纳米锌基脱硫剂室温脱硫效能及再生研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着人们生活水平的提高和环保意识的增强,人们对生活质量的要求越来越高,而来自恶臭污染造成公众投诉量的增长,引起了世界各国的普遍重视。恶臭污染的来源极其广泛,其中工业生产过程、城市垃圾填埋厂和污水处理过程产生的大量硫系恶臭气体成为城区环境的主要污染源。由于这些恶臭气体均在室温环境中存在,因此研究室温脱硫技术具有重要的意义。
     本论文采用均匀沉淀法制备出二元及三元复合纳米脱硫剂,围绕脱硫剂结构与性能关系这一关键问题,研究纳米脱硫剂的脱硫性能及再生性能,探讨影响脱硫性能的物理化学及结构因素,并利用动力学模型对脱硫过程进行描述。
     选择稀土元素铈、镧和铁系元素铁、钴和镍,分别作为助剂掺杂到纳米氧化锌中,以硫化氢为目标污染物进行脱硫性能研究。结果表明,稀土元素铈的掺杂其脱硫活性明显好于镧掺杂及纯纳米氧化锌,当Ce/Zn比为4.0at%(CZ4.0)时,其脱硫性能最佳;而铁系元素中铁的掺杂也使脱硫活性明显提高,当Fe/Zn比为5.0at%(FZ5.0)时,其脱硫效果最好,硫容为5.3%;设计正交试验,在氧化锌中同时掺入铈和铁二种金属氧化物,当Zn:Ce:Fe =0.7:0.01:0.05(CFZ)时,其硫容最大为5.2%。这说明CFZ的效果要明显好于CZ4.0,而与FZ5.0的脱硫活性相当。对CZ4.0、FZ5.0和CFZ三种脱硫剂进行了脱硫工艺条件的优化,发现三种脱硫剂均适合在室温条件下进行脱硫,且随着试样焙烧温度的升高,其脱硫性能明显下降,最佳焙烧温度均为270℃,CZ4.0通氧后脱硫活性处于波动状态,而FZ5.0和CFZ通入适量的氧后,其脱硫活性明显提高。
     利用XRD、XPS、比表面积和孔结构以及FT-IR等表征手段对CZ4.0、FZ5.0和CFZ三种纳米脱硫剂反应前后的结构进行了分析,与纳米氧化锌相比较,270℃焙烧时三种脱硫剂的粒径减小,比表面积增大,并且有ZnO·H2O出现,这些有利于H2S气体的吸附和反应。XPS的研究显示CZ4.0中的锌元素以Zn2+和Zn2-δ价态存在,而FZ5.0和CFZ中的锌元素以Zn2+出现,铁元素主要以Fe3+形式存在,而铈元素在脱硫剂中以三价态和四价态的形式共存。同一系列脱硫剂中晶粒尺寸、表面电子密度、表面积以及孔结构等均对脱硫活性产生影响。而对不同系列样品的研究发现,众多因素中只有孔径与脱硫活性有很好的相关性,5~50nm孔的存在有利于脱硫反应的进行。硫化反应后,脱硫剂的平均孔径减小,但价态并未出现明显的变化,且表面存在着HS、S的吸附配合物和ZnS等硫物种。
     研究了CZ4.0、FZ5.0和CFZ三种纳米脱硫剂的再生性能及结构,发现CZ4.0的再生温度较高,不适于循环脱硫使用,而FZ5.0和CFZ可在370℃时用空气进行多次硫化/再生,再生后样品中残余的硫均为硫酸盐,再生过程中晶粒尺寸和形貌变化不大,虽然一次再生后的比表面积和孔容下降辐度较大,但随后的几次再生比表面积和孔容变化不大,因此再生后脱硫剂表现出了脱硫的稳定性。FZ5.0六次硫化/再生的累积硫容为17.7%,CFZ的累积硫容为12.8%。
     因为FZ5.0脱硫剂有较好的脱硫性能和再生性能,采用等效粒子模型对其脱除硫化氢过程进行了探讨。研究发现对于整个颗粒,一直处于气膜扩散控制区;对于粒子中后期反应可能处于脱硫固体产物层扩散控制区,整个脱硫过程一直处于表面化学反应控制区,并且两种控制同时起作用。实验和计算结果表明,对硫化氢而言,反应级数近一级为0.96385。
     铈掺杂、铁掺杂及由铈、铁和锌三种元素组成的纳米锌基复合脱硫剂均对硫化氢有较好的去除效果,其中铁掺杂的纳米氧化锌脱硫剂脱硫效能及再生性能尤为突出,因此纳米脱硫剂有很好的应用前景。
In recent years, with the improvement of living standard and enhancement in environmental protection consciousness of people, the high quality of life is much more expected. However, the incremental cases of complaints about odor pollutions brought about the public attention to every country. Sources of odor pollution are quite popullar, among them much chalcogenide odor from industrial production process, and municipal landfill and municipal wastewater treatment process are the dominating aspects to pollute civil environment. Because all these odors exist at ambient temperature, the research on desulfurization techniques at ambient temperature is very significant.
     In the paper, homogeneous precipitations were adopted in the preparation of binary and ternary composite desulfurizer, based on the key issue of construction and performance of nanosized ZnO desulfurizer, the performance of desulfurization and regeneration of nanosized desulfurizer were studied, and physical and chemical, as well as structural factors that affect desulfurization performance (DP) were discussed, kinetics models were also adopted in the description of desulfurization process.
     Rare earth elements cerium, lanthanum, and iron series elements iron, cobalt, and nickel were respectively doped into the nanosized ZnO as the additive to study the DP of them, and hydrogen sulfide (H2S) was chosen as object contamination. The results indicated that, nanosized ZnO desulfurizer indoped with cerium has obviously better DP than that indoped with lanthanum and undoped, when the atomic ratio of Ce to Zn is 4.0at%(CZ4.0), the DP is best. Indoping with iron of iron series can also improve obviously the DP, when the atomic ratio of Fe to Zn is 5.0at%(FZ5.0), its performance is best and the sulfur capacity is 5.3%.The orthogonal test was designed and oxides of cerium and iron were simultaneously indoped into ZnO, when Zn:Ce:Fe is equal to 0.7:0.01:0.05 (CFZ), the sulfur capacity 5.2% is maximum value, which indicated the performance of CFZ is obviously better than CZ4.0, and close to that of FZ5.0. Optimization of technique conditions were conducted in producing CZ4.0、FZ5.0 and CFZ desulfurizer. Therefore it is found that the three desulfurizers are fit for desulfurization at ambient temperature, and with the increase of the calcified temperature ,the DP is obviously decreased, and all the optimum calcified temperature are 270℃, The desulfurization activities of CZ4.0 was in the fluctuant status after oxygen was fed in, but the desulfurization activities increased obviously for FZ5.0 and CFZ after oxygen was fed in.
     X ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Special surface area, pore structure and FT-IR and other characterization means were adopted in the structure analysis of the upper three desulfurizers before and after reaction. Compared with nanosized ZnO, the three desulfurizers calcified at 270℃decreased in particle size, and increased in special surface area, and there was ZnO?H2O found, which was in favor of the adsorbing and reacting of H2S. Research on XPS results showed that Zn in CZ4.0 exists in Zn2+ and Zn2-δvalence state, and is in Zn2+ valence state in FZ5.0 and CFZ. Fe existed mainly in Fe3+ state, Ce exists in Ce3+ and Ce4+ valence state. For the same series desulfurizers, factors that affect desulfurization activities include particle size, surface electron density, surface area, and pore structure, etc. But for different series desulfurizer, researches showed that only pore size have good relativity with desulfurizer activities, that is, the pores in 5~50nm are favor of the desulfurization. After the sulfuration reaction, the average pore size of desulfurizer decreases, but valence state doesn’t change obviously, and there exist the adsorption complexes of HS, S, and ZnS and other sulf species.
     In the research on the regeneration performance and structure of CZ4.0, FZ5.0 and CFZ nanosized desulfurizers, it could be found that regeneration temperature of CZ4.0 is higher, and unfit for cyclic desulfurization, and FZ5.0 and CFZ could be sulfurated and regenerated by air for multi times at 370℃, and all remnants sulfide in the desulfurizer were sulfate, particle size and appearance doesn’t change much in the regeneration process, although special surface area and pore capacity decrease much after first regeneration, but they change little in the sequent regeneration, so the desulfurizer after regeneration shows desulfurization stability: The total sulfur capacities of FZ5.0 were 17.7% for six sulfuration and regeneration, and that of CFZ is 12.8%.
     Equivalent particle model was adopted in the discussion on the desulfurization process of FZ5.0 desulfurizer for its better DP and regeneration capability, the research found that all the particles were in the gas membrane diffusion control area, and particles may exist in the diffusion control area of solid desulfurization products layer during the middle and last period of reaction, and exist in the surface chemistry reaction control area during the whole desulfurization, and the two controls function together. Experiments and calculation results indicated that the reaction progression is 0.96385, which was nearly first level for H2S.
     The composite nanosized zincic desulfurizer of cerium indoped, iron indoped and Ce-Fe coindoped have excellent removal effect in H2S, and among them, the DP and regeneration character of nanosized ZnO desulfurizer indoped with iron was especially excellent, so nanosized desulfurizer has good application foreground.
引文
1 张荣贤. 恶臭的测定与评价. 化工环保. 1996, 16(5):269~275
    2 陆昌森 . 防止恶臭污染制定恶臭控制标准 . 环境科学动态 . 1986, (12):13~17
    3 情报室. 国外恶臭污染及防治概述. 环境保护科学. 1986, (2):1~4
    4 B. D. heyder and C. Thoeye. A Consious Scheme for Remediatin of odour uisance at Sewage Treatment Plants. Water Science & Technology. 2000, 41(6):9~15
    5 P. Winter, S. C. Duckham. Analaysis of Volatile Odour Compounds in Digested Sewage Sludge and Aged Sewage Sludge Cake. Water Science & Technology. 2000, 41(6):73
    6 高云超, 邝哲师, 潘木水等. 猪场恶臭的生物技术综合处理. 生态科学. 2004, 23(8):227~230
    7 张新国,尚思贤,尚秦宇. 稠油油田 H2S 动态分布、危害与安全防治研究.中国安全研究网
    8 纪华, 夏立江, 王进安等. 垃圾填埋场硫化氢恶臭污染变化的成因研究. 生态环境.2004, 13(2):173~176
    9 罗振家. 城市排水设施中恶臭源的产生及其治理对策的研究. 中国市政工程. 2003, 3:50~52
    10 王德民, 张大年. 污水处理系统恶臭气体的产生及微生物法处理. 环境保护. 2002, 12:4~6
    11 I. Devai, R. D. Delaune. Emission of Reduced Malodorous Sulfur Gases from Wastewater Treatment Plants. Water Environ. Res.. 1999, 71(2):203~208
    12 顾兴梅, 李抗美等. 低浓度浓缩气相色谱测定大气中有机硫化物. 甘肃环境研究与监测. 1996, 9(2):5~8
    13 杨晶. 恶臭污染及防治对策. 环境监测管理与技术. 1995, 7(1):18~20
    14 李立清. 恶臭污染及其治理技术. 化工环保. 1995, 15(3):141~144
    15 大气污染物排放标准. GB 16297-1996
    16 H. Brauer, Y. B. G. Varma. Air Pollution Control Equipment. BerlinHeidelberg New York, Springer. Verlag. 1981:342
    17 I. Dipl.Ing. Schonberg Abluftreinigung in Mittelstandischen Lackierbetrieben. WLB. 1993, (11-12):51~57
    18 吴玉祥. 有机废气的生物处理. 环境污染与防治. 1992, 14(4): 20~22
    19 陈建孟, 王家德, 唐翔宇. 生物技术在有机废气处理中的研究进展. 环境科学进展. 1998, 6(3):30~36
    20 S. Lew, K. Jothimurrgesan, M. Flytzani-Stephanopoulos. Hight-Temperature H2S Removal from Fuel Gases by Regenerable Zinc Oxide-Titanium Dioxide Sorbents. Ind Eng Chem Res. 1989:535~541
    21 张家忠, 宁平.干法脱除硫化氢技术.云南环境科学, 2004, 23(2):41~44
    22 孙锦宜, 林西平.环保催化材料与应用. 化学工业出版社, 2002: 241~271
    23 姜兆华, 孙德智. 应用表面化学与技术. 哈尔滨工业大学出版社, 2002:73~75
    24 谭小耀, 吴迪镛, 袁权. 浸渍活性炭脱除低浓度 H2S 的反应动力学.化学反应工程与工艺. 1996, 12(2):129~137
    25 周继红, 华玉芝, 史长林等.负载型活性炭脱硫(H2S)的试验研究.河北建筑科技学院学报. 2003, 20(1):8~10
    26 廖欣峰. 负载添加剂型活性炭脱有机硫的评价.环境污染与防治. 1999, 21:34~35
    27 N. T. Danh, T. J. Bandosz. Activated Carbons with metal containing bentonite binders as adsorbents of hydrogen sulfide. Carbon. 2005, 43(2):359~367
    28 黄仲涛. 工业催化剂手册. 北京:化学工业出版社,2004. 666~670
    29 V. Meeyoo, D. L. Trimm. Adsorption-Reaction Processes for the Removal of Hydrogen Sulphide from Gas Streams. J. Chem. Tech. Biotechnol.. 1997, 68:411~416
    30 R. Yan, D. T. Liang, L. Tsen, et al. Kinetics and mechanisms of H2S adsorption by alkaline activated carbon.Environ. Sci. Technol. 2002, 36:4460~4466
    31 X. X. Wu, V. Schwartz, S. H. Overbury, et al. Desulfurization of Gaseous Fuels Using Activated Carbons as Catalysts for the Selective Oxidation of Hydrogen Sulfide. Energy & Fuels. 2005, 19:1774~1782
    32 A. Bagreev, S. Katikaneni, S. Parab, et al. Desulfurization of digester gas:prediction of activated carbon bed performance at low concentrations of hydrogen sulfide.Catalysis Today. 2005, 99:329~337
    33 R . Sreeramamurthy, P. G. Menon. J Catal, 1975, 37(2):287~296
    34 谭小耀, 吴迪镛, 袁权. 浸渍活性炭脱除低浓度 H2S 的研究.化学工程. 1996, 24(6):21~25
    35 F. Adib, A. Bagreev, T. J. Bandosz. Effect of pH and Surface Chemistry on the Mechanism of H2S Removal by Activated Carbons.Journal of Colloid and Interface Scuebce. 1999, 216:360~369
    36 A. Bagreev, H. Rahmna, T. J. Bandosz. Thermal regeneration of a spent activated carbon previously used as hydrogen sulfide adsorbent.Carbon. 2001, 39:1319~1326
    37 吴浪, 张永春, 费小猛等. 脱硫化氢活性炭的再生方法研究.广州化学. 2005, 30(4):34~37
    38 兰昌云, 何新秀, 徐海军等. 高效常温氧化铁脱硫剂的制备.天然气工业. 2004, 24(12):124~126
    39 A. Davydov, K. T. Chuang, A. R. Sanger. Mechanism of H2S Oxidation by Ferric Oxide and Hydroxide Surfaces. J. Phys. Chem. B. 1998, 102:4745~4752
    40 杨 艳 , 童 仕 唐 . 常 温 氧 化 铁 脱 硫 剂 研 究 进 展 . 煤 气 与 热 力 . 2002, 22(4):326~328
    41 王睿, 石冈等. 工业气体中 H2S 的脱除方法—发展现状与展望. 天然气工业. 1999, 19(3):84~90
    42 胡典明, 王国兴, 魏华等. EF—2型特种氧化铁常温精脱硫剂的研制. 天然气化工. 1999, 24(2):31~36
    43 朱志敏, 姚虎卿, 李承涛. NF 型脱硫剂的吸附与常温空气再生特性. 南京化工大学学报. 2000, 22(2):66~69
    44 樊惠玲, 郭汉贤, 上官炬等. 氧化锌颗粒脱硫中固体扩散的动力学分析.燃料化学学报. 2000, 28(4):368~371
    45 陈子江, 弋飞. 低温氧化锌脱硫剂的研究.沈阳化工. 1999, 28(2):16~18
    46 李彦旭, 张栓兵, 郭汉贤. T302锌锰系脱硫剂脱除H2S的宏观动力学. 化工学报. 1995, 46(6):725~733
    47 王桂轮, 周文来, 李建伟等. T306脱硫剂脱除H2S的反应动力学. 北京化工大学学报. 2002, 29(2):1~5
    48 J. A. Rodriguez, T. Jirsak, et al. The interaction of H2S and S2 with Cs and Cs/ZnO surfaces:photoemission and molecular-orbital studies.Surface Science, 1998, 407:171~188
    49 I. I.Novochinskii, C. S. Song, X. L. Ma, et al. Low-Temperature H2S Removal from Steam-Containing Gas Mixtures with ZnO for Fuel Cell Application.1. ZnO Particles and Extrudates. Energy & Fuels. 2004, 18:576~583
    50 I. I. Novochinskii, C. S. Song, X. L. Ma, et al. Low-Temperature H2S Removal from Steam-Containing Gas Mixtures with ZnO for Fuel Cell Application.2. Wash-Coated Monolity. Energy & Fuels. 2004, 18:584~589
    51 T. Baird, K. C. Campbell, P. J. Holliman, et al. Mixed Co-Zn-Al oxides as absorbents for law-temperature gas desulfurization. Journal of The Chemical Society-Faraday Transactions, 1995, 91(18):3219~3230
    52 T. Baird, P. J. Denny, R. Hoyle, et al. Modified Zinc-Oxide absorbents for low-temperature gas desulfurization. Journal of The Chemical Soci-ety-Faraday Transactions, 1992, (22):3375~3382
    53 T. Baird, K. C. Campbell, P. J. Holliman,et al. Cobalt-zinc oxide absorbents for low temperature gas desulfurisation. Journal of Materials Chem-istry. 1999, 9(2):599~605
    54 K. Polychronopoulou, J. L. G. Fierro, A. M. Efstathiou. Novel Zn-Ti-based mixed metal oxides for low-temperature adsorption of H2S from industrial gas streams.Applied Catalysis B-Environmental. 2005, 57 (2):125~137
    55 K. Polychronopoulou, F. C. Galisteo, M. L. Granados, et al. Novel Fe-Mn-Zn-Ti-O mixed-metal oxides for the low-temperature removal of H2S from gas streams in the presence of H2, CO2, and H2O. Journal of Catalysis. 2005, 236(2):205~220
    56 H. Idriss, C. Diagne, J. P. Hindermann. Reactions of Acetaldehyde on CeO2 and CeO2 Supported Catalysts. Journal of Catalysis. 1995, 155(2):219~237
    57 J. C. Zhang, L. F. Song, J. Y. Hu, et al. Investigation on gasoline deep desulfurization for fuel cell applications. Energy Conversion and Manage-ment. 2005, 46 (1):1~9
    58 邵纯红, 姜安玺, 李芬等. 纳米 ZnO 脱硫剂表面结构与室温脱除 H2S 性能的研究.无机化学学报. 2005, 21(8):1149~1154
    59 邵纯红, 姜安玺, 李芬等. 纳米 ZnO 室温选择氧化 H2S 特性的研究. 2005, 33(4):470~473
    60 邵纯红, 姜安玺, 闫波等. 纳米 ZnO 低温脱除 H2S 工艺条件的研究.材料科学与工艺. 2005, 13(4):407~410
    61 K. Jothirmurugesan, A. A. Adayiga, S. K. Gangwal. Removal of Hydrogen Sulfide from Hot Coal gas Streams. In Proc Annu Int Pittsburgn Coal Conf. 1996. 1:596~601
    62 T. J. Lee, W. T. Kwon, W. C. Chang, et al. A Study on Preparation and Reactivity of Zinc Titanate Sorbents for H2S Removal Korean J Chem Eng. 1997, 14(6):513~518
    63 L. Alonso, J. M. Palacios, E. Garcia, et al. Characterization of Mn and Cu oxides as regenerable sorbents for hot coal gas desulfurization. Fuel Processing Technology. 2000, 62(1):31~44
    64 R.B.Slimane, J.Abbasian. Copper-based sorbents for coal gas desul-furization at moderate temperatures. Industrial and Engineering Chemistry Research. 2000, 39(5):1338~1344
    65 H. S. Lee, J. Y. Kim, J. K. Yu, et al. A study of desulfurization ability and activation energy for CuO-AgO sorbents. Korean Journal of Chemical Engineering. 2005, 22(6):889~893
    66 T. H. Ko, H. Chu, L. K. Chaung. The sorption of hydrogen sulfide from hot syngas by metal oxides over supports. Chemosphere, 2005, 58 (4): 467~474
    67 S. Lew, F. Sarfima, M. Flytzani-Stephanopoalos. Sulfidation of Zinc Titanate and Zinc Oxide Solids. Ind Eng Chem Res. 1992, 31:1890~1899
    68 J. P. Wakker, A.W. Gerritsen, J. A. Moullijn. High Temperature H2S and COS Removal with MnO and FeO on C2Al2O3 Acceptors Ind Eng Chem Res. 1993, 32:139~149
    69 陈兵, 张学学. 烟气脱硫技术研究与进展. 工业锅炉. 2002,(4):6~10
    70 L. Alonso, J. M. Palacios, E.Garcia,et al. Characterization of Mn and Cu oxides as regenerable sorbents for hot coal gas desulfurization. FuelProcessing Technology. 2000, 62(1):31~44
    71 X. C. Xu, I. Novochinskii, C. S. Song. Energy & Fuels. 2005, 19 (5):2214~2215
    72 S. Velu, X.L. Ma, C. S. Song. Industrial & Engineering Chemistry Research. 2003, 42 (21):5293~5304
    73 A. Bagreev, S. Bashkova, D. C. Locke, et al. Environmental Science and Technology. 2001, 35(7):1537~1543
    74 E. Laperdrix, G. Costentin, O. Saur. Journal of Catalysis. 2000, 189:63~69
    75 W. C. Sung, J. Y. Jang.Applied Catalysis B:Environmental.1998,16:235~243
    76 N. Keller, P. H. Cuong. Applied Catalysis A. 2002:191~205
    77 李强, 代小平, 徐继鹏等. 铈助剂对Co/SiO2催化剂上费托合成反应性能的影响. 催化学报. 2001, 22(5):469~474
    78 葛欣, 张惠良, 王芳. 铁铈氧化物程序升温还原过程的研究. 无机化学学报. 1998, 14(3): 336~339
    79 刘绍璞, 朱鹏鸣, 张国轩等. 金属化学分析概论与应用. 四川:四川科学技术出版社, 1985:42
    80 祝万鹏, 杨宏伟, 殷彤等. 稀土金属铈对湿式氧化催化剂性能的影响.环境化学. 2004, 23(4):361~365
    81 B. A. Reddy, A. Khan, Y. Yamada, et al. Surface characterization of CeO2/SiO2 and V2O5/CeO2/SiO2 catalysts by Raman, XPS, and other techniques. Journal of Physical Chemistry B. 2002, 106(42):10964~10972
    82 杨成, 董庆年, 张静等. 铈和镧改性γ-Al2O3 担载 Pd 催化剂的结构效应. 物理化学学报. 2002, 18(2):170~174
    83 M. Hartman, O. Trnka. Comments on “Ceria-Zirconia High-Temperature esulfurization Sorbents”.Ind. Eng. Chem.Res. 2006, 45:1548~1549
    84 K. B. Yi, E. J. Podlaha. D. P. Harrison. Ceria-Zirconia High-Temperature Desulfurization Sorbents. Ind. Eng. Chem.Res. 2005, 44:7086~7091
    85 Z. Wang, M. Flytzani-Stephanopoulos. Cerium oxide-based sorbents for regenerative hot reformate gas desulfurization. Energy & Fuels. 2005, 19(5):2089~2097
    86 巩志坚, 田原宇, 李文华等. 国内铁氧化物的研究现状. 材料导报. 2006, 20(7):19~21
    87 许振华, 徐自力, 杨秋景等. 铁掺杂 TiO2 纳米粒子光催化氧化庚烯的研究. 吉林大学学报(理学版).2005, 43(3):372~376
    88 郑怀礼, 张竣华, 李宏等.掺铁 TiO2 纳米薄膜的制备及光催化性能研究. 光谱学与光谱分析.2005, 25(12):2065~2069
    89 祖庸, 刘超峰, 李晓娥等.超细氧化锌的合成技术进展. 化工新型材料. 1997, 8:11~15
    90 黄炎球, 刘冬梅, 曾亦可等. ZnO 超微粉的溶胶—凝胶法制备及晶体生长特征.硅酸盐学报. 2001, 29(6):580~583
    91 李小娥 , 樊安 , 祖庸等 . 纳米氧化锌的研究进展 . 现代化工 . 2000, 20(7):23~26
    92 辛显双, 周百斌, 刘双全等.均匀沉淀法制备纳米 ZnO 的工艺条件.化学与粘合. 2002, 5:203~205
    93 崔玉虹, 刘正乾, 刘志刚. Ce 掺杂钛基二氧化锡电极的制备及电催化性能研究.功能材料. 2004, 35:2035~2039
    94 王成云, 钱逸泰. 掺杂纳米CeO2块材的热稳定性研究.稀有金属材料与工程. 2002, 31(4):291~294
    95 井立强, 郑莹光, 徐自力等. ZnO 超微粒子的 EPR 特性及光催化性能. 高等学校化学学报. 2001, 22(11):1885~1888
    96 郭汉贤. 应用化工动力学.化学工业出版社,2003:407~440
    97 J. C. Zhang, Y. H. Wang, D. Y. Wu.Effect investigation of ZnO additive on Mn-Fe/γ-Al2O3 sorbents for hot gas desulfurization.Energy Conversion and Management. 2003(44):357~367
    98 樊惠玲, 郭汉贤, 李春虎等. 一氧化碳和氧对氧化锌脱硫行为的影响. 复旦学报(自然科学版). 2003, 42(3):274~279
    99 金国杰, 樊惠玲, 李春虎等. 氧化锌脱硫中氢和氧的双气氛效应及动力学研究. 燃料化学学报. 2003, 31(4):328~332
    100 于向阳, 程继健. 铁、铬离子掺杂对 TiO2 薄膜光催化活性的影响. 无机材料学报. 2001, 16(4):742~746
    101 严群. 稀土氧化物及纳米氧化锌掺杂压敏材料的制备及机理研究. 四川大学博士学位论文. 2003:81~82
    102 吴若, 左健. 铁掺杂的纳米SnO2的拉曼散射. 光散射学报. 1997, 9(2-3):184~185
    103 董宗木, 苏桂琴, 胡敏等. 乙醇钛水解制备超细铁掺杂二氧化钛及光电催化特性. 安庆师范学院学报(自然科学版).2006, 12(2):86~88
    104 龚海燕, 李小红, 张治军. 油分散性氧化锌纳米微粒的制备及表征. 无机化学学报. 2006, 22(3):426~430
    105 X. Zhang, H. L. Wan, W. Z. Weng, et al. Effect of promoter Ce on silver-molybdenum-phosphate catalysts for selective oxidation of propane to acrolein. Journal of Molecular Catalysis A:Chemical. 2003, 200: 291~300
    106 X. W. Yu, C. W. Yan, C. N. Cao, et al. XPS Analysis of the Cerium Conversion Coating on the Anodized A16061/SiCp J.Mater.Sci.Technol. 2003, 19(2):157~160
    107 王振旅,吴通好,于剑锋等. 纳米金属铜与纳米氧化锌之间相互作用的EPR和XPS研究.高等学校化学学报编辑部. 2004, 25(3): 550~552
    108 X. S. Niu, W. P. Du, W. M. Du, et al. Preparation and Gas Sensing Properties of Y3+, La3+, Ce4+ doped ZnO. Chinese Rare Earth. 2003, 24(6): 44~47
    109 安黛宗, 萧劲东, 李东英等. 片状纳米氧化锌单晶的制备和表征. 人工晶体学报. 2004, 33(1):52~58
    110 徐三魁, 刘寿长, 韩家显.低压合成甲醇 CuO-ZnO-ZrO2 催化剂的活性测定和红外光谱研究.化学世界. 1999, (4):207~210
    111 王之建,贾卫民. 非晶 ZnO 八面体笼式结构研究.无机材料学报. 2005, 20(4):827~830
    112 杨娟,陆路德,李丹等.稀有金属材料与工程.2001, 30(SI):475~478
    113 S. Y. Jung, H. K. Jun, S. J. Lee, et al. Improvement of the Desulfurization and Regeneration Properties Through the Control of Pore Structures of the Zn-Ti-based H2S Removal Sorbents. Environ. Sci.Technol. 2005, 39:9324~9330
    114 梁美生. 铁酸锌高温煤气脱硫行为及气氛效应研究. 太原理工大学博士学位论文. 2005:75~80
    115 Q. F. Wu, V. Yakshinskiy Boris, E. Madey Theodore. Adsorption and decomposition of H2S on UO2(001). Surface Science, 2003, 523:1~11
    116 M. Luciana, A. Francesco, T. Leander. Influence of the matrix on the chemical surface bonds of ZnS and CdS nanoclusters obtained by chemicalsynthesis. Surface and Interface Analysis, 2006, 38:462~468
    117 R. S. C. Smart, W. M. Skinner, A. R. Gerson. XPS of Sulphide Mineral Surfaces:Metal-deficient, Polysulphides, Defects and Elemental Sulphur. Surface and Interface Analysis.1999, 28:101~105
    118 C. H. Ye, X. S. Fang, G.. H. Li, L. D. Zhang. Origin of the green photoluminescence from zinc sulfide nanobelts. Applied Physics Letters. 2004, 85(15):3035~3037
    119 E. Sasaoka, M. Hatori, N. Sada. Role of H2O in oxidative regeneration of ZnS formed from high-temperature desulfurization ZnO sorbent. Industrial & Engineering Chemistry Research. 2000,39(10):3844~3848
    120 M. Flytzani-Stephanopoulos, M. Sakbodin, Z. Wang. Regenerative adsorption and removal of H2S from hot fuel gas streams by rare earth oxides. SCIENCE 2006,312 (5779): 1508~1510
    121 H. K. Jun, T. J. Lee, J. C. Kim. Role of iron oxide in the promotion of Zn-Ti-based desulfurization sorbents during regeneration at middle temperatures.Industrial & Engineering chemistry research. 2002, 41(19): 4733~4738
    122 S.Y. Jung , S.J. Lee , T.J. Lee , et al. H2S removal and regeneration properties of Zn-Al-based sorbents promoted with various promoters. Catalysis Today. 2006,111 (3-4): 217~222
    123 陈铜,张晋芬,黄泰山等.CaTi0.9Li0.1O3-δ晶格中氧空位与选择性活性氧物种的 TGA 表征. 厦门大学学报(自然科学版).1999, 38(5):702~706
    124 J. Haber. Catalysis and surface chemistry of oxides proc 8th Intern Conger. Catal Berlin. 1984, pI-85~83
    125 D. Karayilan, T. Dogu. Mn-Cu and Mn-Cu-V Mixed-Oxide Regenerable Sorbents for Hot Gas Desulfurization. Ind. Eng. Chem.Res. 2005, 44: 5221~5226
    126 许宗祥, 张健, 林敬东等. 纳米 ZnO 粉体的制备及其影响因素. 厦门大学学报(自然科学版). 2002, 41(4):472~475
    127 刘艳华, 车得福, 徐通模. 利用 X 射线光电子能谱确定煤及其残焦中硫的形态. 西安交通大学学报. 2004, 38(1):101~104
    128 H. L. Fan, Y. X. Li, C. H. Li, et al. The apparent kinetics of H2S removal byzinc oxide in the presence of hydrogen. 2002, 81(1):91~96
    129 弗罗门特, 比肖夫. 反应器分析与设计. 邹仁译.化学工业出版社, 1985:261~293
    130 王恩过, 张栓兵, 郭汉贤. 锌系脱硫剂脱硫反应中的联合扩散效应. 化学反应工程与工艺. 1996, 12(1):25~33

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700