细菌解毒铬渣过程动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铬渣是铬盐及铁合金等行业在生产过程中排放的有毒废渣,铬渣中的Cr(Ⅵ)被列为对人体危害最大的8种化学物质之一,是国际公认的3种致癌金属物之一,同时也是美国EPA公认的129种重点污染物之一。我们的前期研究已经成功分离出一株还原碱性介质高浓度Cr(Ⅵ)的短杆状细菌,经鉴定为无色细菌属杆状菌(Achromobacter sp.),将其命名为Ch-1菌,并研发了细菌还原Cr(Ⅵ)的新工艺,建立了扩试工程,解毒后达到国家危险废物浸出毒性标准(GB5085-1996)。
     然而对于Ch-1菌还原Cr(Ⅵ)的反应动力学过程,培养基成分之一的NaCl溶解铬酸钙的动力学过程,Cr(Ⅵ)在酸性环境下的选择性溶出过程,以及细菌浸出铬渣前后Cr(Ⅵ)扩散系数D的变化过程还缺乏深刻认识。因此,本研究通过对上述过程作以全面考察,建立了细菌解毒铬渣各个过程的动力学方程,确定了各因素对细菌解毒铬渣速度的影响程度,并采用电化学方法测定出细菌解毒铬渣前后Cr(Ⅵ)在铬渣球团中的扩散系数,从理论上证明了本工艺的先进性,并为实施铬污染治理工程提供重要的理论依据。
     研究获得了如下创新性成果:
     (1)Ch-1菌还原Cr(Ⅵ)的反应为零级反应,初始pH值为8~10时,Ch-1菌还原Cr(Ⅵ)的反应速率基本相同,pH<8和pH>10时,反应速率逐渐减小。随细菌接种量减少,反应速率减小,反应表观活化能增大。细菌接种量分别为50%、30%、20%、10%、5%时对应的动力学方程式分别为:v=57.5211,v=51.6306,v=45.9764,v=24.0025,v=7.3265,其表观活化能分别为6.89kJ/mol、14.75kJ/mol、19.24kJ/mol、33.54 kJ/mol、72.52 kJ/mol。得到了按细菌接种量划分的Ch-1菌还原Cr(Ⅵ)的反应控制区域图,Cr(Ⅵ)的细菌还原反应逐渐由内扩散控制区转入化学反应控制区。优化了Ch-1菌还原Cr(Ⅵ)的最佳工艺条件:温度30℃,pH值10,细菌接种量20%。
     (2)铬渣NaCl浸出的动力学方程为:v=3.38×10~(-7)c_(NaCl)~(0.26)。pH值增大,k不断增大,CaCrO_4溶解率增加,溶解速率加快。振荡速度增大,k不断增大,CaCrO_4溶解速率增大。铬渣NaCl浸出反应表观活化能为34.24kJ/mol,Cr(Ⅵ)浸出速率受温度影响较大,k与温度关系式为:k(T)=exp(13.71-4117.9/T)。
     (3)铬渣HCl浸出过程的数学模型为:v=1.8676t~(-0.54)。浸出速率v随时间t呈-0.54级指数衰减,即随浸出时间增加,浸出速度逐渐减小;浸出过程数学模型表明:要提高浸出率及浸出速率,流速和温度应尽量大,铬渣粒度应小。HCl选择性浸出铬渣所确定的最佳实验条件为:pH=3,液固比5:1,流速180mL/min,温度40℃。在最佳条件下,浸出率较大,HCl消耗量较小。
     (4)六价铬在铅电极上还原为三价铬的电位约为-0.5V(vs.SCE)。细菌解毒铬渣后Cr(Ⅵ)的扩散系数为2.62×10~(-8)m~2/s,大于细菌解毒铬渣前Cr(Ⅵ)的扩散系数4.4×10~(-9)m~2/s,本细菌解毒铬渣工艺过程中,随细菌解毒时间增加,扩散系数增大,更利于铬渣内部的六价铬溶出。
Chromium-containing slag is a kind of poisonous pollutionsgenerated from chromium industry, in which Cr(Ⅵ) contained isconsidered as one of the 8 most harmful chemicals to human beings,one of the 3 carcinogenic metals recognized internationally, and oneof the 129 main pollutions recognized in EPA of USA. In thepreliminary studies a strain of high effective bacteria identified asAchromobacter sp., naming Ch-1 bacteria has been successfullyseparated and obtained, which can reduce Cr(Ⅵ) of highconcentration in alkaline media. And a new novel technique ofchromium-containing slag detoxification by bacteria has been alsodeveloped. The Cr(Ⅵ) concentration of the residues afterdetoxification meets the national standards of hazard contaminations'leaching toxicity (GB5085-1996).
     However, it lacks of profound understand about the reactionkinetics process of Cr(Ⅵ) reduction by Ch-1 bacteria, the kineticsprocess of Cr(Ⅵ) leaching by NaCl, the process of selective leachingof Cr(Ⅵ) by HCl, and the Cr(Ⅵ) diffuse coefficient of the leachingprocess. Therefore, these processes were investigated in this study.The kinetics of every step of the process were established and theeffects of each factor on the Cr(Ⅵ) reduction and leaching rate wereinvestigated. The diffuse coefficient D of Cr(Ⅵ) was also deteminedby electrochemical method. And the technics parameters were furtheroptimized. It proved the progress of the new novel techniquethroretically and provided important theoretical proofs for Cr(Ⅵ)pollution treatment.
     The conclusions obtained are listed as follows:
     (1) The reaction rates are approximately the same under pH valueof 8 to 10 and decrease gradually when pH<8 and pH>10. Thereaction order of Cr(Ⅵ) reduction in alkaline media by bacteria iszero. The reaction rate decreases and the apparent activation energy increases along with the decrease of bacteria inoculation amounts.The kinetic equations in bacteria inoculation of50%,30%,20%,10%,5% are respectively listed as follows: v=57.5211,v=51.6306, v=45.9764, v=24.0025, v=7.3265, and the apparentactivation energys are respectively 6.89kJ/mol, 14.75 kJ/mol,19.24kJ/mol, 33.54 kJ/mol, 72.52 kJ/mol. Meanwhile, control areafigure of Cr(Ⅵ) reduction by Ch-1 bacteria with the changing of thebacteria inoculation amounts is obtained. The controlling step forreduction of Cr(Ⅵ) by bacteria is varied from inner diffusion tochemical reaction with the inoculation amounts being changed from50% to 5%. The optimized technological conditions is obtained, i.e.,temperature 30℃, pH=10 and 20% bacteria inoculation amounts.
     (2) The reaction order of slag leaching process by NaCl is 0.26,and the kinetics equation is v=3.38×10~(-7)c_(NaCl)~(0.26). The reaction rateconstant k increases with increasing pH value and shaking speed. Anddissolution rate of CaCrO_4 increases too. The apparent activationenergy is 34.24kJ/mol and relationship between temperature and k isk(T)=exp(13.71—4117.9/T).
     (3) The mathematic model of the leaching process by HCl is:v=1.8676t~(0.54). The leaching rate of Cr(Ⅵ) v decays with theexponential of -0.54. The mathematic model indicates that highleaching rate and leaching speed can be obtained under the conditionof high flowing speed, tempetrue and small slag granularity. Theoptimized conditions are pH=3, liquid to solid ratio of 5:1, flowvelocity of 180mL/min and temperature of 40℃. Under the optimizedconditions, the highest leaching rate and the least HCl consumptioncould be obtained.
     (4) The electric potential of Cr(Ⅵ) reduced to Cr(Ⅲ) under Pbelectrode pole is -0.5V(vs.SCE). The diffuse coefficient D after theCr(Ⅵ) reduction by Ch-1 bacteria(2.62×10~(-8)m~2/s) is bigger than thatof the original slags(4.4×10~(-9)m~2/s). The diffuse coefficient Dincreases during the detoxification process and it is good for theCr(Ⅵ) in the inner of the slags to dissolve out.
引文
[1] 兰嗣国,殷惠民,狄一安,等.浅谈铬渣解毒技术.环境科学研究,1998,11(3):53~56
    [2] 成思危,丁翼,杨春荣.铬盐生产工艺.北京:化学工业出版社,1988.4
    [3] 王孝峰.从原料及产品进出口看我国铬盐行业发展趋势.铬盐工业,2005,(1):36~49
    [4] 纪柱.铬渣的物相组成及其对铬渣解毒和综合利用的影响.化工环保,1984,4(1):37~41
    [5] 中国经济信息网,环境发展:国家正在制定方案 彻底治理铬渣污染[OL]http://sdep.cei.gov.cn/index/a/aindex.htm
    [6] 环境科学大辞典编辑委员会.环境科学大辞典.北京:中国环境科学出版社,1991.217~219
    [7] 王水增.铬渣污染环境的经济损失分析.中国资源综合利用,2002(11):31
    [8] 韩英魁.环保治理,刻不容缓.铬盐工业,2002,6(3):69
    [9] 纪柱.铬的健康、安全、环境指南.铬盐工业,2003,(2):1~41
    [10] 史黎蔽.铬化合物的健康效应(综述).中国环境卫生,2003,6(1~3):125~129
    [11] 张汉池,张继军,刘峰.铬的危害与防治.内蒙古石油化工,2004,30:72~73
    [12] 杨扬.铬盐废渣污染触目惊心.化工管理,2003,1:4~6
    [13] 王连升.环境健康化学.北京:科学出版社,1994.331~332
    [14] 江澜,王小兰.铬的生物作用及污染治理.重庆工商大学学报(自然科学版),2004,11(4):335~339
    [15] 谢永泉.铬的生态效应及人群保健.广东微量元素科学,1998,(4):13~15
    [16] 刘健,张琴,代群.昔日不排污,今偿环境巨债.沿海经济,2003,12:38~39
    [17] 胡舒为.民丰农化 危机重重.知识经济,2003,12:42~45
    [18] 重庆铬渣威胁三峡库区三峡库区[OL].http://www.envir.online.sh.cn/infor/index.asp
    [19] 喻志科,言娟.长沙铬盐厂急需关停[OL].红网http://xwgl.rednet.com.cn/show.asp?id=324924
    [20] 科报网 经济特刊:铬盐废渣污染触目惊心铬盐行业现状令人痛心[OL].http://stdaily.com/gb/economy
    [21] 顾宗勤.浅议我国铬盐行业的规划发展.化工技术经济,1999,17(3):11~13
    [22] 周跃.铬盐污染问题.铬盐工业,2003,5(3):37~38
    [23] 周跃.治理铬渣,世界难题的杀毒版[OL] http://www.people.com.cn/GB/huanbao/1073/2759381.html
    [24] 搬走毒渣山还清娄山河 青钢昨天开始处理囤积铬渣[OL].http://www.sina~qd.com/z/2005~04~01/news_4260.shtml
    [25] 饮水污染己达地下70米 40年铬渣山流毒不浅[OL].http://news.163.com/05/0419/07/1HMESJKA0001124T.html
    [26] 中国经济信息网,环境发展:努力实现铬渣无害化处理http://sdep.cei.gov.cn/index/a/aindex.htm
    [27] 景学森,蔡木林,杨亚提.铬渣处理处置技术研究进展.环境技术,2006,3:33~35,42
    [28] 纪柱.铬渣的危害及无害化处理综述.无机盐工业,2003,35(3):1~4
    [29] 董宝澍.铬渣的处理和利用.环境科学技术,1992,5(2):33~38
    [30] 刘谟瑾.铬盐生产的三废治理.陕西化工,1991,1:64~67
    [31] 国家环境保护局.北学工业固体废物治理.北京:中国环境科学出版社,1991.106~111
    [32] 余宇楠.国内外铬浸出渣治理方法概述.昆明冶金高等专科学校学报,1998,14(2):48~51
    [33] 梁波,宁平,马晓利.含铬废渣的无害化研究.中南大学论文集.长沙:中南大学出版社,2002
    [34] 刘大银,周才鑫,唐秋泉,等.铬渣烧结矿炼制含铬生铁工业化生产试验研究.环境科学,1994,(5):31~33
    [35] 梁爱琴,匡少平,白卯娟.铬渣治理与综合利用.中国资源综合利用,2003,1:15~18
    [36] 任希廉,蒋宪玲.铬污染的防护与铬渣的综合利用.甘肃环境研究与监测,1996,9(1):52~54
    [37] 刘谟瑾.我国铬盐生产铬渣依附产品利用现状.无机盐工业,1988,6:24~26
    [38] Ti-Tin Wang. Microbiol Reduction of chromate Environmental Microbe-metal Interactions. 2000 chapter 10: 225~232
    [39] 马锦民,张烂漫,夏君,等.微生物处理含铬(Ⅵ)废水的研究进展.江苏化工.2005,33(2):46~50
    [40] Sag Y, Kutsal T. The selective biosorption of chromium(Ⅵ)And copper(Ⅱ) ions from binary metal mixtures by R. arrhizus. Process Biochemistry, 1996, 31(6): 561~572
    [41] Prakasham R S, Sheno M J, Sheela R. etal. Biosorption of Chromium(Ⅵ) by free and immobilized Rhizopus arrhizus. Environmental Pollution, 1999, 104: 421~427
    [42] Ozdemi rGuven, CeyhanNur, OzturkTansel, etal. Biosorption of chromium(Ⅵ), cadmium(Ⅱ) and copper(Ⅱ) by Pantoea sp. TEM18. Chemical Engineering Journal, 2004, 102: 249~253
    [43] Ozdemir Guven, Ozturk Tansel, Ceyhan Nur, etal. Heavy metal biosorption by biomass of Ochrobactrum anthropi pro Ducing exopolysaccharide in activated sludge. BioresourcTechnology, 2003, 90: 71~74
    [44] Srinath T, Verma T, Ramteke P W, etal. Chromium (Ⅵ) biosorption and bioaccumulation by chromate resistant bacteria. Chemosphere, 2002, 48: 427~435
    [45] Gupta V K, Shrivastava A K, JainN. Biosorption of chromium(Ⅵ) from aqueous solutions by green algae spirogyra species. Water Research, 2001, 35(17): 4079~4085
    [46] Aksu Z, Derya A. Competitive biosorption of phenolan chromium(Ⅵ) from binary mixtures onto dried anaerobic activated sludge. Biochemical Engineering Journal, 2001 (7): 183~193
    [47] 汪频,李福德.硫酸盐还原菌还原Cr(Ⅵ)的研究.环境科学,1993,14(6):1~4
    [48] 尹华,叶锦韶,彭辉,等.掷孢酵母吸附去除铬的性能研究.环境化学,2003,22(5):469~473
    [49] BoppLH, ChakrabartyAM, EhrlichHL, etal. ChromatresistanceplasmidinPseudom onasfluorescens. JournaloBacterial, 1983, 155(3): 1105~1109
    [50] 陈林,邱廷省,陈明.生物吸附剂去除水中六价铬的实验研究.皮革科学与工程,2003,13(4):48~51
    [51] 张建民,宗刚,朱宝瑜,等.生物处理电镀铬废水的研究.工业水处理,1999,19(5):21~22
    [52] 纪柱.含Cr~(6+)废水废渣的治理新法——介绍利用细菌还原的生物化学法.铬盐工业,1997,(1):21~27
    [53] 曹宏斌,戴吴波,李玉平,等.生物法直接解毒解铬渣.第一届污染控制与资源化全国学术会议
    [54] 胡勇,全学军,谭怀琴,等.铬渣生物解毒实验研究.第一届污染控制与资源化全国学术会议
    [55] 裴耀文,骆祝华,黄翔玲,等.深海抗铬(Ⅵ)细菌的分离、鉴定及其铬(Ⅵ)还原能力的研究.海洋学报,2004,26(2):140~148
    [56] Chai Liyuan, He Dewen, Yu Xia, et. Technological progress on detoxification and comprEensive utilization of chromium containing slag. Trans Nonferrons Met Soc China, 2002, 12(3)
    [57] 龙腾发,柴立元,傅海洋.碱性介质中还原高浓度Cr(Ⅵ)细菌的分离及其特性.应用与环境生物学报.2006.12(1):80~83
    [58] 柴立元,龙腾发,唐宁,等.微生物治理碱性含铬废水的试验研究.中南大学学报(自然科学版),2005.36(5):816~820
    [59] 杨俊香,兰叶青.硫化物还原Cr(Ⅵ)的反应动力学研究.环境科学学报.2005,25(3):356~360
    [60] 曹越,杨惠森,严海英,等.铁屑处理镀铬废水的动力学影响因素.青海医学院学报.1998,19(3):18~19
    [61] 夏畅斌,何湘柱,黄念东.碳黑泥吸附Cr(Ⅵ)的动力学研究.水处理技术.2001,27(5):261~263
    [62] 张广积,方兆衍.生物氧化浸矿机理和动力学.国外金属矿选矿.2000.6:17~20
    [63] 常志东,张晨鼎.细菌浸铜动力学研究进展.湿法冶金.1996,60(12):41~43
    [64] 雷云,贾云之.细菌浸出硫化锌矿氧化动力学研究进展.有色金属.1999,51(4):80~82
    [65] 王康林,王以明,汪模辉,等.浸矿细菌生长动力学研究进展.华南地质与矿产.2001.3:62~66
    [66] Fujie K, Toda K, Ohtake H. Bacterial reduction of toxic hexavalent chromium using a fed-batch culture of enterobacter cloacae strain HO1. J Ferment bioemgr, 1990, 69(6): 460~468
    [67] Apel W A, Turick C E. Bioremediation of hexavalent chromium by bacterial reduction. Mineral Bioprocessing, 1991, 32(5): 356~401
    [68] Ohtake H, Fujii E, Toda K. A survey of effevtive electron-donors for reuction of toxic hexavalent chromium by Enterobacter cloacae (strain HO1). J Gen Appl Microbiol, 1990, 36(3): 198~206
    [69] Shen Wang. Modeling hexavalent chromium reduction in E. coliATCC33456. Biotechnol bioeing, 1994, 43(4): 290~299
    [70] 胡家骏,周群英.环境工程微生物学.北京:高等教育出版社,2000
    [71] Ohtake H, Fujii E, Toda K. A survey of effevtive electron-donors for reuction of toxic hexavalent chromium by Enterobacter cloacae (strain HO1). J Gen Appl Microbiol, 1990, 36(3): 198~206
    [72] Komori K, Wong P, Ohtake H. Factors affectin chromium reduction in Enterobacter cloacaEO 1. Appl Mocrobiol biotechnol, 1989, 31 (4): 564~571
    [73] Fujie K, Tsucgida T, Urano K, etc. Ddevelopment of a bioreactor system for the treatment of chromium wastement using Enterobacter cloacaEO1. Water Sci Technil, 1994, 30(3): 230~239
    [74] Shen H, Wang Y T. Biological reduction of chromium by E.coli. J Environ Eng Am Soc Civil Eng, 1994, 120(3): 553~563
    [75] Shen H, Wang Y T. Simulataneous chromium reduction and phenol degradation in a coculture of Eschercia coli 33456 and Pseudomonas putida DMP-1. Appl Enciron Microbiol, 1995, 61 (7): 2747~2758
    [76] 赵宇华.硫酸盐还原菌及影响因子.环境污染与防治,1997,10:41~43
    [77] 石燕.微生物法处理含铬废水的研究进展.江苏环境科技,2001,14(4):35~37
    [78] Ti Tin, Wang. Microbial reduction of chromium environmental. Microbe-metal Interactions, 2000, 10: 225~232
    [79] Gvozdyak P L, Mogilavich N F, Rylskii A F, etc. Reduction of hexavalent chromium by collection strain of bactera. Mikrobioligiya, 1986, 55(6): 958~966
    [80] Liovera S, Bonet R, Simon Pujil M D, etc. Chromiun reduction by resting cells of Agrbacterium radiobacter. Appl Microbiol Biotechnol, 1993, 39(3): 422~427
    [81] Hardoyo K J, Ohtake H. Effects of heavy metal cations on chromate reduction by Enterobacter cloacae strain HO1. J Gem Appl Microbiol, 1991, 37(5): 516~523
    [82] 李新荣,沈德中.硫酸盐还原菌的生态特性及应用.应用生物学报,1999,5:10~13
    [83] 冯易君,李福德.共存离子对硫酸盐还原菌还原Cr(Ⅵ)的影响研究.工业水处理,1995,17(4):15~17
    [84] Ishibashi Y, Cervantes C, Silver S. Chromiun reduction in Pseudomonas putide. Appl Environ Microbiol, 1990, 56(7): 2263~2270
    [85] 胡凯,季永盛.含铬废水治理技术及应用现状.中国资源综合利用.2005(3):28~29
    [86] 龙腾发,柴立元,郑粟,等.生物法解毒六价铬技术的应用现状与进展.安全与环境工程.2004.11(3):22~30
    [87] James B. R. Hexavalent chromium solubility and reduction in alkaline solids enriched with chromite ore processing residue. J. Environ. Qual. 1994, (23): 227~233
    [88] 李福德.微生物治理电镀废水新技术.中国环保产业,1997.8(4):28~30
    [89] 周海涛,白毓谦.一株六价铬还原菌的分离及其用于含铬废水处理的初步研 究.青岛海洋大学学报.1991,21(3):104~110
    [90] Shen H, Wang Y T. Modeling hexavalent chromium reduction in escherichia Coi133456. Biotechnology and Bioengeering. 1994, 43(4): 293~300.
    [91] K Komori. Biological removal of toxic chromium using an enter-obacter cloacae strain that reduces chromate under anaerobic conditions. Biotechnology and Bioengineering, 1990(35): 951~954
    [92] 魏复盛,国家环保局《水和废水监测分析方法》编委会.水和废水监测分析方法.北京:中国环境科学出版社,2002:157~162
    [93] 俞毓馨.环境微生物检测手册.北京:中国环境科学出版社,1998.1~2
    [94] 王家玲.环境微生物学实验.北京:高校教育出版社,1998.82-84
    [95] 傅献彩,沈文霞,姚天扬.物理化学(第四版).北京:高等教育出版社.1990,10
    [96] Sohn H.Y,Wadsworth M.E.等著,郑蒂基译.提取冶金速率过程.北京:冶金工业出版社.1984, 12
    [97] 莫鼎成.冶金动力学.长沙:中南工业大学出版社.1987,9
    [98] 工业固体废物有害特性试验与监测分析方法组.工业固体废物有害特性试与监测分析方法(试行).北京:中国环境科学出版社,1986
    [99] 王明杰,王素芳.固体废物的样品采集和制各方法研究.中国环境监测,1993.9(1):1~8
    [100] 龙腾发,柴立元,傅海洋,等.铬渣浸出毒性试验研究.环境工程,2004,22(6):71~73
    [101] 纪柱.治理铬渣的两个关键.无机盐工业,2004,36(5):1~4
    [102] 江体乾.化工数据处理.北京:化学工业出版社,1984

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700