in lipid, defining the rules for lipid traders. International Journal of Biochemistry & Cell Biology., 2004,36,39-77
    [176]Temel R E, Trigatti B, DeMattos R B, Azhar S, Krieger M. Williams D L. Scavenger receptor class B, type I (SR-BI) is the major route for the delivery of high density lipoprotein cholesterol to the steroidogenic pathway in cultured mouse adrenocortical cells. Proc Natl Acad Sci USA.,1997,94:13600-13605
    [177]de la Llera-Moya M, Rothblat G H, Connelly M A, Kellner-Weibel G, Sakar S W, Phillips M C, Williams D L. Scavenger receptor BI (SR-BI) mediates free cholesterol flux independently of HDL tethering to the cell surface. Journal of Lipid Research,1999,40, 575-580.
    [178]Kellner-Weibel G, de la Llera-Moya M, Connelly M A, Stoudt G, Christian A E, Haynes M P, Williams D L, Rothblat G H. Expression of scavenger receptor BI in COS-7 cells alters cholesterol content and distribution. Biochemistry,2000,39,221-229.
    [179]Azhar S, Leers-Sucheta S, Reaven E. Cholesterol uptake in adrenal and gonadal tissues:the SR-BI and selective pathway connection. Frontiers in Bioscience,2003.8:998-1029.
    [180]Connelly M A,Williams D L. SR-BI and cholesterol uptake into steroidogenic cells. Trends in Endocrinology & Metabolism,2003,14,467-472.
    [181]Trigatti B. Rayburn H, Vinals M, Braun A, Miettinen H. Influence of the high density lipoprotein receptor SR-BI on reproductive and cardiovascular pathophysiology. Proceedings of the National Academy of Sciences of the United States of America,1999,96,9322-9327.
    [182]Matveev S, van der Westhuyzen D R, Smart E J. Co-expression of scavenger receptor-BI and caveolin-1 is associated with enhanced selective cholesteryl ester uptake in THP-1 macrophages. J Lipid Res.,1999,40:1647-1654
    [183]Ikonen E, Parton R G. Caveolins and cellular cholesterol balance. Traffic,2000.1:212-217
    [184]Uittenbogaard A, Everson W V, Matveev S V. Smart E J. Cholesteryl ester is transported from caveolae to internal membranesas part of a caveolin-annexin Ⅱ lipid-protein complex. J Biol Chem.,2002.277:4925-4931
    [185]Peng Y. Akmentin W, Connelly M A, Lund-Katz S, Phillips M C, Williams D L. Scavenger Receptor BI (SR-BI) Clustered on Microvillar Extensions Suggests that This Plasma Membrane Domain Is a Way Station for Cholesterol Trafficking between Cells and High-Density Lipoprotein. Molecular Biology of the Cell,2004,15:384-396.
    [186]Reaven E, Leers-Sucheta S, Nomoto A. Azhar S. Expressionof scavenger receptor class B type 1 (SR-BI) promotes microvillar channel formation and selective cholesteryl ester transport in a heterologous reconstituted system.. Proc Natl Acad Sci USA.,2001,98:1613-1618
    [187]Williams D L, Wong J S, Hamilton R L. SR-BI is required for microvillar channel formation and the localization of HDL particles to the surface of adrenocortical cells in vivo. J Lipid Res., 2002,43:544-549
    [188]Reaven E. Spicher M, Azhar S. Microvillar channels:a unique plasma membrane compartment for concentrating lipoproteins on the surface of rat adrenal cortical cells. J Lipid Res.,1989,30:1551-1560
    [189]Plump A S, Erickson S K. Weng W, Partin J S, Brewslow J L, Williams D L. Apolipoprotein A-Ⅰ is required for cholesteryl ester accumulation in steroidogenic cells and for normal adrenal steroid production. JClin Invest.,1996,97:2660-2671
    [190]Azhar S, Nomoto A, Reaven E. Hormonal regulation of adrenal microvillar channel formation. J Lipid Res.,2002,43:861-871
    [191]Parathath S, Connelly M A, Rieger R A, Klein S M, Abumrad N A, Llera-Moya M, Iden C R, Rothblat G H, Williams D L. Changes in plasma membrane properties and phosphatidylcholine subspecies of insect Sf9 cells due to expression of scavenger receptor class B, type I, and CD36. Journal of Biological Chemistry,2004,279,41310-41318
    [192]Temel R E, Parks J S,Williams D L. Enhancement of SR-BI-mediated cholesteryl ester selective up take from apoA-Ⅰ(-/-) HDL by apoA-Ⅰ requires HDL reorganization by LCAT. Biol Chem.,2003,278 (5):4792-4799.
    [193]Stangl H, Cao G, Wyne K L, et al. Scavenger receptor, class B, type Ⅰ-dependent stimulation of cholesterol esterification by high density lipoproteins, low density lipoproteins, and nonlipoprotein cholesterol. J Biol Chem.,1998,273(47):31002-31008.
    [194]Silver D L, Tall A R. The cellular biology of scavenger receptor class B type I. Curr.Opin.Lipidol.,2001,12 (3):497.
    [195]Jian B, de la Llera-Moya M, Ji Y, Wang N, Phillips M C, Swaney J B, Tall A R, Rothblat G H. Scavenger receptor class B type Ⅰ as a mediator of cellular cholesterol efflux to lipoproteins and phospholipid acceptors. J Biol Chem.,1998,273:5599-5606
    [196]Huang Z H, Mazzone T. ApoE-dependent sterol efflux from macrophages is modulated by scavenger receptor class B type I expression. J Lipid Res.,2002,43:375-382
    [197]Yancey P G, de La Llera-Moya M, Swarnakar S, Monzo P, Klein S M, Connelly M A, Johnson W J, Williams D L, Rothblat G H. HDL phospholipid composition is a major determinant of the bidirectional flux and net movement of cellular free cholesterol mediated by scavenger receptor-BI (SR-BI). J Biol Chem.,2000,275:36596-36604
    [198]Liu T, Krieger M, Kan H Y, Zannis V I. The effects of mutations in helices 4 and 6 of apoA-Ⅰ on SR-BI-mediated cholesterol efflux suggest that formation of a productive complex between reconstituted HDL and SR-BI is required for efficient lipid transport. J Biol Chem., 2002,277:21576-21584
    [199]Lawn R M, Wade D P, Garvin M R, Wang X, Schwartz K, Porter J G, Seilhamer J J, Vaughan A M, Oram J F. The Tangier disease gene product ABC1 controls the cellular apolipoprotein-mediated lipid removal pathway. J Clin Invest.,1999,104:25-31
    [200]Chen W, Silver D L, Smith J D, Tall A R. Scavenger receptor-BI inhibits ATP-binding cassette transporter 1-mediated cholesterol efflux in macrophages. J Biol Chem.,2000, 275:30794-30800
    [201]Wang N, Silver D L, Costet P. Tall A R. Specific binding of apoA-I, enhanced cholesterol efflux and altered plasma membrane morphology in cells expressing ABC1. J Biol Chem., 2000,275:33053-33058
    [202]Oram J F, Lawn R M, Garvin M R, Wade D P. ABCA1 is the cAMP-inducible apolipoprotein receptor that mediates cholesterol secretion from macrophages. J Biol Chem., 2000,275:34508-34511
    [203]Kozarsky K F, Donahee M H, Rigotti A, Iqbal S N, Edelman E R, Krieger M. Overexpression of the HDL receptor SR-BI alters plasma HDL and bile cholesterol levels. Nature,1997,387:414-417
    [204]Webb N R, Cai L, Ziemba K S, Yu J, Kindy M S, Van Der Westhuyzen D R, De Beer F C. The fate of HDL particles in vivo after SR-BI-mediated selective lipid uptake. J Lipid Res., 2002,43:1890-1898
    [205]Ji Y, Wang N, Ramakrishnan R, Sehayek E. Huszar D, Breslow J L, Tall A R. Hepatic scavenger receptor BI promotes rapid clearance of high density lipoprotein free cholesterol and its transport into bile. JBiol Chem.,1999,274:33398-33402
    [206]Wang N, Arai T, Ji Y, Rinninger F, Tall A R. Liver-specific overexpression of scavenger receptor BI decreases levels of very low density lipoprotein ApoB, low density lipoprotein ApoB, and high density lipoprotein in transgenic mice. JBiol Chem.,1998,273:32920-32926
    [207]Ueda Y, Royer L, Gong E, Zhang J, Cooper P N, Francone O, Rubin E M. Lower plasma levels and accelerated clearance of high density lipoprotein (HDL) and non-HDL cholesterol in scavenger receptor class B type I transgenic mice. JBiol Chem.,1999,274:7165-7171
    [208]Rigotti A, Trigatti BL, Penman M, Rayburn H. Herz J, KriegerM. A targeted mutation in the murine gene encoding the high density lipoprotein (HDL) receptor scavenger receptor class B type I reveals its key role in HDL metabolism. Proc Natl Acad Sci USA.,1997, 94:12610-12615
    [209]Varban M L, Rinninger F, Wang N, Fairchild-Huntress V, Dunmore J H, Fang Q, Gosselin M L, Dixon K L, Deeds J D, Acton S L, Tall A R, Huszar D. Targeted mutation reveals a central role for SR-BI in hepatic selective uptake of high density lipoprotein cholesterol. Proc Natl Acad Sci USA.,1998,95:4619-4624
    [210]Mardones P, Quinone V, Amigo L, Moreno M, Miquel J F, Schwarz M, Miettinen H E, Trigatti B, Krieger M, VanPatten S, Cohen D E, Rigotti A. Hepatic cholesterol and bile acid metabolism and intestinal cholesterol absorption in scavenger receptor class B type I-deficient mice. J Lipid Res.,2001,42:170-180.
    [211]Huszar D, Varban M L, Rinninger F, Feeley R, Arai T, Fairchild-Huntress V, Donovan M J, Tall A R Increased LDL cholesterol and atherosclerosis in LDL receptor-deficient mice with attenuated expression of scavenger receptor B1. Arterioscler Thromb Vasc Biol.,2000, 20:1068-1073
    [212]Coppinger R J, Baum C L. Cholesterol-dependent regulation of nitric oxide production: potential role in atherosclerosis. Nutr Rev.,1999,57:279-282
    [213]Yuhanna I S, Zhu Y, Cox B E, Hahner L D, Osborne-Lawrence S, Lu P, Marcel Y L. Anderson R G, Mendelsohn M E, Hobbs H H, Shaul P W. High-density lipoprotein binding to scavenger receptor-BI activates endothelial nitric oxide synthase. Nat Med.,2001,7: 853-857
    [214]Li X A, Titlow W B. Jackson B A, Giltiay N, Nikolova-Karakashian M. Uittenbogaard A, Smart E J. High density lipoprotein binding to scavenger receptor, class B, type Ⅰ activates endothelial nitricoxide synthase in a ceramide-dependent manner. J Biol Chem.,2002, 277:11058-11063
    [215]Adachi H, Tsujimoto M. Endothelial scavenger receptors. Progress in Lipid Research,2006, 45:379-404
    [216]Assanasen C, Mineo C, Seetharam D, et al. Cholesterol binding, efflux, and a PDZ-interacting domain of scavenger receptor-B Imediate HDL-initiated signaling. J Clin Invest.,2005,115 (4):969-977.
    [217]Tandon N N, Kralisz U, Jamieson G A. Identification of GPIV (CD36) as a primary receptor for platelet-collagen adhesion. JBiol Chem.,1989,264:7576
    [218]Ockenhouse C F, Magswan C, Chulay J D. Activation of monocytes and platelets by monoclonal antibodies or malariainfected erythrocytes binding to the CD36 surface receptor in vitro. JClin Invest.,1989,84468
    [219]Schuepp B J, Pfister H, Clemetson K J, Silverstein R L, Jungi T W. CD36-mediated signal transduction in human monocytes by anti CD36 antibodies but not by antithrombospondin antibodies recognizing cell membrane-bound thrombospondin. Biochem Biophys Res Commun.,1991,175:263
    [220]Huang M-M, Bolen JB, Bamwell JW, Shattil SJ, Brugge JS:Membrane glycoprotein IV (CD36) is physically associated with the fun, lyn and yes protein-tyrosine kinases in human platelets. Proc Natl Acad Sci USA.,1991,88:7844
    [221]Bolen JB:Signal transduction by the src family of tyrosine protein kinases in hemopoietic cells. Cell Growth Differ.,1991,2:409
    [222]Royl. Silverstein M D, Li W, Park Y M, Rahaman S O. Mechanism of cell signaling by the scavenger receptor CD36:implications in atherosclerosis and thrombosis.Transactions of the American Clinical and Climatological Association.,2010,121:206-220
    [223]Nicholson A C, Hajjar D P. CD36, oxidized LDL and PPAR gamma:pathological interactions in macrophages and. Vascul Pharmacol.,2004,41(4-5):139-46.
    [224]Febbraio M, Podrez E A, Smith J D, Hazen S L, Hoff H F, Sharma K, Hajjar D P, Silverstein R L. Targeted disruption of the class B scavenger receptor, CD36, protects against atherosclerotic lesion development in mice. J. Clin. Invest.,2000,105:1049-1056
    [225]Podrez E A, Batyreva E, Shen Z, Zang R, Deng Y, Sun M, Finton P J, Shen L, Febbraio M, Hajjar D P, Silverstein R L, Hoff H F, Salomon R G, Hazen S L. A novel family of atherogenic oxidized phospholipids promotes macrophage foam cell formation via the scavenger receptor CD36 and is enriched in atherosclerotic lesions. J. Biol. Chem.,2002, 277:38517-38523.
    [226]Febbraio M, Guy E, Silverstein R L. Stem cell transplantation reveals that absence of macrophage CD36 is protective against atherosclerosis. Arterioscler Thromb Vase Biol.,2004, 24:2333-8.
    [227]Guy E, Kuchibhotla S, Silverstein R, Febbraio M. Continued inhibition of atherosclerotic lesion development in long term Western diet fed CD36 degrees/apoE degrees mice. Atherosclerosis in press.
    [228]Marleau S, Harb D, Bujold K, Avallone R, Iken K, Wang Y, et al. EP80317, a ligand of the CD36 scavenger receptor, protects apolipoprotein E-deficient mice from developing atherosclerotic lesions. FASEB J.,2005,19:1869-71
    [229]Dawson D W, Pearce S FA, Zhong R, Silverstein R L, Frazier W A, Bouck N P. CD36 mediates the inhibitory effects of thrombospondin-1 on endothelial cells. J. Cell Biol.,1997, 138:707-717.
    [230]R.Silverstein M D. Inflammation, atherosclerosis, and arterial thrombosis:Role of the scavenger receptor CD36. Cleveland Clinic Journal of Medicine,2009,76:S27-S30.
    [231]Durrington P N, Mackness B, Mackness M I. Paraoxonase and atherosclerosis. Arterioscler Thromb Vase Biol.,2001,21:473-480
    [232]Braun A, Trigatti B L, Post M J. Sato K, Simons M, Edelberg J M, Rosenberg R.D, Schrenzel M, Krieger M. Loss of SR-BI expression leads to the early onset of occlusive atherosclerotic coronary artery disease, spontaneous myocardial infarctions, severe cardiac dysfunction, and premature death in apolipoprotein E-deficient mice. Circulation Research.,2002,90: 270-276.
    [233]Zhang S, Picard M H, Vasile E, Zhu Y, Raffai R L, Weisgraber K H, Krieger M. Diet-induced occlusive coronary atherosclerosis, myocardial infarction, cardiac dysfunction, and premature death in scavenger receptor class B type Ⅰ-deficient, hypomorphic apolipoprotein ER61 mice. Circulation,2005,111:3457-3464.
    [234]Yesilaltay A, Daniels K, Pal R, Krieger M, Kocher O. Loss of PDZK1 causes coronary artery occlusion and myocardial infarction in Paigen diet-fed apolipoprotein E deficient mice. PLoS ONE.,2009,4:e8103.
    [235]Arai T,Wang N, Bezouevski M, Welch C, Tall A R. Decreased atherosclerosis in heterozygous low density lipoprotein receptor-deficient mice expressing the scavenger receptor BI transgene. Journal of Biological Chemistry.,1999,274.2366-2371
    [236]Kozarsky K F, Donahee M H, Glick J M, Krieger M, Rader D J. Gene transfer and hepatic overexpression of the HDL receptor SR-BI reduces atherosclerosis in the cholesterol-fed LDL receptor-deficient mouse. Arteriosclerosis Thrombosis & Vascular Biology.,2000,20: 721-727
    [237]Van Eck M. Differential effects of scavenger receptor BI deficiency on lipid metabolism in cells of the arterial wall and in the liver. Journal of Biological Chemistry.,2003,278, 23699-23705.
    [238]Zhang W, Yancey P G, Su Y R, Babaev V R, Zhang Y, Fazio S, Linton M F. Inactivation of macrophage scavenger receptor class B type 1 promotes atherosclerotic lesion development in apolipoprotein E-deficient mice. Circulation.,2003,108,2258-2263.
    [239]Covey S D, Krieger M, Wang W, Penman M, Trigatti B L. Scavenger receptor class B type I-mediated protection against atherosclerosis in LDL receptor-negative mice involves its expression in bone marrow-derived cells. Arteriosclerosis Thrombosis & Vascular Biology.. 2003,23:1589-1594.
    [240]冯惊涛.易光辉. SR-BI:一种抗动脉粥样硬化的物质Chinese Journal of Cardiovascular Review.,2007,5(4):309-312
    [241]张智燕,周成江,周立社. B族Ⅰ型清道夫受体研究进展.包关医学院学报,2007,第23卷:320-323
    [242]Holm T M, Braun A. Trigatti B L, et al. Failure of red blood cell maturation in mice with defects in the high-density lipoprotein receptor SR- BI. Blood,2002.99:1817-1824.
    [243]Thomas S R, Leichtweis S B, Pettersson K, et al. Dietary cosupplementation with vitamin E and coenzyme q (10) inhibits atherosclerosis in apolipoprotein E gene knockout mice. Arterioscler Thromb Vasc Biol.,2001.21:585-593.
    [244]Feig J E, Shamir R, Fisher E A. Atheroprotective effects of HDL:beyond reverse cholesterol transport. Current Drug Targets.,2008,9:196-203
    [245]Mineo C, Deguchi H, Griffin J H, Shaul P W. Endothelial and antithrombotic actions of HDL. Circulation Research.,2006,98:1352-1364
    [246]Al-Jarallah A, Trigatti B L. A role for the scavenger receptor, class B type I in high density lipoprotein dependent activation of cellular signaling pathways. Biochimica et Biophysica Acta.,2010,1801:1239-1248
    [247]Hoebe K, Georgel P, Du Rutschmann S X., Mudd S, Crozat K, et al. CD36 is a sensor of diacylglycerides. Nature,2005,433:523-527.
    [248]Triantafilou M, Gamper F G, Haston R M, Mouratis M A, Morath S, Hartung T, Triantafilou K. Membrane sorting of toll-like receptor (TLR)-2/6 and TLR2/1 heterodimers at the cell surface determines heterotypic associations with CD36 and intracellular targeting. J Biol Chem.,2006,281:31002-31011.
    [249]Stuart L M, Deng J, Silver J M, Takahashi K, Tseng A A, Hennessy E J, et al. Response to Staphylococcus aureus requires CD36-mediated phagocytosis triggered by the COOH-terminal cytoplasmic domain. J Cell Biol.,2005,170:477-485.
    [250]Philips J A, Rubin E J, Perrimon N. Drosophila RNAi screen reveals CD36 family member required for mycobacterial infection. Science,2005,309:1251-1253.
    [251]Baranova I N, Kurlander R, Bocharov A V, Vishnyakova T G, Chen Z, Remaley A T, et al. Role of human CD36 in bacterial recognition, phagocytosis, and pathogen-induced JNK-mediated signaling. J Immunol.,2008,181:7147-7156.
    [252]Means T K, Mylonakis E, Tampakakis E, Colvin R A, Seung E, Puckett L, et al. Evolutionarily conserved recognition and innate immunity to fungal pathogens by the scavenger receptors SCARF1 and CD36. J Exp Medical.,2009,206:637-653.
    [253]Serghides L, Smith T G, Patel S N, Kain K C. CD36 and malaria:friends or foes? Trends Parasitol.,2003,19:461-469
    [254]Lovegrove F E, Gharib S A, Pena-Castillo L, Patel S N, Ruzinski J T, Hughes T R, et al. Parasite burden and CD36-mediated sequestration are determinants of acute lung injury in an experimental malaria model. PLoS Pathog.,2008,4:e1000068.
    [255]McGilvray I D, Serghides L, Kapus A, Rotstein O D, Kain K C. Nonopsonic monocyte/macrophage phagocytosis of Plasmodium falciparum-parasitized erythrocytes:a role for CD36 in malarial clearance. Blood,2000,96:3231-3240.
    [256]Patel S N, Serghides L, Smith T G, Febbraio M, Silverstein R L, Kurtz T W, et al. CD36 mediates the phagocytosis of Plasmodium falciparum-infected erythrocytes by rodent macrophages. J Infect Dis.,2004,189:204-213.
    [257]Patel S N, Lu Z, Ayi K, Serghides L. Gowda D C, Kain K C. Disruption of CD36 impairs cytokine response to Plasmodium falciparum glycosylphosphatidylinositol and confers susceptibility to severe and fatal malaria in vivo. J Immunol..2007,178:3954-3961.
    [258]Krishnegowda G, Hajjar A M, Zhu J, Douglass E J.Uematsu S, Akira S, et al. Induction of proinflammatory responses in macrophages by the glycosylphosphatidylinositols of Plasmodium falciparum:cell signaling receptors, glycosylphosphatidylinositol (GPI) structural requirement, and regulation of GPI activity. J Biol Chem.,2005,280:8606-8616.
    [259]Vishnyakova T G, Bocharov A V, Baranova I N, Chen Z, Remaley A T, Csako G, et al. Binding and internalization of lipopolysaccharide by CLA-1, a human orthologue of rodent scavenger receptor B1. J Biol Chem.,2009,278:22771-22780.
    [260]Vishnyakova T G, Kurlander R, Bocharov A V, Baranova I N, Chen Z, Abu-Asab M S, et al. CLA-1 and its splicing variant CLA-2 mediate bacterial adhesion and cytosolic bacterial invasion in mammalian cells. Proc Natl Acad Sci USA.,2006,103:16888-16893.
    [261]Schafer G, Guler R, Murray G, Brombacher F, D. Brown G. The Role of Scavenger Receptor B1 in Infection with Mycobacterium tuberculosis in a Murine Model December. PLoS ONE.,2009,4(12):e8448
    [262]Scarselli E, Ansuini H, Cerino R, Roccasecca R M, Acali S, Filocamo G, et al. The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus. Embo J.,2002,21:5017-5025.
    [263]Dubuisson J, Helle F, Cocquerel L. Early steps of the hepatitis C virus life cycle. Cell Microbiol., 2008,10:821-827.
    [264]Bartosch B, Vitelli A, Granier C, Goujon C, Dubuisson J, Pascale S, et al. Cell entry of hepatitis C virus requires a set of co-receptors that include the CD81 tetraspanin and the SR-B1 scavenger receptor. J Biol Chem.,2003,278:41624-41630.
    [265]Bartosch B, Verney G, Dreux M, Donot P, Morice Y, Penin F, et al. An interplay between hypervariable region 1 of the hepatitis C virus E2 glycoprotein, the scavenger receptor BI, and high-density lipoprotein promotes both enhancement of infection and protection against neutralizing antibodies. J Virol.,2005,79:8217-8229.
    [266]Lavillette D, Tarr A W, Voisset C, Donot P, Bartosch B, Bain C, et al. Characterization of host-range and cell entry properties of the major genotypes and subtypes of hepatitis C virus. Hepatology.2005,41:265-274.
    [267]Dreux M, Dao Thi V L, Fresquet J, Guerin M, Julia Z, Verney, G. et al. Receptor complementation and mutagenesis reveal SR-BI as an essential HCV entry factor and functionally imply its intra-and extra-cellular domains. PLoS Pathog.,2009,5:e1000310.
    [268]Barth H, Schnober E K, Neumann-Haefelin C, Thumann C, Zeisel M B, Diepolder H M, et al. Scavenger receptor class B is required for hepatitis C virus uptake and cross-presentation by human dendritic cells. J Virol.,2008,82:3466-3479.
    [269]Rodrigues C D, Hannus M, Prudencio M, Martin C, Goncalves L A, Portugal S, et al. Host scavenger receptor SR-BI plays a dual role in the establishment of malaria parasite liver infection. Cell Host Microbe.,2008,4:271-282.
    [270]Yalaoui S, Huby T, Franetich J F, Gego A, Rametti A. Moreau M, et al. Scavenger receptor BI boosts hepatocyte permissiveness to Plasmodium infection. Cell Host Microbe.,2008,4: 283-292.
    [271]Savill J, Hogg N, Haslett C. Macrophage vitronectin receptor, CD36, and thrombospondin cooperate in recognition of neutrophils undergoing programmed cell death. Chest,1991,99: 6S-7S.
    [272]Albert M L, et al. Immature dendritic cells phagocytose apoptotic cells via alphavbeta5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J. Exp. Med.,1998, 188:1359-1368.
    [273]Fadok V A, Warner M L, Bratton D L, Henson P M. CD36 is required for phagocytosis of apoptotic cells by human macrophages that use either a phosphatidylserine receptor or the vitronectin receptor (alpha vbeta3). J. Immunol.,1998,161:6250-6257.
    [274]Greenberg M E, Sun M, Zhang R, Febbraio M, Silverstein R, Hazenl S L. Oxidized phosphatidylserine-CD36 interactions play an essential role in macrophage-dependent phagocytosis of apoptotic cells. JEM..2006,203:2613-2625
    [275]Chang M K. et al. Monoclonal antibodies against oxidized low density lipoprotein bind to apoptotic cells and inhibit their phagocytosis by elicited macrophages:evidence that oxidation-specific epitopes mediate macrophage recognition. Proc. Natl. Acad. Sci. USA., 1999,96:6353-6358.
    [276]Chan C, Leung 1, Lam K W, Tso M O. The occurrence of retinol and carotenoids in human subretinal fluid. Curr. Eye Res.,1998.17:890-895
    [277]Junghans A, Sies H, Stahl W. Macular pigments lutein and zeaxanthin as blue light filters studied in liposomes.Arch. Biochem. Biophys.,2001,391:160-164
    [278]Krinsky N I. Possible biologic mechanisms for a protective role of xanthophylls. J. Nutr., 2002,132:540-542
    [279]Snodderly D M. Evidence for protection against age-related macular degeneration by carotenoids and antioxidant vitamins. Am. J. Clin. Nutr.,1995,62:1448-1461
    [280]Richer S, Stiles W, Statkute L, Pulido J. Frankowski J, Rudy D, Pei K, Tsipursky M, Nyland J. Double-masked, placebo-controlled, randomized trial of lutein and antioxidant supplementation in the intervention of atrophic age-related macular degeneration:the Veterans LAST study (Lutein Antioxidant Supplementation Trial). Optometry,2004,75:216-230
    [281]Reboul E, Lydia Abou L, Mikail C, Ghiringhelli O, et al. Lutein transport by Caco-2 TC-7 cells occurs partly by a facilitated process involving the scavenger receptor class B type 1 (SR-BI).Biochem. J.,2005.387,455-461
    [282]Bennekum A V, Werder M, Thuahnai S T, Han C, Duong P,et al. Class B scavenger receptor-mediated intestinal absorption of dietary β-carotene and cholesterol. Biochemistry,2005,44: 4517-4525
    [283]During A, Dawson H D, Harrison E H. Carotenoid transport is decreased and expression of the lipid transporters SR-BI, NPC1L1, and ABCA1 is downregulated in Caco-2 cells treated with ezetimibe1.J. Nutr.,2005,135:2305-2312.
    [284]Kiefer C, Sumser E, Wernet M F, von Lintig J. A class B scavenger receptor mediates the cellular uptake of carotenoids in Drosophila. PNAS.,2002,99(16):10581-10586
    [285]Agaisse H, Burrack L S, Philips J A, Rubin E J, Perrimon N, Higgins D E. Genome-wide RNAi screen for host factors required for intracellular bacterial infection. Science,2005, 309(5738):1248-51
    [286]Franc N C, Dimarcq J, Lagueux M, Hoffmann J, Alan R, Ezekowitz B. Croquemort, a novel Drosophila hemocyte/macrophage receptor that recognizes apoptotic cells. Immunity,1996,4: 431-443
    [287]Franc N C, Heitzler P, Ezekowitz R A B, Whitel K. Requirement for croquemort in phagocytosis of apoptotic cells in Drosophila. Science,1999.284:1991-1994
    [288]Gorski S M, Chittaranjan S, Pleasance E D, Freeman J D, Anderson C L. et al. A SAGE approach to discovery of genesinvolved in autophagic cell death. Current Biology.2003,13: 358-363.
    [289]Handelman G J. The evolving role of carotenoids in human biochemistry. Nutrition,2001, 17 (10):818-822.
    [290]Mangelsdorf D J, Evans R M. The RXR heterodimers and orphan receptors. Cell,1995, 83(6):841-850.
    [291]Gu G, Yang J, Mitchell K A, O'Tousa J E. Drosophila ninaB and ninaD act outside of retina to produce rhodopsin chromophore. JBiol Chem.,2004,279(18):18608-18613
    [292]Voolstra O, Kiefer C, Hoehne M, Welsch R, Vogt K, von Lintig J. The Drosophila class B scavenger receptor ninaD-Ⅰ is a cell surface receptor mediating carotenoid transport for visual chromophore synthesis Biochemistry,2006,45:13429-13437
    [293]Yang J, O'Tousa J E. Cellular sites of Drosophila ninaB and ninaD activity in vitamin A metabolism Mol. Cell. Neurosci.,2007,35:49-56
    [294]Wang T, Jiao Y, Montell C. Dissection of the pathway required for generation of vitamin A and for Drosophila phototransduction. The Journal of Cell Biology.,2007,177(2):305-316
    [295]Benton R, Vannice K S, Vosshall L B. An essential role for a CD36-related receptor in pheromone detection in Drosophila. Nature.,2007,450(7167):289-93.
    [296]Jin X, Ha T S, Smith D P. SNMP is a signaling component required for pheromone sensitivity in Drosophila. Proc Natl Acad Sci USA.,2008,105(31):10996-1001.
    [297]Montell C. Visual transduction in Drosophila. A. Rev. Cell Dev. Biol.1999,15:231--268.
    [298]Wang T, Montell C. Rhodopsin formation in Drosophila is dependent on the PINTA retinoid-binding protein. J. Neurosci.,2005,25(21):5187--5194.
    [299]Tanaka H, Ishibashi J, Fujita K, et al. A genome-wide analysis of genes and gene families involvedin innate immunity of Bombyx mori. Insect Biochemistry and Molecular Biology, 2008,38:1087-1110.
    [300]Sakudoh T, Iizuka T, Narukawa J, et al. A cd36-related transmembrane protein is coordinated with an intracellular lipid-binding protein in selective transport carotenoid for cocoon coloration. J. Biol. Chem.,2010,285:7739-7751.
    [301]Goldsmith MR, Shimada T. Abe H. The genetics and genomics of the silkworm, Bombyx mori. Annu Rev Entomol,2005,50:71-100.
    [302]International Silkworm Genome Consortium. The genome of a lepidopteran model insect, the silkworm Bombyx mori. Insect Biochem Mol Biol.,2008,38(12):1036-1045.
    [303]Nichols Z, Vogt R G. The SNMP/CD36 gene family in Diptera, Hymenoptera and Coleoptera: Drosophila melanogaster, D. pseudoobscura, Anopheles gambiae, Aedes aegypti, Apis mellifera, and Tribolium castaneum. Insect Biochemistry and Molecular Biology.,2008,38: 398-415.
    [304]Xia Q, Cheng D, Duan J, et al. Microarray-based gene expression profiles in multiple tissues of the domesticated silkworm, Bombyx mori. Genome Biol.,2007,8(8):R162.
    [305]Hart K, Wilcox M. A Drosophila gene encoding an epithelial membrane protein with homology to CD36/LIMP Ⅱ. J. Mol. Biol.,1993,234,249-253.
    [306]Laugerette F, Passilly-Degrace P, Patris B, et al. CD36 involvement in orosensory detection of dietary lipids, spontaneous fat preference, and digestive secretions. J. Clin. Invest.,2005, 115(11):3177-3184.
    [307]Gaillard D, Laugerette F, Darcel N, et al. The gustatory pathway is involved in CD36-mediated orosensory perception of long-chain fatty acids in the mouse. FASEB,2008, 22:1458-1468.
    [308]Getchell M L. Li H, Vaishnav R A, et al. Temporal gene expression profiles of target-ablated olfactory epithelium in mice with disrupted expression of scavenger receptor A:impact on macrophages. Physiol Genomics.,2006,27:245-263.
    [309]Husemanna J, Loikea J D, Kodamab T, et al. Scavenger receptor class B type I (SR-B1) mediates adhesion of neonatal murine microglia to fibrillar b-amyloid. Journal of Neuroimmunology,2001,114:142-150.
    [310]Coraci I S, Husemann J, Berman J W, Hulette C, et al. CD36, a class B scavenger receptor, is expressed on microglia in Alzheimer's Disease brains and can mediate production of reactive oxygen species in response to -amyloid fibrils. AJP.,2002,160(1):101-112.
    [311]Aitman T J, Cooper L D, Norsworthy P J, et al. Population genetics:Malaria susceptibility and CD36 mutation. Nature,2000,405:1015-1016
    [312]Baillie A G, Coburn C T, Abumrad N A. Reversible binding of long-chain fatty acids to purified FAT, the adipose CD36 homolog. J. Membr. Biol.,1996,153:75-81.
    [313]Frieda S, Pearce A, Wu J, Silverstein R L. Recombinant GST/CD36 fusion proteins define a thrombospondin binding domain. Evidence for a single calcium-dependent binding site on CD36. J. Biol. Chem.,1995,270:2981-6.
    [314]Wells L, Vosseller K, Hart G W. Glycosylation of nucleocytoplasmic proteins:signal transduction and O-GlcNAc. Science,2001,291(5512):2376
    [315]Helenius A, Aebi M. Intracellular function of N-linked glycans. Science,2001,291(5512): 2364
    [316]Rudd P M, Elliott T, Cresswell P, et al. Glycosylation and the immune system. Science,2001, 291(5512):2370
    [317]Sefton B M, Buss J E. The covalent modification of eukaryotic proteins with lipid. J. Cell Biol.,1987,104,1449-1453
    [318]Schlesinger M J, Veit M, Schmidt M F G. Lipid Modifications of Proteins:Palmitoylation of Cellular and Viral Proteins. CRC Press,1994, Boca Raton, FL
    [319]Mitchell DA,Vasudevan A, Linder M E, Deschenes R J. Protein palmitoylation by a family of DHHC protein S-acyltransferases. J Lipid Res.,2006,47(6):1118-1127
    [320]Milligan G, Parenti M, Magee A 1. The dynamic role of palmitoylation in signal transduction. Trends Biochem.,1995,20,181-186
    [321]McLaughlin S, Aderem A. The myristoyl-electrostatic switch:a modulator of reversible protein-membrane interactions. Trends Biochem.,1995,20,272-276
    [322]Alland L, Peseckis S M, Atherton R E, Berthiaume L, Resh M D. Dual myristylation and palmitylation of Src family member p59fyn affects subcellular localization. J. Biol. Chem., 1994,269,16701-16705
    [323]Shenoy-Scaria A M, Dietzen D J, Kwong J, Link D C, Lublin D M. Cysteine3 of Src family protein tyrosine kinases determines palmitoylation and localization in caveolae. J. Cell Biol., 1994,126,353-363
    [324]Shaul P W, Smart E J, Robinson L J, German Z, Yuhanna I S, Ying Y, Anderson R G W, Michel T. Acylation targets endothelial nitric-oxide synthase to plasmalemmal caveolae J. Biol. Chem.,1996,271,6518-6522
    [325]Garcia-Cardena G, Oh P, Liu J, Schnitzer J E, Sessa W C. Targeting of nitric oxide synthase to endothelial cell caveolae via palmitoylation:Implications for nitric oxide signaling. Proc. Natl. Acad. Sci. U. S. A.,1996,93,6448-6453
    [326]Thome R F, Ralston K J, de Bock C E, Mhaidat N M, et al. Palmitoylation of CD36/FAT regulates the rate of its post-transcriptional processing in the endoplasmic reticulum. Biochimica et Biophysica Acta.,2010,1803:1298-1307
    [327]Eckhardt E R M, Cai L, Sun B, Webb N R, van der Westhuyzen D R. High Density Lipoprotein Uptake by Scavenger Receptor SR-BⅡ. J. Biol. Chem.,2004, 279(14):14372-14381
    [328]Mulcahy J V, Riddell D R, Owen J S. Human scavenger receptor class B type Ⅱ (SR-BⅡ) and cellular cholesterol efflux. Biochem. J.,2004,377:741-747
    [329]Eckhardt E R M, Cai L, Shetty S, Zhao Z, et al. High density lipoprotein endocytosis by scavenger receptor SR-BⅡ is clathrin-dependent and requires a carboxyl-terminal dileucine motif. J. Biol. Chem.,2006,281(7):4348-4353
    [330]Arai T, Rinninger F, Varban L, Fairchild-Huntress V, Liang C P, Chen W, Seo T, Deckelbaum R, Huszar D, Tall A R. Decreased selective uptake of high density lipoprotein cholesteryl esters in apolipoprotein E knock-out mice. Proc Natl Acad Sci USA.,1999,96:12050-12051
    [331]Okumura T, Jamieson G A. Platelet glycocalicin. Orientation of glycoproteins of the human platelet surface. J Biol Chem..1976,251:5944
    [332]Greenwalt D E, Watt K W K, So O Y, Jiwani N. PAS IV. an integral membrane protein of mammary epithelial cells, is related to platelet and endothelial cell CD36 (GPIV). Biochemistry,1990,29:7054
    [333]Tandon N N, Lipsky R H, Burgess W H, Jamieson G A. Isolation and characterization of platelet glycoprotein IV (CD36). J Biol Chem.,1989,264:7570
    [334]Greenwalt D E, Watt K W K, Hasler T, Howard RJ, Patel S. Structural, functional, and antigenic differences between bovine heart endothelial CD36 and human platelet CD36. J Biol Chem.,1990,265:16296
    [335]Kieffer N, Bettaieb A, Legrand C, Coulombel L, Vainchenker W, Edelman L, Breton-Gorius J. Developmentally regulated expression of a 78kDa erythroblast membrane glycoprotein immunologically related to the platelet thrombospondin receptor. Biochem J.,1989,26:2835
    [336]Martin C A, Longman E, Wooding C, et al. Cd36, a class B scavenger receptor, functions as a monomer to bind acetylated and oxidized low-density lipoproteins. Protein Science,2007, 16:2531-2541
    [337]Cheng T. Zhao P, Liu C, Xu P, Gao Z, Xia Q, Xiang Z. Structures, regulatory regions, and inductive expression patterns of antimicrobial peptide genes in the silkworm, Bombyx mori. Genomics.,2006,87(3):356-365.
    [338]Tanaka, H., Matsuki, H., Furukawa, S. Identification and functional analysis of Relish homologs in the silkworm. Bombyx mori. Biochim Biophys Acta.,2007,1769(9-10): 559-568.
    [339]Cheng, T. C. Zhang, Y. L., Liu, C. Identification and analysis of Toll-related genes in the domesticated silkworm, Bombyx mori. Dev Comp Immunol.,2008,32(5):464-475.
    [340]Wen, H., Lan, X., Cheng, T. Sequence structure and expression pattern of a novel anionic defensin-like gene from silkworm (Bombyx mori). Mol Biol Rep.,2009,36(4):711-716.
    [341]Gordon S. Pattern recognition receptors:doubling up for the innate immune response. Cell, 2002,111:927-930.
    [342]Silverstein R L, Febbraio M. CD36, a scavenger receptor involved in immunity, metabolism, angiogenesis. and behavior. Sci Signal.,2010,2(72):re3.
    [343]Silverstein R L. Type 2 scavenger receptor CD36 in platelet activation:the role of hyperlipemia and oxidative stress. Clin Lipidol..2009,4(6):767.
    [344]Bocharov A V. Baranova I N, Vishnyakova T G. Remaley A T, Csako G, Thomas F, Patterson A P. Eggerman T L. Targeting of scavenger receptor class B type I by synthetic amphipathic a-helical-containing peptides blocks lipopolysaccharide (LPS) uptake and LPS-induced pro-inflammatory cytokine responses in THP-1 monocyte cells. J Biol Chem.,2004,279(34): 36072-36082.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700