氧化铁纳米材料的可控合成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:The Studies on Controllable Synthesis of Iron Oxide Nanomaterials
  • 作者:王红
  • 论文级别:博士
  • 学科专业名称:材料物理与化学
  • 学位年度:2008
  • 导师:李晓天
  • 学科代码:080501
  • 学位授予单位:吉林大学
  • 论文提交日期:2008-04-21
摘要
本论文以水热合成法为主要研究手段,通过调控水热合成条件,成功合成了一系列具有特殊形貌的氧化铁纳米材料,实现了对氧化铁粒子结构、尺寸、形状的控制,总结了晶体的生长规律,并探讨了产物形成的可能机理。具体内容如下:
     1.合成了平均粒径为100 nm的单分散氧化铁纳米粒子。产物具有良好的磁学性质。表面活性剂对粒子的分散性起到了决定性的作用。此外,还合成了单分散立方体氧化铁微粒。研究表明,反应时间、反应温度,pH值和反应物的配比对以上两种产物均有很大的影响。
     2.采用水热法制备了尺寸均一和结晶完整的微孔球状氧化铁纳米粒子。实验结果表明,反应温度和溶液pH值对晶粒尺寸和形貌有重要影响,对产物的磁学性质研究表明,产物具有与体材料不同的磁学性质。此外,以溶剂热方法合成了球形氧化铁纳米粒子,通过调节溶剂一元醇碳链的长度,实现了对其尺寸的控制合成。
     3.采用水热方法合成了空心球、球壳状、桔子瓣状、珊瑚状、棒状、梭形等多种形状和尺寸氧化铁微粒,并对产物形成的机理进行了研究。通过调节溶液pH值、反应物浓度和反应温度实现了对粒子形貌的控制合成。利用溶剂热方法,成功地合成了平均粒径为50nm的Fe3O4纳米粒子。通过加入不同表面活性剂、盐和溶剂等,实现了对Fe3O4纳米粒子尺寸的控制合成。研究表明,此纳米粒子具有超顺磁性质。
     4.设计制备了钙、铁双元类水滑石化合物,并选择性溶出其中的钙来制备多孔纳米水铁矿。研究了其作为锂离子电池电极材料的电化学性质。研究结果表明通过选择性溶出方法制备的水铁矿具有较高的放电容量和较好的循环性能。
To control the structure, size and morphology of nanomaterials is a great goal in the fields of synthetic chemistry and materials science, because the physical and chemical properties of materials depend not only on the chemical composition, but also on their size and shape. Aiming at novel functional materials, many efforts have been focused on synthesis of monodispersed nanocrystals with various shapes. Although many materials have been prepared by hydrothermal methods, it is still difficult to obtain materials with controllable morpologies. Therefore, a number of researchers have focused on developing effective hydrothermal methods to control the size and/or shape of nanoparticles. In the past few decades, iron oxide, as one of the most important transition magnetic metal oxides, has received increasing attention due to its extensive applications, such as magnetic recording materials, catalysts and biomedical applications. Many efforts have been directed toward the fabrication of iron oxide nanomaterials with different shapes and sizes to enhance their performance in current applications.
     In the present work, monodispersedα-Fe2O3 nanoparticles modified by surfactant with good-crystalline properties and size of 100 nm on average have been successfully synthesized via a hydrothermal process. The as-prepared products were characterized by XRD, FTIR, SEM, SQUID. The effect on reaction time , reaction temperature , pH and starting mixtures to the morphologies of hematite in the hydrothermal conditions have been studied. It is found that sodium dodecyl benzene sulfonate (SDBS) surfactant plays an important role on controlling the final morphology of the products. Magnetic hysteresis measurements reveal that monodispersedα-Fe2O3 nanoparticles exhibit normal ferromagnetic behaviors with the remanent magnetization and coercivity of 0.2389 emu/g and 2339.0 Oe at room temperature. Monodispersed pseudocubic hematite (α-Fe2O3) particles were synthesized through a hydrothermal method. When the concentration of surfactant and FeCl3 were changed, the particles with tunable sizes were obtained. The capping agent–cationic surfactant–CTAB can confine the growth of products.
     The sphericalα-Fe2O3 nanoparticles were obtained under hydrothermal conditions. The products were characterized by XRD, SEM, TEM, ED, IR, TG-DSC, BET etc. The results indicate that spherical, diamond-like, plate-like hematite particles can be obtained by adjusting the pH value of the starting mixtures. The sizes of particles change from nanometer to micrometer scale. Morphologies ofα-Fe2O3 particles can be controlled. It is interesting to note that the spherical nanoparticles are single crystals possessing unique microporous structure. The temperature-dependent magnetic susceptibility curve shows that the as-synthesized microporous sphericalα-Fe2O3 nanoparticles possess a blocking temperature of 119 K. Furthermore, sphericalα-Fe2O3 nanoparticles have been synthesized in aliphatic alcohol solution. The particle size of sphericalα-Fe2O3 nanocrystals can be controlled by adjusting the alkyl carbon chain aliphatic alcohol in the solvothermal method. For example, we synthesized sphericalα-Fe2O3 nanocrystals with sizes of 100,80 and 50 nm through the reaction in the ethanol, propanol and butanol, respectively.
     Uniform hollow hematite (α-Fe2O3) spheres were obtained by hydrothermal method. XRD, SEM, and SQIUD measurement were used to characterize the final products. It shows a normal ferromagnetic behavior at room temperature with remanent magnetization and coercivity of 0.2482 emu/g and 2516 Oe at room temperature. The effects of reaction time and temperature on the formation of the hollow spheres are investigated. The growth of the hollow spheres may be related to the gaseous cavities resulted from the freshly produced CO2, which act as heterogeneous nucleation centers for the growth of single crystal or polycrystalline. Sphere shell-likeα-Fe2O3 particles and tangerine-likeα-Fe2O3 particles have been prepared by a template-free hydrothermal synthetic route. Coral-likeα-Fe2O3 superstructures have been obtained by water assisted solvothermal process, and reaction temperature was the crucial factor that determined the morphologies of the products. Magnetic hysteresis measurements reveal that coral-likeα-Fe2O3 superstructures display normal ferromagnetic behaviors with the remanence and coercivity of 0.2346 emu/g and 1862 Oe at room temperature. Uniform shuttle-likeα-Fe2O3 particles andα-Fe2O3 nanorods could be formed by hydrothermal reactions. Their sizes can be controlled by adjusting the pH and concentration of starting mixtures.
     Magnetite (Fe3O4) nanoparticles have been synthesized in novel solution without adding any additives, using FeCl3?6H2O and NH4HCO3 as the starting materials. The experiment results reveal that the solvent have important influences on the phase and morphology of the products based. The nanoparticles exhibit a superparamagnetic behavior and saturation magnetization strength of 70.87 emu/g according to the magnetic hysteresis curve measured at room temperature. The magnetite has a high Brunauer-Emmett-Teller (BET) surface area of 55.45 m2/g. The nanoparticles size can be controlled in the range of 10-90 nm in diameter by changing surfactant or inorganic salt in the solvothermal process. They showed different saturation magnetization strength. By simply using different solvents, superparamagneticα-Fe2O3 nanoparticles have been efficiently obtained and the average size of the spherical particles is around 60 nm.
     We first investigated the potential of 2-line ferrihydrite for application in electrode materials of lithium ion battery. Besides the conventionally rapid hydrolysis route, a novel selective extraction route from layered double hydroxides (LDHs) and their calcinates (LDOs) has been designed and employed to prepare 2-line ferrihydrite. The electrochemical results reveal 2-line ferrihydrites from LDHs is one of the best of them, possessing a high discharge capacity of 133.4 mAh g–1 after the activation process and a good cycle performance remaining 115.4 mAh g–1 after 21 cycles.
引文
[1] Soler-Illia, G. J. de A. A., Sanchez, C.; Lebeau, B.; Patarin, J., Chemical Strategies To Design Textured Materials: from Microporous and Mesoporous Oxides to Nanonetworks and Hierarchical Structures, Chem. Rev., 2002,102, 4093.
    [2] Berresheim A. J., Muller M., Mullen K., Polyphenylene Nanostructures, Chem. Rev. 1999, 99, 1747.
    [3] G. González, A. Sagarzazu, R. Villalba, Study of the mechano-chemical transformation of goethite to hematite by TEM and XRD , Mater. Res. Bull. , 2000, 35, 2295–2308.
    [4] 罗谷风 基础结晶学与矿物学,南京大学出版社,1998,
    [5] 潘兆橹 结晶学及矿物学(下册),地质出版社,1994
    [6] Zhu, L. P.; Xiao, H. M.; Fu, S. Y. Template-Free Synthesis of Monodispersed and Single-Crystalline Cantaloupe-like Fe2O3 Superstructures, Cryst. Growth. Des. 2007, 7, 177.
    [7] Mohammed J. Meziani, Ping Liu, Pankaj Pathak,el at., Stable Suspension of Crystalline Fe3O4 Nanoparticles from In Situ Hot-Fluid Annealing, Ind. Eng. Chem. Res. 2006, 45, 1539-1541
    [8] J?rg Rockenberger, Erik C. Scher, A. Paul Alivisatos, A New Nonhydrolytic Single-Precursor Approach to Surfactant-Capped Nanocrystals of Transition Metal Oxides, J. Am. Chem. Soc. 1999, 121, 11595-11596
    [9] Suyuan Zeng, Kaibin Tang, Tanwei Li, Controlled synthesis of α-Fe2O3 nanorods and its size-dependent optical absorption, electrochemical, and magnetic properties, Journal of Colloid and Interface Science, 2007, 312, 513–521
    [10] Jun Wang, Qianwang Chen. Chuan Zeng, el at., Magnetic-Field-Induced Growth of Single-Crystalline Fe3O4 Nanowires,Adv.Mater. 2004, 16, 137-140
    [11] Bo Tang, Guangli Wang, Linhai Zhuo,el at., Facile Route to α-FeOOH and α-Fe2O3 Nanorods and Magnetic Property of α-Fe2O3 Nanorods, Inorganic Chemistry, 2006, 45, 13
    [12] Y.Y. Fu, R.M. Wang ,J. Xu,el at.. Synthesis of large arrays of aligned α-Fe2O3 nanowires, Chemical Physics Letters, 2003, 379, 373–379
    [13] Cairong Gong, Dairong Chen, Xiuling Jiao, el at., Continuous hollow α-Fe2O3 and α-Fe fibers prepared by the sol–gel method, J. Mater. Chem.2002, 12, 1844–1847
    [14] Sihui Zhan, Dairong Chen, Xiuling Jiao,el at.. Facile fabrication of long α-Fe2O3, α-Fe and γ-Fe2O3 hollow fibers using sol–gel combined co-electrospinning technology, Journal of Colloid and Interface Science, 2007, 308, 265–270
    [15] Y.R. Uhm, W.W. Kim, C.K. Rhee, A study of synthesis and phase transition of nanofibrous Fe2O3 derived from hydrolysis of Fe nanopowders , Scripta Materialia, 2004, 50, 561–564
    [16] Kok Chung Chin, Ghee Lee Chong, Chee Kok Poh, Large-Scale Synthesis of Fe3O4Nanosheets at Low Temperature, J. Phys. Chem. C, 2007, 111, 9136-9141
    [17] Changzheng Wu, Ping Yin, Xi Zhu,el at..J. Phys. Chem. B 2006, 110, 17806- 17812
    [18] Andreas Kay, Ilkay Cesar, Michael Gr?tzel, New Benchmark for Water Photooxidation by Nanostructured α-Fe2O3 Films, J. am. Chem. Soc. 2006, 128, 15714-15721
    [19] Lihua Huo, Qiang Li, Hui Zhao, Sol–gel route to pseudocubic shaped α-Fe2O3 alcohol sensor: preparation and characterization, Sensors and Actuators B, 2005, 107, 915–920
    [20] Weigang Lü, Dequan Yang, Yan Sun, el at.. Preparation and structural characterization of nanostructured iron oxide thin films, Applied Surface Science 1999, 147, 39–43
    [21] Chaoquan Hu, Zhenghong Gao, Xiaorui Yang, Facile synthesis of single crystalline α-Fe2O3 ellipsoidal nanoparticles and its catalytic performance for removal of carbon monoxide, Materials Chemistry and Physics 104 (2007) 429–433
    [22] Kai He, Cheng-Yan Xu, Liang Zhen,el at., Fractal growth of single-crystal α-Fe2O3: From dendritic micro-pines to hexagonal micro-snowflakes, Materials Letters xx (2007) xxx–xxx
    [23] Chun-ying Min, Yu-dong Huang , Li Liu, High-yield synthesis and magnetic property of hematite nanorhombohedras through a facile solution route, Materials Letters 61 (2007) 4756–4758
    [24] Xiaoli Zhang, Chunhong Sui,Jian Gong, el at., Preparation and Formation Mechanism of Different α-Fe2O3 Morphologies from Snowflake to Paired Microplates, Dumbbell, and Spindle Microstructures, J. Phys. Chem. C 2007, 111, 9049-9054
    [25] Xian-Ming Liu, Shao-Yun Fu, Hong-Mei Xiao, Preparation and characterization of shuttle-like α-Fe2O3 nanoparticles by supermolecular template, Journal of Solid State Chemistry 178 (2005) 2798–2803
    [26] Zhifa Pu, Minhua Cao, JingYang, el at., Controlled synthesis and growth mechanism of hematite nanorhombohedra, nanorods and nanocubes, Nanotechnology 17 (2006) 799–804
    [27] Gou L F and Murphy C J, Solution-Phase Synthesis of Cu2O Nanocubes, Nano Lett. 2003, 3 231
    [28] Jana N R, Gearhear L and Murphy C J. Seed-Mediated Growth Approach for Shape-Controlled Synthesis of Spheroidal and Rod-like Gold Nanoparticles Using a Surfactant Template, Adv. Mater. 2001 13 1389
    [29] Petroski J M, Wang Z L, Green T C and El-Sayed M A, Kinetically Controlled Growth and Shape Formation Mechanism of Platinum Nanoparticles, J. Phys. Chem. B 1998, 102 3316
    [30] Bradley J S, Tesche B, Busser W, Maase M and Reetz M T, Surface Spectroscopic Study of the Stabilization Mechanism for Shape-Selectively Synthesized Nanostructured Transition Metal Colloids, J. Am. Chem. Soc. 2000, 122, 4631
    [31] Shouhu Xuan, Lingyun Hao, Wanquan Jiang, el at., A FeCO3 Precursor-Based Route to Microsized Peanutlike Fe3O4, Crystal Growth & Design, Vol. 7, No. 2, 2007, 430-434
    [32] Naono, H.; Fujiwara, R. Micropore formation due to thermal decomposition of acicular microcrystals of α-FeOOH, J. Colloid Interface Sci. 1980, 73, 406.
    [33] Lian, S.; Wang, E.; Kang, Z.; Bai, Y.; Gao, L.; Jiang, M.; Hu, C.;Xu, L. Synthesis of magnetite nanorods and porous hematite nanorods, Solid State Commun. 2004, 129, 485.
    [34] Dabin Yu, Xiaoquan Sun, Jiwei Zou,el at.. Oriented Assembly of Fe3O4 Nanoparticles into Monodisperse Hollow Single-Crystal Microspheres, J. Phys. Chem. B 2006, 110, 21667-21671
    [35] Pan, B. F.; He, R.; Gao, D. X.; Zhang, Y. F. Study on growth kinetics of CdSe nanocrystals in oleic acid/dodecylamine, J. Cryst. Growth 2006, 286, 318.
    [36] Norberg, N. S.; Gamelin, D. R. J. Influence of Surface Modification on the Luminescence of Colloidal ZnO Nanocrystals, Phys. Chem. 2005,109, 20810.
    [37] Shenzhong Li, Hui Zhang, Jianbo Wu, Shape-Control Fabrication and Characterization of the Airplane-like FeO(OH) and Fe2O3 Nanostructures, Crystal Growth & Design, Vol. 6, No. 2, 2006
    [38]Guifu Zou, Kan Xiong, Changlong Jiang, Fe3O4 Nanocrystals with Novel Fractal, J. Phys. Chem. B 2005, 109, 18356-18360
    [39]Seiichi Takami , Teruyuki Sato, Tahereh Mousavand, el at., Hydrothermal synthesis of surface-modified iron oxide nanoparticles, Materials Letters 61 (2007) 4769–4772
    [40]V. Sreeja, P.A. Joy, Microwave–hydrothermal synthesis of γ-Fe2O3 nanoparticles and their magnetic properties, Materials Research Bulletin 42 (2007) 1570–1576
    [41]D. Chen, R. Xu, Hydrothermal synthesis and characterization of nanocrystalline Fe3O4 powders, Materials Research Bulletin, 1998, 33,. 1015–1021,
    [42]Ziyi Zhong, Judith Ho, Jaclyn Teo,el at., Synthesis of Porous α-Fe2O3 Nanorods and Deposition of Very Small Gold Particles in the Pores for Catalytic Oxidation of CO, Chem. Mater. 2007, 19, 4776-4782
    [43]Z. H. Zhou, J. Wang, X. Liu, el at., Synthesis of Fe3O4 nanoparticles from emulsions, J. Mater. Chem., 2001, 11, 1704–1709
    [44]Hui Zhang, WeiWei Wang, Honhfei Li,el at., A strategy to prepare ultrafine dispersed Fe2O3 nanoparticles, Materials Letters, 2008, 62, 1230-1233
    [45]Tadao Sugimoto, Hiroyuki Itoh, Takeaki Mochida, Shape Control of Monodisperse Hematite Particles by Organic Additives in the Gel–Sol System, J Coll. Interf. Sci.[ J ], 1998, 205, 42-45
    [46] Dong W T, WuS X, Chen D P. Preparation of α-Fe2O3 nanopaticles by sol-gel process with inorganic iron salt, Chem Lett. 2000, 5, 496~497
    [47]Kan S., Zhang X., Yu S., et al., Synthesis of Uniform Ferric Oxide Particles from Deionized Colloids, J Coll. Interf. Sci., 1997, 191 (2) : 503
    [48]Daniela Caruntu, Gabriel Caruntu, Yuxi Chen,el at., Synthesis of Variable-Sized Nanocrystals of Fe3O4 with High Surface Reactivity, Chem. Mater. 2004, 16, 5527-5534
    [49]甘礼华 李光明 岳天仪,等,氧化铁气凝胶的制备及其表征, 高等学校化学学报,1999,20(1),123~134
    [50]Alexander E. Gash, Joe H. Satcher, Jr., Synthesis of Variable-Sized Nanocrystals of Fe3O4 with High Surface Reactivity, Chem. Mater. 2003, 15, 3268-3275
    [51]曹茂盛,曹传宝,徐甲强.纳米材料学(第一版)[Ml.哈尔滨:哈尔滨工程大学出版社,2002.48.
    [52]汪信,陆路德. 纳米金属氧化物的制备与应用研究的若干进展[Jl .无 机 化学学报,2000,16(2):213一217
    [53]Anatolii Davydov, Karl T. Chuang,Alan R. Sanger, Mechanism of H2S Oxidation by Ferric Oxide and Hydroxide Surfaces, Phys. Chem. B 102(1998) 4745–4752.
    [54] Price G J, Ashokkumar M, Hodnett M, et al. Acoustic Emission from Cavitating Solutions: Implications for the Mechanisms of Sonochemical Reactions, J. Phys. Chem.B, 2005, 109, 17799~17801
    [55]Xian-Ming Liu, Shao-Yun Fu, Hong-Mei Xiao, Preparation and characterization of shuttle-like α-Fe2O3 nanoparticles by supermolecular template, Journal of Solid State Chemistry 178 (2005) 2798–2803
    [56]Mukh-Qasem R A, Gedanken A, Sonochemical synthesis of stable hydrosol of Fe3O4 nanoparticles, Journal of Colloid and Interface Science, 2005,284:489~494
    [57]Yonghong Ni, Xuewu Ge, Zhicheng Zhang,el at., Fabrication and Characterization of the Plate-Shaped γ-Fe2O3 Nanocrystals, Chem. Mater.2002, 14, 1048-1052
    [58] Don Keun Lee, Young Soo Kang, Preparation and characterization of magnetic nanoparticles by γ-irradiation , Materials Science and Engineering C 24 (2004) 107– 111
    [59]王世敏、许祖勋、傅晶,纳米材料制备技术[M].北京.化学工业出版社,2002
    [60]S. Veintemillas-Verdaguer, M. P. Morales, C. J. Serna, Effect of the oxidation conditions on the maghemites produced by laser pyrolysis, Appl. Organometal. Chem. 2001, 15: 365–372
    [61]Ogawa K, Vog t T, Ulmann M. Elastic properties of nanoparticle chiain aggregates of TiO2, Al2O3, and Fe2O3 generated bylaser ablation, J Appl. Phys.2000,87(1)63~73
    [62]Kulkarni S S, Lokhande C D, Structural, optical, electrical and dielectrical properties of electrosynthesized nanocrystalline iron oxide thin films, Materials Chemistry and Physics, 2003, 82: 151-156.
    [63]GAO C. X. , L IU Q. F. , XUE D. S. . J. Materials Science Letter[ J ] , 2002, 21:1781—1783
    [64] Rockenberger, J.; Scher, E. C.; Alivisatos, P. A.,A New Nonhydrolytic Single-Precursor Approach to Surfactant-Capped Nanocrystals of Transition Metal Oxides, J. Am. Chem.Soc. 1999, 121, 11595.
    [65]Del Monte F, Morales M P, Levy D, et al.. Formation of γ-Fe2O3 Isolated Nanoparticles in a Silica Matrix, Langmuir [J], 1997, 13 :3627.
    [66] Dai J B,Wang J Q,Sangregorio C,et al. Magnetic coupling induced increase in the blocking temperature of γ-Fe2O3 nanoparticle. J Appl Phys, 2000, 87, 7397~7399
    [67] Pascal C, Pascal J L, Favier F, etal. Electrochemical synthesis for the control of γ-Fe2O3 nanoparticle size, Chem Mater, 1999, 11:141~147
    [68]Hou L H, Li W, Lu L H, et al., Preparation,structure,and properties of there dimensitonal ordered α-Fe2O3 nanoparticulate film, Chem. Mater.2000, 12, 790~794
    [69]Kohl, A. L.; Riesefedl, F. S. Gas Purification; Gulf: Houston, 1985; Chapter 4.
    [70]Youngran Jeong, Maohong Fan , Shilpi Singh, el at., Evaluation of iron oxide and aluminum oxide as potential arsenic(V) adsorbents, Chemical Engineering and Processing 46 (2007) 1030–1039
    [71] G. Jain, M. Balasubramanian, J. J. Xu, Structural Studies of Lithium Intercalation in a Nanocrystalline α-Fe2O3 Compound, Chem. Mater.2006, 18 : 423 - 434.
    [72] 黄婉霞,陈家钊,毛健,等, 纳米级Fe3O4对电磁波的吸收效能研究, 功能材料[J],1999, 30(1):105-106
    [73]步文博,徐洁,丘泰,等, 吸波材料基础理论的探讨及展望,材料导报, 2001, 15(5):14-17
    [74]黄云霞,曹全喜,卫云鸽,等,零维纳米Fe2O3粉体的制备与吸波性能的研究, 功能材料与器件学报, 2004,2(10)251-254
    [75]Juan Carlos Aphesteguy,Silvia E Jacobo, Composite of polyaniline containing iron oxides, Physica B,2004,354:224~227
    [76]Butterworth M D,Bell S A, Armes S P,et al. Synthesis and Characterization of Polypyrrole– Magnetite–Silica Particles, Journal of colloid and Interface Science, 1996, 183, 91~99
    [77]Juan Carlos Aphesteguy, Silvia E Jacobo, Composite of polyaniline containing iron oxides, Physica B, 2004, 354, 224~227
    [78]Wan Meixiang, Zhou Weixia, Li Junchao, Composite of polyaniline containing iron oxides with nanometer size, Synthetic Metals, 1996, 78, 27~31
    [79]Wan Meixiang, Li Junchao, Synthesis and electrical-magnetic properties of polyaniline composites, Journal of Polymer Science (PartA): Polymer Chemistry, 1998, 36, 2799~2805
    [80]Yu Laiqiong,Zheng Luji, Yang Jixiao, Study of preparation and properties on magnetization and stability for ferromagnetic fluids, Materials Chemistry and Physics, 2000, 66, 6~9
    [81]Sun Yongkang, Duan Lei, Guo Zhirui,et al.. An improved way to prepare superparamagnetic magnetite-silica core-shell nanoparticles for possible biological application ,Journal of Magnetism and Magnetic Materials, 2005, 258, 65~70
    [82]Voltairas P A, Fotiadis D, Massalas C V, Elastic stability of silicone ferrofluid internal tamponade (SFIT) in retinal detachment surgery, J. Magn. Magn. Mater[J], 2001, 225, 248-255.
    [83]Jordan A, Schol R, Maier-Hauff K, et al., Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia, J. Magn. Magn .Mater. 2001, 225, 118-126.
    [84]Zhang Yong, Zhang Jing, Surface modification of monodisperse magnetite nanoparticles for improved intracellular uptake to breast cancer cells, Journal of Colloid and Interface Science, 2005, 283, 352~357
    [85]Jordan A, Wust P, Scholz R, et al. Int J Hyperthermia[J],1996,12,705-722
    [86]Jordan A, Scholz R, Wust P,el at.. Int J Hyperthermia[J],1997,13,587-605
    [87]Babincová M, Leszczynska D, Sourivong P, et al.. Superparamagnetic gel as a novel material for electromagnetically induced hyperthermia, J. Magn. Magn. Mater. 2001, 225, 109-112
    [88]Haik Y, Pai V, Che C J, Development of magnetic device for cell separation, J. Magn. Magn. Mater. 1999, 194:254.
    [89]Mary M, Hafeli U, Schutt W, et al. Scientic and clinical applications of magnetic carriers [M ]. Plenum Press:New York, 1997, 303.
    [90]Carpenter E E. Iron nanoparticles as potential magnetic carriers[J] .J .Magn. Magn. Mater. 2001, 225, 17一20.
    [91] Wu C B, Gao W W, Wei S L, Studies on and application of medicinal magnetic fluids, Bul. Acad. Mil. Med. Sci,1994 ,18 (1 ):36一40
    [92]Riley M A, Walmsley A D, Speight J D, et al., Magnets in medicine, Mater. Sci. Tech., 2000, 18(1):1一12.
    [93] Wooding A, Kilner M, Lambrick D B, Studies of gelatin-stablised magnetic particles use for dispersions in polar and non-polar organic solvents, J. Disp. Sci. Tech.1992,13(5),479~490.
    [94]Liu S B,Wang Q, Liu G, A Verastile Method of Diserete Contact Analyses, Wera[J], 2000, 243, 101-110
    [95] Wang W Z,Wang H,Liu Y C, el at. A comparative study of the methods for calculation of surface elastic deformation, P I Mech Eng J-J Eng, 2003, 217, 145-153
    [96]张立德,牟季美,纳米材料和结构[M].北京:科学出版社,2001
    [97]Horng H E, Hong C Y, Yang S Y, et al., Novel properties and applications in magnetic fluids, J. Phys. Chem. Solid., 2001, 62, 1749-1764.
    [98] Nakatsuka K., Trends of magnetic fluids applications in Japan, J. Magn. Magn. Mater.1993, 122, 387-394.
    [99]Qin Han, Zhenghui Liu, Yingying Xu, el at., Growth and Properties of Single-Crystalline γ-Fe2O3 Nanowires, J. Phys. Chem. C 2007, 111, 5034-5038
    [100] Bruce C. Faust, Michael R. Hoffmann, Detlef W. Bahnemanni, Photocatalytic oxidation of sulfur dioxide in aqueous suspensions of alpha-iron oxide (Fe2O3), J. Phys. Chem. 1989, 93, 6371-6381
    [101]Niu Xinshu, Du Weimin, Jiang Kai. Advances in the study on nano-sized Fe2O3 gas-sensing materials[J]. Electronic Components& Materials, 2003, 5: 34-39.
    [102] Fu Y Y ,Wang R M,NarlikarA V,et al. Synthesis of large arrays of aligned α-Fe2O3 nanowires [J]. Chemical Physics Letters, 2003, 379: 373-379.
    [103] Chai C C , Peng J, Yan B P, Characterization of α-Fe2O3 thin films deposited by atmospheric pressure CVD onto alumina substrates[J]. Sensors and Actuators B, 1996, 34:412-416.
    [104] Liu Xinqiu, Xu Zhengliang, Liu Yafei, et al. A novel high performance ethanol gas sensor based on CdO-Fe2O3 semiconducting materials[J]. Sensors and Actuators B, 1998, 52: 270-273.
    [105] Giovanni Neri, Anna Bonavita, Signorino Galvagno, et al. HREELS study of Au/Fe2O3 thick film gas sensor[J]. Sensors and Actuators B, 2001, 80: 222-228.
    [106] Zhang Zhenyu, Jiang Huijing, Xing Zhi, et al. A highly selective chemiluminescent H2S sensor[J]. Sensors and Actuators B, 2004, 102: 155-161.
    [107] Guorui Dai. A study of the sensing properties of thin film sensor to trimethylamine[J]. Sensors and Actuators B, 1998, 53: 8-12.
    [108] Kotsikau D , Ivanovskaya M , Orlik D , et al. Gas-sensitive properties of thin and thick film sensors based on Fe2O3–SnO2 nanocomposites[J]. Sensors and Actuators B, 2004, 101: 199-206.
    [109] Tom Kendall, Inorganic Colour pigment. Industrial Minerals, 1994, 2, 53~54
    [110]杨宗志.世界合成氧化铁颜料工业概况 [J].涂料工业,1995,(3):28.
    [111]MISAWA T, HASHIMOTO K, SHIMODAIRA S, The mechanism of formation of iron oxide and oxyhdroxides in aqueous solutions at room temperature, Corrosion Science, 1974, 14(1): 131-149.
    [112]都有为,罗河烈.磁记录材料[M].北京:电子出版社,1992.
    [113]PITZER U.Very Highly Transparent Yellow Iron Oxide Pigments[P].US 5879441,1999-05. 09.
    [114]Toshiharu,Teranishi, Mikio Miyake, Novel Synthesis of Monodispersed Pd/Ni Nanoparticles,Chem. Mater.[J], 1999, 11, 3414-3416
    [115]Kyoungja Woo, Jangwon Hong,Sungmoon Choi. Easy Synthesis and Magnetic Properties of Iron Oxide Nanoparticles, Chem. Mater. 2004, 16, 2814-2818
    [116]Taeghwan Hyeon, Su Seong Lee, Jongnam Park,etal.. Synthesis of Highly Crystalline and Monodisperse Maghemite Nanocrystallites without a Size-Selection Process, J. Am. Chem. Soc.[J], 2001, 123, 12798-12801
    [117] M. P. Morales, Gonzalez-Carreno, T., and Serna, C. J., J. Mater. Res. 7, 2538 (1992)
    [118]Bailey, J. K., Brinker, C. J., and McCartney, M. L., Growth Mechanisms of Iron Oxide Particles of Differing Morphologies from the Forced Hydrolysis of Ferric Chloride Solutions, J. Colloid Interface Sci. 157, 1 (1993)
    [119]Sugimoto T., Muramatsu A, Formation Mechanism of Monodispersed α-Fe2O3Particles in Dilute FeCl3 Solutions J. Colloid Interf. Sci. 1996, 184, 626-638
    [120]Gyeong-Su Park, Daisuke Shindo, Yoshio Waseda, el at.. Internal Structure Analysis of Monodispersed Pseudocubic Hematite Particles by Electron Microscopy, J. Colloid Interface Sci. 177, 198–207 (1996)
    [121]Kim, B. S.; Qiu, J.M.; Wang, J. P.; et al., Magnetomicelles: CompositeNanostructures from Magnetic Nanoparticles and Cross-Linked Amphiphilic Block Copolymers, Nano Lett. 2005, 5 ,1987-1991.
    [122]Pellegrino, T.; Manna, L.; Kudera, S.; et al., Hydrophobic Nanocrystals Coated with an Amphiphilic Polymer Shell: A General Route to Water Soluble Nanocrystals, Nano Lett. 2004, 4: 703-707.
    [123]Goti? M, Popovi? S, Ljuběsi? N, etal.. J.Mater.Sci.[J],1994, 29, 2474-2480
    [124]S. Krehula, S. Popovi?, S. Musi?,etal., Synthesis of acicular α-FeOOH particles at a very high pH, Materials Letters[J], 2002, 54, 108–113
    [125]C.J. Serna, J.L. Rendon, J.E. Iglesias, Infrared surface modes in corundum-type microcrystalline oxides, Spectrochimica Acta Part A: Molecular Spectroscopy.[J], 1982, 38 ,797-802
    [126]Matijevi?, E., and Scheiner, P., Ferric hydrous oxide sols: III. Preparation of uniform particles by hydrolysis of Fe(III)-chloride, -nitrate, and -perchlorate solutions, J. Colloid Interface Sci. 1978, 63, 509
    [127] Wan Peter Hsu, Lena R?nnquist, and Egon Matijevi?, Preparation and properties of monodispersed colloidal particles of lanthanide compounds, Cerium(IV), Langmuir[J], 1988, 4, 31-37
    [128]Yannick Cudennec, André Lecerf, Topotactic transformations of goethite and lepidocrocite into hematite and maghemite, Solid State Sciences[J], 2005, 7 , 520–529
    [129] Danny G. Chambaere and Eddy De Grave, The β-FeOOH to α-Fe2O3 phase transformation: Structural and magnetic phenomena, Phys. Chem. Minerals [J], 1985, 12, 176-184
    [130]S. Giri, S. Samanta, S. Maji,etal.. Magnetic properties of α-Fe2O3 nanoparticle synthesized by a new hydrothermal method, J. Magn. Magn. Mater. 2005, 285, 296-302.
    [131]Xu, Y. Y.; Rui, X. F.; Fu, Y. Y.;Zhang, H. Magnetic properties of α-Fe2O3 nanowires, Chem. Phys. Lett. 2005, 410, 36.
    [132]Liu, X. M.; Fu, S. Y.; Xiao, H. M.; Huang, C. J., Preparation and characterization of shuttle-like α-Fe2O3 nanoparticles by supermolecular template, J. Solid State Chem. 2005, 178, 2798.
    [133]C. J. Serna, J. L. Rendon, J. E. Iglesias,Spectrochim. Acta.[J], 1982, 38A, 797-802
    [134]Bo Tang, Guangli Wang, Linhai Zhuo,el at. Facile Route to α-FeOOH and α-Fe2O3 Nanorods and Magnetic Property of α-Fe2O3 Nanorods, Inorganic Chemistry, 2006 ,45,5196-5200
    [135]Kamlakanta Sahu, Chandana Rath, Naresh Chandra Mishra, Microstructural and Magnetic Studies on Hydrothermally Prepared Hematite, J. Colloid Interface Sci. 1997, 185, 402–410
    [136]Sugimoto, T., Sakata, K., and Muramatsu, A., Formation Mechanism ofMonodisperse Pseudocubic α-Fe2O3 Particles from Condensed Ferric Hydroxide Gel, J. Colloid Interface Sci. 1993, 159, 372
    [137]Gyeong-Su Park, Daisuke Shindo, Yoshio Waheda, el at.. Internal Structure Analysis of Monodispersed Pseudocubic Hematite Particles by Electron Microscopy, J. Colloid Interface Sci. 1996, 177, 198–207
    [138]Sun X.M, Chen X,Deng Z X,et at. A CTAB-assisted hydrothermal orientation growth of ZnO nanorods, Materials Chemistry and Physics, 2002, 78, 99-104
    [139] Wang Yu-de, Ma Chun-lai,Sun Xiao-dan,el at., Preparation of nanocrystalline metal oxide powders with the surfactant-mediated method, Inorganic Chemistry Communications, 2002, 5, 751-755
    [140]Alexander E. Gash, Thomas M. Tillotson, Joe H. Satcher, el at., Use of Epoxides in the Sol-Gel Synthesis of Porous Iron(III) Oxide Monoliths from Fe(III) Salts, Chem. Mater. 2001, 13, 999-1007
    [141] Zhong-Yong Yuan, Tie-Zhen Ren, Bao-Lian Su, Surfactant mediated nanoparticle assembly of catalytic mesoporous crystalline iron oxide materials, Catalysis Today 93–95 (2004) 743–750
    [142]Feng Jiao ,Peter G. Bruce, Two- and Three-Dimensional Mesoporous Iron Oxides with Microporous Walls, Angew. Chem. Int. Ed. 2004, 43, 5958 –5961
    [143]Mira Risti?, Svetozar Musi?, Formation of porous α-Fe2O3 microstructure by thermal decomposition of Fe(IO3)3, Journal of Alloys and Compounds, 425 (2006) 384–389
    [144] J.Qiu, R. Yang, M. Li, el at., Preparation and characterization of porous ultrafine Fe2O3 particles, Mater. Res. Bull.2005,40,1968-1975
    [145]Jiao, F.; Harrison, A.; Jumas, J. C.; Chadwick, A. V.; Kockelmann, W.; Bruce, P. G. Ordered Mesoporous Fe2O3 with Crystalline Walls, J. Am. Chem. Soc. 2006, 128, 5468.
    [146]Schwertmann U. Cornell R M. Iron oxides in the laboratory: preparation and characterization [M]. New York: wiley-VCH, 2000, 5
    [147]Zysler, R. D.; Fiorani, D.; Testa, A. M.; Suber, L.; Agnostinelli, E.; Godinho, M., Size dependence of the spin-flop transition in hematite nanoparticles, Phys. Rev. B 2003, 68, 212408.
    [148]Bodker, F.; Hansen, M. F.; Koch, C. B.; Lefmann, K.; Morup, S. Magnetic properties of hematite nanoparticles, Phys. ReV. B 2000, 61, 6826.
    [149]Dormann, J. L.; Cui, J. R.; Sella, C., M?ssbauer studies of Fe2O3 antiferromagnetic small particles, J Appl. Phys. 1985, 57, 4283.
    [150] Caruso F, Trau D, Mohwald H, et at., Enzyme Encapsulation in Layer-by-Layer Engineered Polymer Multilayer Capsules, Langmuir, 2000, 16, 1485-1488
    [151] Kim S. W., Kim M., Lee W. Y., el at., Fabrication of Hollow Palladium Spheres and Their Successful Application to the Recyclable Heterogeneous Catalyst for SuzukiCoupling Reactions, J. Am. Chem. Soc. 2000, 124, 7642-7643
    [152] H. Shiho, N. Kawahashi, Iron Compounds as Coatings on Polystyrene Latex and as Hollow Spheres, J. Colloid Interf. Sci. 226 (2000) 91.
    [153] S.Y. Lian, E.B. Wang, L. Gao, D. Wu, Y.L. Song, L. Xu, Surfactant-assisted solvothermal preparation of submicrometer-sized hollow hematite particles and their photocatalytic activity, Mater Res.Bull. 41 (2006) 1192.
    [154] D.H. Chen, D.R. Chen, X.L. Jiao, Y.T. Zhao, Hollow-structured hematite particles derived from layered iron (hydro)oxyhydroxide–surfactant composites, J. Mater. Chem. 13 (2003) 2266.
    [155] Baodong Mao, Zhenhui Kang, Enbo Wang, el at., Template free fabrication of hollow hematite spheres via a one-pot polyoxometalate-assisted hydrolysis process, Journal of Solid State Chemistry, 180 (2007) 489–495
    [156]Shufeng Si ,Chunhui Li, Xun Wang, el at., Magnetic Monodisperse Fe3O4 Nanoparticles, Crystal Growth & Design, 2005,5,391-393
    [157] Yanglong Hou, Song Gao, Toshiaki Ohta,el at.. Eur. J. Inorg. Chem. 2004, 1169-1173
    [158] X.Y.Chen, Z.J. Zhang, X.X.Li, C.W.Shi, Hollow magnetite spheres: Synthesis, characterization, and magnetic properties, Chemical Physics Letters, 2006, 422, 294–298
    [159] X.Y. Chen, Z.H. Wang, X. Wang, R. Zhang, X.Y. Liu, W.J. Lin,Y.T. Qian, Synthesis of novel copper sulfide hollow spheres generated from copper (II)–thiourea complex, J. Crystal Growth. 2004, 263, 570-574.
    [160] L.C. Sánchez, J.D. Arboleda, C. Saragovi, R.D. Zysler, C.A. Barrero, Magnetic and structural properties of pure hematite submitted to mechanical milling in air and ethanol, Physica B 389 (2007) 145–149
    [161] Dabin Yu, Xiaoquan Sun, Jiwei Zou, Oriented Assembly of Fe3O4 Nanoparticles into Monodisperse Hollow Single-Crystal Microspheres, J. Phys. Chem. B 2006, 110, 21667-21671
    [162] Bean, C. P.; Livingston, J. D. J. Appl. Phys. 1959, 30, 120s.
    [163] Amin, N.; Arajs, S.; Matijevic, E., Phys. Status Solidi A 1985, 104,
    [164] Bo Tang, Guangli Wang, Linhai Zhuo, el at., Facile Route to α-FeOOH and α-Fe2O3 Nanorods and Magnetic Property of -Fe2O3 Nanorods, Inorganic Chemistry, Vol. 45, No. 13, 2006,5196-5200
    [165] B?dker, F.; Hansen, M. F.; Koch, C. B.; Lefmann, K.; M?rup, S. Magnetic properties of hematite nanoparticles, Phys. ReV. B 2000, 61, 6826.
    [166] G.F. Zou, K. Xiong, C.L. Jiang, H. Li, T.W. Li, J. Du, Y.T. Qian, Fe3O4 Nanocrystals with Novel Fractal, J. Phys. Chem. B 109 (2005) 18356.
    [167] J. Wang, Q.W. Chen, C. Zeng, B.Y. Hou, Magnetic-Field-Induced Growth of Single-Crystalline Fe3O4 Nanowires, Adv. Mater. 16 (2004) 137.
    [168] Chen, X.; Zhang, Z.; Li, X.; Shi, C., Hollow magnetite spheres: Synthesis,characterization, and magnetic properties, Chem. Phys. Lett. 2006, 422, 294-298.
    [169] Wu, H.; Yuan, P.; Xu, H.; Xu, D.; Geng, B.; Wei, X., Controllable synthesis and magnetic properties of Fe–Co alloy nanoparticles attached on carbon nanotubes, J. Mater. Sci. 2006, 41, 6889-6894.
    [170] Zhao H. L., Gan L., Qiu W. H. el al., Improvement of electrochemical stability of LiCoO2 cathode by a nano-crystalline coating, J. Power Sources, 2004, 132, 195-200
    [171] Myoung Youp Song, Ryong Lee, Synthesis by sol–gel method and electrochemical properties of LiNiO2 cathode material for lithium secondary battery, J. Power Sources, 2002, 111, 97-103
    [172] H. W. Chan, J. G. Duh, S. R. Sheen, LiMn2O4 cathode doped with excess lithium and synthesized by co-precipitation for Li-ion batteries, J. Power Sources, 2003, 115, 110-118
    [173] Tom A. Eriksson, Marca M. Doeff, A study of layered lithium manganese oxide cathode materials, J. Power Sources, 2003, 119, 145-149
    [174] Yoshio Nishi, Lithium ion secondary batteries; past 10 years and the future, J. Power Sources, 2001, 100, 101-106
    [175] K. Amine, H. Yasuda, M. Yamachi, β-FeOOH, a new positive electrode material for lithium secondary batteries, 1999,82, 221-223
    [176] Hyung-Sun Kim, Byung-Won Cho, Won-Il Cho Cycling performance of LiFePO4 cathode material for lithium secondary batteries, J. Power Sources, 2004, 132, 235-239P.
    [177] P. Poizot, E. Baudrin, S. Laruelle, el at., Low temperature synthesis and electrochemical performance of crystallized FeVO4·1.1H2O, Solid State Ion., 2000, 138, 31-40
    [178] L .Carlson, J. M. Bigham, U. Schwertmann, el at., Scavenging of As from Acid Mine Drainage by Schwertmannite and Ferrihydrite: A Comparison with Synthetic Analogues, Environ. Sci. Technol.,2002, 36, 1712-1719
    [179] Udo Schwertmann, Josef Friedl, Helge Stanjek, From Fe(III) Ions to Ferrihydrite and then to Hematite, Journal of Colloid and Interface Science 209, 215–223 (1999)
    [180] M. Risti?, E. De Grave, S. Musi?, el at.,Transformation of low crystalline ferrihydrite to α-Fe2O3 in the solid state, Journal of Molecular Structure 834–836 (2007) 454–460

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700