c-Abl激酶参与调控β2整联蛋白介导的中性粒细胞迁移的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中性粒细胞(Polymorphonuclear neutrophils,PMN)是人体外周血中含量最多的白细胞,是参与早期炎症反应的重要免疫细胞之一,迁移对于中性粒细胞发挥其生理功能有着重要的意义。当机体遭受外来细菌或其他病原体入侵时,中性粒细胞在第一时间被募集到感染部位,充当了机体的第一道防线,这种防御机制是建立在中性粒细胞迁移和趋化基础上的。在各种趋化物的作用下,中性粒细胞凭借黏附受体以及胞内分子对炎性信号的优化和放大,能够迅速极化并准确向炎症部位形成定向迁移,发挥免疫清除作用。中性粒细胞是一把“双刃剑”,在某些病理条件下导致的中性粒细胞的大量组织浸润,可以引发过度炎症反应,常常造成机体组织的严重伤害,是急性肺损伤、急性呼吸窘迫综合征等炎症相关疾病的主要成因。因而,深入揭示中性粒细胞迁移的分子机制、筛选干预中性粒细胞迁移的作用靶点,将具有重要的生理及病理意义。
     中性粒细胞迁移依赖多种黏附分子的参与,其中β2整联蛋白对于中性粒细胞与活化血管内皮间的稳定黏附以及迁移起着重要作用。β2整联蛋白家族是白细胞特异性表达的黏附分子,它们由一个共同的β亚基分别和四种α亚基构成以非共价键结合的异源二聚体。静息状态下,β2整联蛋白呈现低亲和力构型。中性粒细胞在选择素介导的滚动黏附作用以及趋化因子的刺激下,β2整联蛋白能够迅速活化并与其配体结合,通过整联蛋白的“outside-in”信号调节细胞骨架变化,从而影响细胞稳定黏附、铺展及迁移。但是,对于β2整联蛋白介导的中性粒细胞迁移的分子调控机制尚不明确。在中性粒细胞中,β2整联蛋白与生理配体的交联刺激能够活化胞内多种酪氨酸激酶,通过激活这些酪氨酸激酶向胞内传递骨架调节信号,影响细胞骨架重塑及细胞迁移。c-Abl激酶是一种重要的非受体酪氨酸激酶,具有广泛的生物学效应,它主要受到黏附受体以及生长因子受体的调控,参与黏附受体以及生长因子受体引起的信号转导事件,调控包括细胞周期、细胞凋亡、基因表达、DNA损伤修复以及F-actin依赖的细胞骨架变化在内的一系列重要细胞活动进程。有文献报道,在多种细胞类型中,整联蛋白家族成员均可以活化c-Abl激酶,并且参与调控细胞的稳定黏附与铺展。本文将主要探讨c-Abl非受体酪氨酸激酶在β2整联蛋白介导的中性粒细胞迁移过程中的生理功能及作用机制。
     本论文综合运用急性腹腔炎小鼠模型、Transwell及琼脂糖悬滴迁移模型,从体内、外层面评价c-AbI激酶对中性粒细胞迁移的影响,利用活细胞显微成像分析系统实时观察并记录c-AbI激酶活性对中性粒细胞迁移行为的影响,为揭示c-AbI激酶可能的作用环节提供线索。采用流式细胞术、免疫荧光,GST pull-down,免疫共沉淀、体外激酶反应等实验技术与方法深入揭示β2整联蛋白介导的中性粒细胞迁移进程中c-AbI激酶的可能作用机制。
     通过本论文的研究发现,c-AbI激酶活性在中性粒细胞向炎症部位的募集以及β2整联蛋白介导的中性粒细胞迁移过程中起着重要的作用。当c-AbI激酶活性受到抑制后,中性粒细胞的组织浸润和迁移行为受到严重影响,同时,中性粒细胞迁移前缘的形成及细胞膜的外向伸展受到显著抑制。当fMLP刺激激发细胞建立新的黏附联系时,导致β2整联蛋白与配体充分交联,这一过程能够触发c-AbI激酶活化,并在β2整联蛋白介导的F-actin细胞骨架重塑事件中发挥重要作用。
     Rho家族小G蛋白(Rho Small GTPase)作为“分子开关”,参与调节中性粒细胞骨架的动态变化,是调控中性粒细胞黏附、极化、迁移的核心分子。Rho GTPase家族成员在鸟苷酸交换因子(Guanine-nucleotide exchange factor, GEF)的催化下,由GDP结合的非活化状态向GTP结合的活化状态转换。Rac1是Rho GTPase家族中的重要成员,它通过参与调节骨架动态与片层伪足形成影响细胞极化、黏附与迁移。Vav1作为活化Rac1的主要GEF,可以在黏附受体的下游调节肌动蛋白细胞骨架重排,参与了β2整联蛋白依赖的中性粒细胞铺展与稳定黏附。我们的工作发现,在β2整联蛋白介导的中性粒细胞迁移过程中,c-AbI激酶与Vav1存在共定位现象,并利用免疫共沉淀技术证实二者存在于同一功能复合物中,通过GST pull-down分析发现c-AbI激酶与Vav1二者是直接结合的, Vav1中C-末端的SH3、SH2结构域和脯氨酸富集区是介导Vav1与c-AbI激酶相互作用的关键结构域。通过体外激酶实验发现Vav1是c-AbI激酶下游重要效应分子,c-AbI激酶活性影响β2整联蛋白依赖的Vav1磷酸化水平。利用Scansite磷酸化位点预测分析以及定点突变技术,发现Vav1的Dbl同源(DH)结构域中Tyr-267是c-AbI激酶的主要磷酸化位点。c-AbI激酶对中性粒细胞迁移的调节作用,可能是通过影响Vav1/Rac1介导的细胞骨架重塑而实现的。
PMN is an essential component of the innate immune system. When acute inflammationoccurs, neutrophils are rapidly recruited and extravasated from blood into infection sites,where they destroy the invading microorganisms by phagocytosis of pathogens and releasingseveral antimicrobial chemicals. However, the excessive and improper recruitment ofneutrophils usually result in serious tissue injury. Therefore, understanding the molecularmechanism underlying the recruitment and migration of neutrophil is of great physiologicaland pathological importance.
     Cell migration is a highly complicated and regulated process, in which the regulation ofactin cytoskeleton plays a pivotal role by promoting the formation of membrane protrusions atthe leading edge and providing a driving force, together with molecular motors, to move thecell body. Molecules involved in regulating actin cytoskeleton rearrangement have been wellidentified. A variety of adhesion molecules is required for neutrophil migration, in which theβ2integrin plays an important role in the stable adhesion between neutrophils and activatedvascular endothelial and transendothelial migration. β2integrin family is highly expressedadhesion molecules in the neutrophil cell surface, they are formed by a common β subunitwith four α subunit, forming non-covalent heterodimer. In resting neutrophils, β2integrin ispresent in low-affinity state. Once the stimulation of chemokines, β2integrin is rapidactivated, and adjust the dynamic changes of the cytoskeleton by the"outside-in" signalingpathway, and ultimately regulate cell migration movement. However, the molecularmechanism for the β2integrin-mediated neutrophil migration is still unclear. The engagementof β2integrin can activate a variety of non-receptor tyrosine kinase, induce cell cytoskeletonrearrangement. c-Abl kinase, a nonreceptor tyrosine kinase expressed ubiquitously inmammalian cells, serves as an important link in signal transduction pathways that promoteactin dynamics and cytoskeletal rearrangement. Especially, c-Abl kinase is a key factorinvolved in the formation of membrane ruffling and cell spreading, as well as the dynamicformation or extension of filopodia and lamellipodia in response to extracellular signal or adhesion stimulation. However, the mechanisms underlying the regulation of actincytoskeleton by c-AbI kinase and the downstream effector of c-AbI kinase, as well as theirroles in neutrophil migration, have not been well identified.
     The rearrangement of actin cytoskeleton is highly influenced by the activity of Rho familyGTPases. One extensively studied family of GEF, which is responsible for the enzymaticactivity of Rho GTPases, is the Dbl family proto-oncogene Vav. Vav1, the first discoveredmember, is a hematopoietic, cell-specific signal protein, and it is involved in the alterations ofcell shape and motility by triggering cytoskeletal changes, as demonstrated by its ability toinduce membrane ruffles and lamellipodia formation.
     In the present study, a signaling mechanism that controls actin polymerization andmembrane protrusion dynamics at the leading edge during β2integrin-dependent neutrophilmigration is well-defined, with c-AbI kinase playing a central, regulatory role. In addition, wefind Vav1colocalizes and interacts with c-AbI kinase at the leading edges of migratingneutrophils. Vav1is phosphorylated directly by c-AbI kinase at Tyr-267in the DH domain.Taken together, we demonstrate a critical role of c-AbI kinase in neutrophil migration byregulating Vav1activity, providing the feasibility to target c-AbI kinase for the amelioration ofacute inflammation-related diseases.
引文
1. MacGrath SM, Koleske AJ. Cortactin in cell migration and cancer at a glance.J Cell Sci.2012,125:1621-1626.
    2. Chodniewicz D, Klemke RL. Guiding cell migration through directed extensionand stabilization of pseudopodia. Exp Cell Res.2004,301:31-37.
    3. Fackler OT, Grosse R. Cell motility through plasma membrane blebbing. J CellBiol.2008,181:879-884.
    4. Wolf K, Müller R, Borgmann S, Br cker EB, Friedl P. Amoeboid shape changeand contact guidance: T-lymphocyte crawling through fibrillar collagen isindependent of matrix remodeling by MMPs and other proteases. Blood.2003,102:3262-3269.
    5. Huttenlocher A. Cell polarization mechanisms during directed cell migration. NatCell Biol.2005,7:336-337.
    6. Kirfel G, Rigort A, Borm B, Herzog V. Cell migration: mechanisms of reardetachment and the formation of migration tracks. Eur J Cell Biol.2004,83:717-724.
    7. Stroka KM, Aranda-Espinoza H. A biophysical view of the interplay betweenmechanical forces and signaling pathways during transendothelial cell migration.FEBS J.2010,5:1145-1158.
    8. Ulrich F, Heisenberg CP. Trafficking and cell migration. Traffic2009,10:811-818
    9. Ilina O, Friedl P. Mechanisms of collective cell migration at a glance. J Cell Sci.2009,122:3203-3208.
    10. Salbreux G, Charras G, Paluch E. Actin cortex mechanics and cellularmorphogenesis. Trends Cell Biol.2012,22:536-545.
    11. Li M, Hale JS, Rich JN, Ransohoff RM, Lathia JD. Chemokine CXCL12inneurodegenerative diseases: an SOS signal for stem cell-based repair. TrendsNeurosci.2012,35:619-628.
    12. Kiefel H, Bondong S, Hazin J, Ridinger J, Schirmer U, Riedle S, Altevogt P.L1CAM: a major driver for tumor cell invasion and motility. Cell Adh Migr.2012,6:374-384.
    13. Baranwal S, Alahari SK. Rho GTPase effector functions in tumor cell invasionand metastasis. Curr Drug Targets.2011,12:1194-1201.
    14. Baranwal S, Alahari SK. miRNA control of tumor cell invasion and metastasis.Int J Cancer.2010,126:1283-1290.
    15. Summers C, Rankin SM, Condliffe AM, Singh N, Peters AM, Chilvers ER.Neutrophil kinetics in health and disease. Trends Immunol.2010,31:318-324.
    16. Hayashi Y, Call MK, Chikama T, Liu H, Carlson EC, Sun Y, Pearlman E,Funderburgh JL, Babcock G, Liu CY, Ohashi Y, Kao WW. Lumican is requiredfor neutrophil extravasation following corneal injury and wound healing. J. CellSci.2010,123:2987-2995.
    17. Tanya NM, George CT, Naotake T. Mechanisms of immune complex-mediatedneutrophil recruitment and tissue injury. Circulation,2009,120:2012-2024.
    18. Friedl P, Weigelin B. Interstitial leukocyte migration and immune function. NatImmunol.2008,9:960-969.
    19. Angeli V, Randolph GJ. Inflammation, lymphatic function, and dendritic cellmigration. Lymphat Res Biol.2006,4:217-228.
    20. Friedl P. Prespecification and plasticity: shifting mechanisms of cell migration.Curr Opin Cell Biol.2004,16(1):14-23.
    21. Watanabe T, Noritake J, Kaibuchi K. Regulation of microtubules in cellmigration.Trends Cell Biol.2005,15:76-83.
    22. Petrie RJ, Doyle AD, Yamada KM. Random versus directionally persistent cellmigration. Nat Rev Mol Cell Biol.2009,10:538-549.
    23. Le Clainche C, Carlier MF. Regulation of actin assembly associated withprotrusion and adhesion in cell migration. Physiol Rev.2008,88:489-513.
    24. Charest PG, Firtel RA. Feedback signaling controls leading-edge formation duringchemotaxis. Curr Opin Genet Dev.2006,16:339-347.
    25. Serrano-Pertierra E, Cernuda-Morollón E, López-Larrea C. Wiskott-Aldrichsyndrome protein (WASp) and N-WASp are involved in the regulation of NK-cellmigration upon NKG2D activation. Eur J Immunol.2012,42:2142-2151.
    26. Kumar S, Xu J, Perkins C, Guo F, Snapper S, Finkelman FD, Zheng Y, FilippiMD. Cdc42regulates neutrophil migration via crosstalk between WASp, CD11b,and microtubules. Blood.2012,120(17):3563-3574.
    27. Pankov R, Endo Y, Even-Ram S, Araki M, Clark K, Cukierman E, Matsumoto K,Yamada KM. A Rac switch regulates random versus directionally persistent cellmigration. J Cell Biol.2005,170(5):793-802.
    28. Caswell PT, Norman JC. Integrin trafficking and the control of cell migration.Traffic2006,7:14–21.
    29. Moissoglu K, Schwartz MA. Integrin signalling in directed cell migration. BiolCell.2006,98:547-555.
    30. Lock JG, Wehrle-Haller B, Str mblad S. Cell-matrix adhesion complexes: mastercontrol machinery of cell migration. Semin Cancer Biol.2008,18:65-76.
    31. Truong H, Danen EH. Integrin switching modulates adhesion dynamics and cellmigration. Cell Adh Migr.2009,3:179-181.
    32. Feldman JL, Priess JR. A role for the centrosome and PAR-3in the hand-off ofMTOC function during epithelial polarization. Curr Biol.2012,22(7):575-582.
    33. Filbert EL, Le Borgne M, Lin J, Heuser JE, Shaw AS. Stathmin regulatesmicrotubule dynamics and microtubule organizing center polarization in activatedT cells. J Immunol.2012,188:5421-5427.
    34. Vicente-Manzanares M, Choi CK, Horwitz AR. Integrins in cell migration—theactin connection. J Cell Sci.2009,122:199-206.
    35. Cotton M, Claing A. G protein-coupled receptors stimulation and the control ofcell migration. Cell Signal.2009,21:1045-1053.
    36. Wiesner S, Legate KR, F ssler R. Integrin-actin interactions. Cell Mol Life Sci.2005,62:1081-1099.
    37. Cain RJ, Ridley AJ.1Phosphoinositide3-kinases in cell migration Biol. Cell.2009,101:13-29.
    38. Haraguchi M. The role of the transcriptional regulator snail in cell detachment,reattachment andmigration. Cell Adh Migr.2009,3:259-263.
    39. Rao PV. The pulling, pushing and fusing of lens fibers: a role for Rho GTPases.Cell Adh Migr.2008,2:170-173.
    40. Worthylake RA, Lemoine S, Watson JM, Burridge K. RhoA is required formonocyte tail retraction during transendothelial migration. J Cell Biol.2001,154:147-160.
    41. Luster AD, Alon R, von Andrian UH. Immune cell migration in inflammation:present and future therapeutic targets. Nat Immunol.2005,6(12):1182-1190.
    42. Nobes CD, Hall A. Rho GTPases control polarity, protrusion, and adhesion duringcell movement. J Cell Biol.1999,144:1235-1244.
    43. Cose S. T-cell migration: a naive paradigm? Immunology.2007,120:1-7.
    44. von Andrian UH, Mackay CR. T-cell function and migration. Two sides of thesame coin. N Engl J Med.2000,343:1020-1034.
    45. Friedl P, Borgmann S, Br cker EB. Amoeboid leukocyte crawling throughextracellular matrix: lessons from the Dictyostelium paradigm of cell movement. JLeukoc Biol.2001,70:491-509.
    46. Westermann J, Ehlers EM, Exton MS, Kaiser M, Bode U. Migration of naive,effector and memory T cells: implications for the regulation ofimmune responses.Immunol Rev.2001,184:20-37.
    47. Kelly M, Hwang JM, Kubes P. Modulating leukocyte recruitment in inflammation.J Allergy Clin Immunol,2007,120:3-10.
    48. Kubes P, Ward PA. Leukocyte recruitment and the acute inflammatory response.Brain Pathol.2006,10:127-135.
    49. Somers, W.S., Tang, J., Shaw, G.D., Camphausen, R.T.(2000). Insights into themolecular basis of leukocyte tethering and rolling revealed by structures of P-andE-Selectin bound to sLex and PSGL-1. Cell.103,467-479.
    50. Geng JG, Chen M, Chou KC. P-selectin cell adhesion molecule in inflammation,thrombosis, cancer growth and metastasis. Curr Med Chem.2004,11:2153-2160.
    51. Woollard KJ, Chin-Dusting J. P-selectin antagonism in inflammatory disease.Curr Pharm Design,2010,16:4113-4118.
    52. Lindbom L, Werr J. Integrin-dependent neutrophil migration in extravasculartissue. Semin Immunol.2002,14:115-121.
    53. Janetopoulos C, Firtel RA. Directional sensing during chemotaxis. FEBS Lett.2008,582:2075-2085.
    54. Henkels KM, Frondorf K, Gonzalez-Mejia ME, Doseff AL, Gomez-Cambronero J.IL-8-induced neutrophil chemotaxis is mediated by Janus kinase3(JAK3). FEBSLett.2011,585:159-166.
    55. Sasaki AT, Firtel RA. Regulation of chemotaxis by the orchestrated activation ofRas, PI3K, and TOR. Eur J Cell Biol.2006,85:873-895.
    56. Simon SI, Green CE. Molecular mechanics and dynamics of leukocyterecruitment during inflammation. Annu Rev Biomed Eng.2005,7:151-185.
    57. Subramanian H, Grailer JJ, Ohlrich KC, Rymaszewski AL, Loppnow JJ, KoderaM, Conway RM, Steeber DA. Signaling through L-selectin mediates enhancedchemotaxis of lymphocyte subsets to secondary lymphoid tissue chemokine. JImmunol.2012,188:3223-3236.
    58. Koenderman L, van der Linden JA, Honing H, Ulfman LH. Integrins onneutrophils are dispensable for migration into three-dimensional fibrin gels.Thromb Haemost.2010,104:599-608.
    59. Schmidt S, Friedl P. Interstitial cell migration: integrin-dependent and alternativeadhesion mechanisms. Cell Tissue Res.2010,339:83-92.
    60. Schymeinsky J, Mócsai A, Walzog B. Neutrophil activation via beta2integrins(CD11/CD18): molecular mechanisms and clinical implications. Thromb Haemost.2007,98:262-273.
    61. Rose DM, Alon R, Ginsberg MH. Integrin modulation and signaling in leukocyteadhesion and migration. Immunol Rev.2007,218:126-134.
    62. Guo W, Giancotti FG. Integrin signalling during tumour progression. Nat RevMol Cell Biol.2004,5:816-826.
    63. Harburger DS, Calderwood DA. Integrin signalling at a glance. J. Cell Sci.2009,122:159-163.
    64. Rose DM, Alon R, Ginsberg MH. Integrin modulation and signaling in leukocyteadhesion and migration. Immunol Rev.2007,218:126-134.
    65. Anderson SI, Behrendt B, Machesky LM, Insall RH, Nash GB. Linked regulationof motility and integrin function in activated migrating neutrophils revealed byinterference in remodelling of the cytoskeleton. Cell Motil Cytoskeleton.2003,54:135-146.
    66. Shulman Z, Shinder V, Klein E, Grabovsky V, Yeger O, Geron E, MontresorA, Bolomini-Vittori M, Feigelson SW, Kirchhausen T, Laudanna C, ShakharG, Alon R. Lymphocyte crawling and transendothelial migration requirechemokine triggering of high-affinity LFA-1integrin. Immunity.2009,30:384-396.
    67. Moser M, Legate KR, Zent R, F ssler R. The tail of integrins, talin, and kindlins.Science.2009,324:895-899.
    68. Ostermann G, Weber KS, Zernecke A, Schr der A, Weber C. JAM-1isa ligand of the beta(2) integrin LFA-1involved in transendothelial migration ofleukocytes. Nat Immunol.2002,3:151-158.
    69. Krauss K, Altevogt P. Integrin leukocyte function-associated antigen-1-mediatedcell binding can be activated by clustering of membrane rafts. J Biol Chem.1999,274:36921-36927.
    70. Liu DQ, Li LM, Guo YL, Bai R, Wang C, Bian Z, Zhang CY, Zen K. Signalregulatory protein alpha negatively regulates beta2integrin-mediated monocyteadhesion, transendothelial migration and phagocytosis. PLoS One.2008,3(9):e3291.
    71. Yan SR, Novak MJ. Beta2integrin-dependent phosphorylation of protein-tyrosinekinase Pyk2stimulated by tumor necrosis factor alpha and fMLP in humanneutrophils adherent to fibrinogen. FEBS Lett.1999,451:33-38.
    72. Tan SM. The leucocyte β2(CD18) integrins: the structure, functional regulationand signalling properties. Biosci Rep.2012,32:241-269.
    73. Fujiwara H, Gu J, Sekiguchi K. Rac regulates integrin-mediated endothelial celladhesion and migration on laminin-8. Exp Cell Res.2004,292:67-77.
    74. Jakus Z, Fodor S, Abram CL, Lowell CA, Mócsai A. Immunoreceptor-likesignaling by beta2and beta3integrins. Trends Cell Biol.2007,17:493-501.
    75. Constantin G. Chemokine signaling and integrin activation in lymphocytemigration into the inflamed brain. J Neuroimmunol.2008,198:20-26.
    76. Gismondi A, Jacobelli J, Strippoli R, Mainiero F, Soriani A, Cifaldi L, PiccoliM, Frati L, Santoni A. Proline-rich tyrosine kinase2and Rac activation bychemokine and integrin receptors controls NK cell transendothelial migration. JImmunol.2003,170:3065-3073.
    77. Basile JR, Gavard J, Gutkind JS. Plexin-B1utilizes RhoA and Rho kinase topromote the integrin-dependent activation of Akt and ERK and endothelial cellmotility. J Biol Chem.2007,282:34888-34895.
    78. Stefanidakis M, Koivunen E. Cell-surface association between matrixmetalloproteinases and integrins: role of the complexes in leukocyte migration andcancer progression. Blood.2006,108:1441-1450.
    79. Pendergast AM. The Abl family kinases: mechanisms of regulation and signaling.Adv. Cancer Res.2002,85:51-100.
    80. Hernández SE, Krishnaswami M, Miller AL, Koleske AJ. How do Abl familykinases regulate cell shape and movement? Trends Cell Biol.2004,14:36-44.
    81. Hong J, Peng D, Chen Z, Sehdev V, Belkhiri A.ABL regulation by AXL promotescisplatin resistance in esophageal cancer. Cancer Res.2013,73:331-340.
    82. Zhao H, Ho PC, Lo YH, Espejo A, Bedford MT, Hung MC, Wang SC. Interactionof proliferation cell nuclear antigen (PCNA) with c-Abl in cell proliferation andresponse to DNA damages in breast cancer. PLoS One.2012,7(1):e29416.
    83. Bates JG, Salzman J, May D, Garcia PB, Hogan GJ, McIntosh M, Schlissel MS,Brown PO. Extensive gene-specific translational reprogramming in a model of Bcell differentiation and Abl-dependent transformation. PLoS One.2012,7(5):e37108.
    84. Ren X, Xu J, Cooper JP, Kang MH, Erdreich-Epstein A. c-Abl is an upstreamregulator of acid sphingomyelinase in apoptosis induced by inhibition of integrinsαvβ3and αvβ5. PLoS One.2012,7(8):e42291.
    85. Woodring PJ, Meisenhelder J, Johnson SA, Zhou GL, Field J, Shah K, Bladt F,Pawson T, Niki M, Pandolfi PP, Wang JY, Hunter T. c-Abl phosphorylates Dok1to promote filopodia during cell spreading. J. Cell Biol.2004,165:493-503.
    86. Woodring PJ, Hunter T, Wang JY. Regulation of F-actin-dependent processes bythe Abl family of tyrosine kinases. J. Cell Sci.2003,116:2613-2626.
    87. Baruzzi A, Berton G. The tyrosine kinase Abl is a component of macrophagepodosomes and is required for podosome formation and function. Eur. J. Immunol.2012,42:2720-2726.
    88. Cui L, Chen C, Xu T, Zhang J, Shang X, Luo J, Chen L, Ba X, Zeng X. c-Ablkinase is required for beta2integrin-mediated neutrophil adhesion. J. Immunol.2009,182:3233-3242.
    89. Panjarian S, Iacob RE, Chen S, Engen JR, Smithgall TE. Structure and dynamicregulation of abl kinases. J Biol Chem.2013,288:5443-5450.
    90. Bradley WD, Koleske AJ. Regulation of cell migration and morphogenesis byAbl-family kinases: emerging mechanisms and physiological contexts. J. Cell Sci.2009,122:3441-3454.
    91. Huang Y, Comiskey EO, Dupree RS, Li S, Koleske AJ, Burkhardt JK. The c-Abltyrosine kinase regulates actin remodeling at the immune synapse. Blood.2008,112:111-119.
    92. Van Etten RA. c-Abl regulation: a tail of two lipids. Curr Biol.2003,13:R608-610.
    93. Cao X, Tanis KQ, Koleske AJ, Colicelli J. Enhancement of ABL kinase catalyticefficiency by a direct binding regulator is independent of other regulatorymechanisms. J Biol Chem.2008,283:31401-31407.
    94. Woodring PJ, Hunter T, Wang JY. Inhibition of c-Abl tyrosine kinase activity byfilamentous actin. J Biol Chem.2001,276:27104-27110.
    100.Lewis JM, Baskaran R, Taagepera S, Schwartz MA, Wang JY. Integrinregulation of c-Abl tyrosine kinase activity and cytoplasmic-nuclear transport.Proc Natl Acad Sci U S A.1996,93:15174-15179.
    101. Ko HS, Lee Y, Shin JH, Karuppagounder SS, Gadad BS, Koleske AJ, PletnikovaO, Troncoso JC, Dawson VL, Dawson TM. Phosphorylation by the c-Abl proteintyrosine kinase inhibits parkin's ubiquitination and protective function. Proc NatlAcad Sci U S A.2010,107(38):16691-16696.
    102. Chen C, Shang X, Xu T, Cui L, Luo J, Ba X, Hao S, Zeng X. c-Abl is requiredfor the signaling transduction induced by L-selectin ligation. Eur J Immunol.2007,37:3246-3258.
    103. Woodring PJ, Litwack ED, O'Leary DD, Lucero GR, Wang JY, Hunter T.Modulation of the F-actin cytoskeleton by c-Abl tyrosine kinase in cell spreadingand neurite extension. J. Cell Biol.2002,156:879-892.
    104. Qiu Z, Cang Y, Goff SP. c-Abl tyrosine kinase regulates cardiac growth anddevelopment. Proc Natl Acad Sci U S A.2010,107:1136-1141.
    105. Schlatterer SD, Suh HS, Conejero-Goldberg C, Chen S, Acker CM, Lee SC,Davies P. Neuronal c-Abl activation leads to induction of cell cycle andinterferon signaling pathways. J Neuroinflammation.2012,9:208.
    106. Barilà D, Rufini A, Condò I, Ventura N, Dorey K, Superti-Furga G, Testi R.Caspase-dependent cleavage of c-Abl contributes to apoptosis. Mol Cell Biol.2003,23:2790-2799.
    107. Welch P J, Wang J Y J. A C-terminal protein-binding domain in theretinoblastoma protein regulates nuclear c-Abl tyrosine kinase in the cell cycle.Cell.1993,75:779-790.
    108. Wen S T, Jackson P K, Van Etten R A. The cytostatic function of c-Abl iscontrolled by multiple nuclear localization signals and requires the p53and Rbtumor suppressor gene products. EMBO J.1996,15:1583-1595.
    109. Furlan A, Lamballe F, Stagni V, Hussain A, Richelme S, Prodosmo A, MoumenA, Brun C, Del Barco Barrantes I, Arthur JS, Koleske AJ, Nebreda AR, Barilà D,Maina F. Met acts through Abl to regulate p53transcriptional outcomesand cell survival in the developing liver. J Hepatol.2012,57:1292-1298.
    110. H gerkvist R, Mokhtari D, Lindholm C, Farnebo F, Mostoslavsky G, MulliganRC, Welsh N, Welsh M. Consequences of Shb and c-Abl interactions for celldeath in response to various stress stimuli. Exp Cell Res.2007,313:284-291.
    111.Yuan ZM, Shioya H, Ishiko T. p73is regulatedby tyrosine-kinase c-Abl in theapoptotic response to DNA damage. Nature.1999,399:814-817.
    112.Huang Y, Yuan ZM, Ishiko T. Pro-apoptotic effect of the c-Abl tyrosine kinase inthe cellular response to1-beta-D-arabinofuranosylcytosine. Oncogene.1997,15:1947-1952.
    113.Yuan ZM, Huang Y, Ishiko T. Regulation of DNA damage-induced apoptosis bythe c-Abl tyrosine kinase. Proc Natl Acad Sci.1997,94:1437-1440.
    114.Gong JG, Costanzo A, Yang HQ. The tyrosine-kinase c-Abl regulates p73inapoptotic response to cisplatin-induced DNA damage. Nature.1999,399:806-809.
    115.Van Etten R A. Cycling, stressed-out and nervous: cellular functions of c-Abl.Trends Cell Biol.1999,9:179-186.
    116.Jing Y, Wang M, Tang W, Qi T, Gu C, Hao S, Zeng X. c-Abl tyrosine kinaseactivates p21transcription via interaction with p53. J Biochem.2007,141(5):621-626.
    117.Wei G, Li AG, Liu X. Insights into selective activation of p53DNA bindingby c-Abl. J Biol Chem.2005,280:12271-12278.
    118.Jing Y, Song Z, Wang M, Tang W, Hao S, Zeng X. c-Abl tyrosine kinaseregulates c-fos gene expression via phosphorylating RNA polymerase II. ArchBiochem Biophys.2005,437:199-204.
    119.Jin H, Wang JY. Abl tyrosine kinase promotes dorsal ruffles but restrainslamellipodia extension during cell spreading on fibronectin. Mol Biol Cell.2007,18:4143-4154.
    120.Sossey-Alaoui K, Li XR, Cowell JK. c-Abl-mediated phosphorylation ofWAVE3is required for lamellipodia formation and cell migration. J. Biol. Chem.2007,282:26257-26265.
    121.Stuart JR, Gonzalez FH, Kawai H, Yuan ZM. c-Abl interacts with the WAVE2signaling complex to induce membrane ruffling and cell spreading. J. Biol. Chem.2006,281:31290-31297.
    122.Zheng W, Lennartsson J, Hendriks W, Heldin CH, Hellberg C. The LAR proteintyrosine phosphatase enables PDGF β-receptor activation through attenuation ofthe c-Abl kinase activity. Cell Signal.2011,23:1050-6.
    123.Elwell CA, Ceesay A, Kim JH, Kalman D, Engel JN. RNA interference screenidentifies Abl kinase and PDGFR signaling in Chlamydia trachomatis entry.PLoS Pathog.2008,4(3):e1000021.
    124.Cui L, Chen C, Xu T, Zhang J, Shang X, Luo J, Chen L, Ba X, Zeng X. c-Ablkinase is required for beta2integrin-mediated neutrophil adhesion. JImmunol.2009,182:3233-3242.
    125.Hantschel O, Superti-Furga G. Regulation of the c-Abl and Bcr-Abl tyrosinekinases. Nat Rev Mol Cell Biol.2004,5:33-44.
    126.Wei G, Rafiyath S, Liu D. First-line treatment for chronic myeloid leukemia:dasatinib, nilotinib, or imatinib. J Hematol Oncol.2010,3:47.
    127.Jinnai I. Antileukemic drug--a selective inhibitor of BCR-ABL tyrosine kynase,imatinib (STI571). Curr Opin Oncol.2002,60:88-94.
    128.Tybulewicz VL. Vav-family proteins in T-cell signalling. Curr. Opin. Immunol.2005,17:267-274.
    129.Chrencik JE, Brooun A, Zhang H, Mathews II, Hura GL, Foster SA, Perry JJ,Streiff M, Ramage P, Widmer H, Bokoch GM, Tainer JA, Weckbecker G, KuhnP. Structural basis of guanine nucleotide exchange mediated by the T-cellessential Vav1. J. Mol. Biol.2008,380:828-843.
    130.Tybulewicz VL, Ardouin L, Prisco A, Reynolds LF. Vav1: a key signaltransducer downstream of the TCR. Immunol. Rev.2003,192:42-52.
    131.Bhavsar PJ, Vigorito E, Turner M, Ridley AJ. Vav GEFs regulate macrophagemorphology and adhesion-induced Rac and Rho activation. Exp. Cell Res.2009,315:3345-3358.
    132.Hornstein I, Alcover A, Katzav S. Vav proteins, masters of the world ofcytoskeleton organization. Cell Signal.2004,16:1-11.
    133.Phillipson M, Heit B, Parsons SA, Petri B, Mullaly SC, Colarusso P, Gower RM,Neely G, Simon SI, Kubes P. Vav1is essential for mechanotactic crawling andmigration of neutrophils out of the inflamed microvasculature. J. Immunol.2009,182:6870-6878.
    134.Pearce AC, McCarty OJ, Calaminus SD, Vigorito E, Turner M, Watson SP. Vavfamily proteins are required for optimal regulation of PLCγ2by integrin αIIbβ3.Biochem J.2007,401:753-761.
    135.Spiering D, Hodgson L. Dynamics of the Rho-family small GTPases in actinregulation and motility. Cell Adh. Migr.2011,5:170-180.
    136.Machesky LM, Hall A. Role of actin polymerization and adhesion to extracellularmatrix in Rac-and Rho-induced cytoskeletal reorganization. J. Cell Biol.1997,138:913-926.
    137.Kaibuchi K, Kuroda S, Amano M. Regulation of the cytoskeleton and celladhesion by the Rho family GTPases in mammalian cells. Annu. Rev. Biochem.1999,68:459-486.
    138.Filippi MD, Szczur K, Harris CE, Berclaz PY. Rho GTPase Rac1is critical forneutrophil migration into the lung. Blood.2007,109:1257-1264.
    139.Gauthier NC, Masters TA, Sheetz MP. Mechanical feedback between membranetension and dynamics. Trends Cell Biol.2012,22:527-535.
    140.Lee MR, Jeon TJ. Cell migration: regulation of cytoskeleton by Rap1inDictyostelium discoideum. J Microbiol.2012,50:555-561.
    141.Abreu-Blanco MT, Watts JJ, Verboon JM, Parkhurst SM. Cytoskeleton responsesin wound repair. Cell Mol Life Sci.2012,69:2469-2483.
    142.Kaverina I, Straube A. Regulation of cell migration by dynamic microtubules.Semin Cell Dev Biol.2011,22:968-974.
    143.Spiering D, Hodgson L. Dynamics of the Rho-family small GTPases in actinregulation and motility. Cell Adh Migr.2011,5:170-180.
    144.Krause M, Dent EW, Bear JE, Loureiro JJ, Gertler FB. Ena/VASP proteins:regulators of the actin cytoskeleton and cell migration. Annu. Rev. Cell Dev. Biol.2003,19:541-564.
    145.Filippi MD, Szczur K, Harris CE, Berclaz PY. Rho GTPase Rac1is critical forneutrophil migration into the lung. Blood.2007,109:1257-1264.
    146.Valderrama F, Thevapala S, Ridley AJ. Radixin regulates cell migration andcell-cell adhesion through Rac1. J Cell Sci.2012,125:3310-3319.
    147.Zhang LJ, Tao BB, Wang MJ, Jin HM, Zhu YC. PI3K p110α isoform-dependentRho GTPase Rac1activation mediates H2S-promoted endothelial cell migrationvia actin cytoskeleton reorganization. PLoS One.2012,7(9):e44590.
    148.Yang WH, Lan HY, Huang CH, Tai SK, Tzeng CH, Kao SY, Wu KJ, Hung MC,Yang MH. Rac1activation mediates Twist1-induced cancer cell migration. NatCell Biol.2012,14:366-374.
    149.Kumar S, Xu J, Perkins C, Guo F, Snapper S, Finkelman FD, Zheng Y, FilippiMD. Cdc42regulates neutrophil migration via crosstalk between WASp, CD11b,and microtubules. Blood.2012,120:3563-3574.
    150.Huo L, Wen W, Wang R, Kam C, Xia J, Feng W, Zhang M. Cdc42-dependentformation of the ZO-1/MRCKβ complex at the leading edge controlscell migration. EMBO J.2011,30:665-678.
    151.Funasaka K, Ito S, Hasegawa H, Goldberg GS, Hirooka Y, Goto H, HamaguchiM, Senga T. Cas utilizes Nck2to activate Cdc42and regulate cell polarizationduring cellmigration in response to wound healing. FEBS J.2010,277:3502-3513.
    152.Reymond N, Im JH, Garg R, Vega FM, Riou P, Cox S, Valderrama F, MuschelRJ, Ridley AJ. Cdc42promotes transendothelial migration of cancer cells throughβ1integrin. J Cell Biol.2012,199:653-668.
    153.Rougerie P, Delon J. Rho GTPases: masters of T lymphocyte migration andactivation. Immunol Lett.2012,142:1-13.
    154.Govek EE, Hatten ME, Van Aelst L. The role of Rho GTPase proteins in CNSneuronal migration. Dev Neurobiol.2011,71:528-553.
    155.Raftopoulou M, Hall A. Cell migration: Rho GTPases lead the way. Dev Biol.2004,265:23-32.
    156.Fukata M, Nakagawa M, Kaibuchi K. Roles of Rho-family GTPases in cellpolarisation and directional migration. Curr Opin Cell Biol.2003,15:590-597.
    157.Bustelo XR. Regulatory and Signaling Properties of the Vav Family. Mol. CellBiol.2000,20:1461–1477.
    158.Lazer G, Pe'er L, Farago M, Machida K, Mayer BJ, Katzav S. Tyrosine residuesat the carboxyl terminus of Vav1play an important role in regulation of itsbiological activity. J. Biol. Chem.2010,285:23075-23085.
    159.Turner M, Billadeau DD. VAV proteins as signal integrators for multi-subunitimmune-recognition receptors. Nat Rev Immunol.2002,2:476-486.
    160.Swat W, Fujikawa K. The Vav family: at the crossroads of signaling pathways.Immunol Res.2005,32:259-265.
    161.Rudd CE, Raab M. Independent CD28signaling via VAV and SLP-76: a modelfor in trans costimulation. Immunol Rev.2003,192:32-41.
    162.Bustelo XR. Vav proteins, adaptors and cell signaling. Oncogene.2001,20:6372-6381.
    163.Tybulewicz VL. Vav-family proteins in T-cell signalling. Curr Opin Immunol.2005,17:267-274.
    164.Miletic AV, Sakata-Sogawa K, Hiroshima M, Hamann MJ, Gomez TS, Ota N,Kloeppel T, Kanagawa O, Tokunaga M, Billadeau DD, Swat W. Vav1acidicregion tyrosine174is required for the formation of T cell receptor-inducedmicroclusters and is essential in T cell development and activation. J. Biol. Chem.2006,281:38257-38265.
    165.Gakidis MAM, Cullere X, Olson T, Wilsbacher JL, Zhang B, Moores SL, Ley K,Swat W, Mayadas T, Brugge JS. Vav GEFs are required for β2integrin-dependent functions of neutrophils. J. Cell Biol.2004,166:273-282.
    166.Bustelo XR. Regulatory and signaling properties of the Vav family. Mol CellBiol.2000,20:1461-1477.
    167.Miletic AV, Graham DB, Sakata-Sogawa K, Hiroshima M, Hamann MJ,Cemerski S, Kloeppel T, Billadeau DD, Kanagawa O, Tokunaga M, Swat W.Vav links the T cell antigen receptor to the actin cytoskeleton and T cellactivation independently of intrinsic Guanine nucleotide exchange activity. PLoSOne.2009,4(8):e6599.
    168.Garcia GG, Miller RA. Age-related changes in lck-Vav signaling pathways inmouse CD4T cells. Cell Immunol.2009,259:100-104.
    169.Turner M. The role of Vav proteins in B cell responses. Adv Exp Med Biol.2002,512:29-34.
    170.Hornstein I, Alcover A, Katzav S. Vav proteins, masters of the world ofcytoskeleton organization. Cell Signal.2004,16:1-11.
    171.Liu JY, Seno H, Miletic AV, Mills JC, Swat W, Stappenbeck TS. Vav proteinsare necessary for correct differentiation of mouse cecal and colonic enterocytes. JCell Sci.2009,122:324-334.
    172.Ramgolam VS, DeGregorio SD, Rao GK, Collinge M, Subaran SS,Markovic-Plese S, Pardi R, Bender JR. T cell LFA-1engagement inducesHuR-dependent cytokine mRNA stabilization through a Vav-1, Rac1/2,p38MAPK and MKK3signaling cascade. PLoS One.2010,5(12):e14450.
    173.Nauseef, WM. Isolation of human neutrophils from venous blood. Methods Mol.Biol.2007,412:15-20.
    174.Hauert, AB, Martinelli S, Marone C, Niggli, V. Differentiated HL-60cells are avalid model system for the analysis of human neutrophil migration andchemotaxis. Int. J. Biochem. Cell Biol.2002,34:838-854.
    175.Xu W, Wang P, Petri B, Zhang Y, Tang W, Sun L, Kress H, Mann T, Shi Y,Kubes P, Wu D. Integrin-induced PIP5K1C kinase polarization regulatesneutrophil polarization,directionality,and in vivo infiltration. Immunity,2010,33:340-350.
    176.Entschladen F, Drell TL, Lang K, Masur K, Palm D, Bastian P, NiggemannB, Zaenker KS. Analysis methods of human cell migration. Exp Cell Res.2005,307(2):418-426.
    177.Rosello C, Ballet P, Planus E, Tracqui P. Model driven quantification ofindividual and collective cell migration. Acta Biotheor.2004,52:343-363.
    178.Pearce AC, McCarty OJ, Calaminus SD, Vigorito E, Turner M, Watson SP.Vav family proteins are required for optimal regulation of PLCγ2by integrinalphaIIbbeta3. Biochem J.2007,401:753-761.
    179.Hannigan M, Zhan L, Li Z, Ai Y, Wu D, Huang CK.Neutrophils lacking phosphoinositide3-kinase gamma show loss of directionality
    during N-formyl-Met-Leu-Phe-induced chemotaxis. Proc Natl Acad Sci U S A.
    2002,99(6):3603-3608.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700