硫化镍矿选矿过程模型及优化策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硫化镍矿的磨矿过程是一个复杂系统,耦合性强,且各个环节间的相互影响大,具有一定的相关性。目前,在磨矿过程中,由于缺乏探测球磨机和水力旋流器内部工作状态的仪器设备,磨矿过程的规律至今仍没有被完全认识清楚,而真实磨矿过程的复杂性,很难用数学模型精确表示其整个过程的特性,甚至有许多控制策略是无模型的。本文针对磨矿过程半经验模型,对磨矿整个过程从数据采集处理和软测量技术、多变量动态过程模型辨识技术及先进控制策略等方面进行了相关的一些探索和研究,同时,针对目前控制理论和磨矿过程应用之间的脱节现象,将现代控制理论经过改造移植到选矿过程控制领域中,研究推出从具体磨矿系统的特点出发,寻求对模型要求不高,但在线计算方便,且对环境的不确定性有一定适应能力的实用控制策略和方法。
     近年来,随着智能技术的迅速发展,以模糊系统、神经网络等为代表的智能技术显示出了对复杂非线性工业系统强大的处理能力,一系列基于智能控制理论及方法的先进控制技术被不断提出和改进,并在对复杂工业对象的控制问题上取得了一些重大的突破和丰硕的成果。但是,由于目前的智能控制技术基础理论发展还不完善,在应用智能控制方法和技术时存在许多值得改进的地方。本文针对目前有关智能方法的先进控制技术提出一些新的参考方法和改进的应用策略,主要创新点有:
     1、利用RBF神经网络和磨矿过程中可测量信息来预测磨矿过程将来的过程行为,将RBF神经网络和模糊理论结合起来,通过在RBF神经网络隐层增加模糊化层和模糊规则推理层,使磨矿过程特性和参数变化对控制质量影响减小,实现预测过程的响应和设计希望的响应差别为最小,得到了一种模糊RBF网络控制模型;该模糊RBF网络经过在线动态训练,实现了磨矿分级过程多变量非线性和大滞后系统的PID智能整定控制;该分析过程相对简单,网络学习训练时间少,学习精度高,估计值与分析值拟合良好,系统鲁棒性强;仿真表明这类智能控制器可用于多变量非线性时变系统这类难以建立数学模型的控制系统。
     2、针对较难控制的大滞后过程对象,提出了动态分支预测转移控制策略,使控制回路在运行过程中始终保持在最佳运行状态,最终提高工业过程设备的运行效率。通过在控制过程中增加对被控对象输入输出之间相关性的跟踪及处理,在基本预测控制算法的基础上再增加一个预测控制变量协调决策层,可在线进行拟合,利用反馈校正的滚动优化策略进行记录及优化,获得了被控对象输入输出之间相关性及相应控制策略的动态分支预测转移控制表,结合系统设定值进行区间控制和约束保护措施,在暂态响应和稳态性能之间取得折衷,使控制效果得到了明显的改善,不但增强了输入控制量的规律性,而且提高了响应的快速性和准确性。仿真实验表明模型的在线辨识精确,可以保证系统的鲁棒性能和预期的控制性能。
     3、运用RS理论研究了某选矿厂磨矿工艺多维数据的属性约简,在建立相应的RBF神经网络预测模型的基础上,得到了表征磨矿生产过程内在规律的最小知识表达,并应用该模型对选矿生产指标进行了预测。结果表明:磨矿工艺数据可以进行浓缩;生产过程中的经验操作有了相应的理论依据,生产工艺人员或操作工人通过使用该软测量模型进行工艺分析与控制,逐步加深了对生产工艺过程内在规律的认识;应用软测量获取了球磨机和旋流器的内部状态主要关键参数;该模型分析过程相对简单,网络学习训练时间少,学习精度高,仿真结果表明估计值与分析值拟合良好。
     4、提出了磨矿分级系统分段功能模块并行技术,该技术首先将磨矿分级系统中的每个组成部分看作是一个功能部件模块,在建立各功能部件模块的RBF神经网络模型的基础上,确定了磨矿分级系统中对磨矿浓度和溢流粒度性能影响最大的功能部件模块;接着,建立了磨矿分级一个系列RBF神经网络模型,就如何改进磨矿分级系统模型中某一功能部件模块而获得整个磨矿分级系统性能指标的提高提出了自己的看法;最后对改进前和改进后的磨矿过程有关性能指标改善情况进行了比较验证。
     5、针对大型浮选设备对矿浆液面自动控制系统的高要求,设计了矿浆液面自动控制系统中的执行器,提出了一种符合现场复杂情况,基于神经元网络技术的软测量方法,在基于过程补余量算法中,引入利用不同形状的反馈凸轮片产生不同非线性来改变控制阀的原有流量特性,结合比例系数得到了具有线性流量特性的调节阀曲线函数的一种软测量模型建模和优化的过程。结合BP神经网络模型,从对控制的稳定性、控制响应的时效性等因素考虑后,确定了这种阀芯的最佳拟合曲线,该设计方法经现场的实际使用验证效果良好。
Ore grinding is a complex process, the links of the process have a good correlation, for lack of instruments to measure the internal work state of ball mill and hydro cyclone, the regulation of grinding process is not completely known, it is necessary to understand and grasp the mathematics model in order to carry out the online control of grinding process.At present, internal condition of ball mill and hydro cyclone that can not be directly measured. Application of the Soft-measure Technology, key parameters about quality index of the grinding and classification system be directly determined and correlation model of soft measurement be established based on RS Theory and RBF neural network, which is helpful to production technical personnel and operation workers to technically analysis and control system of grinding and classification.
     As the intelligence technologies continue to develop, products of these technologies represented by fuzzy system and neural network show the powerful processing capability to complex nonlinear systems. A series of advanced control systems based on intelligent control theories and methods are continuously put forward and improved, great breakthrough and plentiful fruits are derived for the control problem of complex systems. However, due to the immaturity of the foundation theory of intelligent control, there are still many aspects and key points need to be improved when applying the control methods. In view of the combined design of the advanced intelligent control system in future, the main research work of this dissertation can be described as follows:
     1、A control model of fuzzy RBF neural network is presented, and the future process action of the grinding ore is predicted based on RBF neural network and available information, With two additional layers, fuzzy layer and fuzzy inference rules layer on the hidden layer in RBF neural network, it analyzes how the parameters and process characteristics of grinding ore affect controlling effect by receding horizon optimization methods and minimizing the error between model output and experimental data; A intelligent PID control method is presented based on the fuzzy RBF neural network, which realizes decoupling control of multi variable, nonlinear and time-variation by adjusting parameters of PID controller on-line; The analysis course is briefness, the time of network learning and training is little, learning precision is high, estimate value very close in upon analysis value; The simulation researches have verified the proposed approach which can be control systems where it is difficult to build accurate math model.
     2、A control technology on predicting dynamic branches for large dead-time processes was put forwarded to keep the control loops being optimal all time and improve efficiency of process equipments as well, by the coordination and decision level of prediction control variables, a form on predicting dynamic branches was formed by treatment of relevance of input and output on controlled objects in control software and optimal tracing of rolling optimal strategy based on feedback correction, the technology makes compromise between transient response and steady state performance. It is shown that the control effect was improved after field practical application. The technology not only emphasizes regularity of input controlled variables, but also improves the accuracy and fast of the response. Simulation example shows that the online identified model is accurate and it can guarantee both desired robustness and control performance.
     3、Attributes reduction of multidimensional data were given on certain ore plant by using Rough Set Theory, on the basis of RBF neural network prediction model, least knowledge expression is presented about ore production processing's inherence rule, and the metallurgical performance was built by applying the model. The results showed that: attributes reduction of multidimensional data is applicable on grinding and classification system; the model is assistant for production personnel or operation worker when they use RBF neural network putting up analysis and control, and it make them understand ore production processing's inherence rule, and it can provide theoretical basis for experiential operating; key parameters of ball mill and hydrocyclone were presented by soft measurement technology; the analysis course is briefness, the time of network learning and training is little, learning precision is high, estimate value very close in upon analysis value.
     4、Parallel segmentation module technology of grinding and classification system is proposed, Firstly, each component of the grinding and classification system is regarded as functional unit module, RBF neural network of system components was established, the most influential modules on grinding concentration and overflow particle size of the grinding and classification system were identified. Then RBF neural module of one series of the grinding and classification was established, his own opinion is proposed and improved on a functional unit of the grinding and classification so that performance index of the grinding and classification is improved. At last, the performance indexes of the grinding and classification were performed comparatively for the situations with and without the improvement.
     5、Based on big flotation machine that have highly request for liquid level of automation control.In this paper,we designed control valve of liquid level of automation control from the locate,and gave a soft measurement technique based on neural networks. By using different form of feedback cam, which brought different non-linear flow rate, and which influenced character of flow rate of control valve in different processing of change deal and comparison coefficient, we put out control valve's function and it satisfied linear character of flow rate. Optimal curve fitting is determined based on replenishment quantity of flotation process and model of BP neural network by using the different shape of valve core curve. By experiment and operation on the locate,it worked well.
引文
[1]许荣华.硫化镍及硫化铜镍矿石选矿概述[J].昆明理工大学学报,2000,(4):16-19
    [2]师建忠.金川铜镍矿石兼容性浮选工艺的研究[J].矿冶,2000,(4):28-31.
    [3]金以慧,王诗宓,王桂增.过程控制的发展与展望[J].控制理论与应用,1997,14(2):145-151.
    [4]Clifford, R.L. Globalization and Mining, Essington Lewis Memorial Lecture, Aus IMM, Adelaide,2002,23 August, pp 513-519.
    [5]Greenspan, A. Productivity, U.S. Department of Labor and American Enterprise Institute Conference, Washington, D.C.,2002,October 23. pp 693-700.
    [6]Lomborg, B. The Skeptical Environmentalist:Measuring the Real State of the World, Cambridge University Press.2001,pp 1593-1600.
    [7]吴建明,方志刚.国内外粉碎工程设备最新进展和展望[A].中国有色金属学会冶金设备学委会.第三届全国选矿设备学术会议论文集[J].北京:冶金工业出版社,1995,3-28.
    [8]徐石东,曾新民.金川龙首混合矿选矿降镁工艺研究与实践[J].有色冶炼,1999,(9):25-28
    [9].Berkan,R.C.et al..Advanced Automation Concepts for Large Scale-Systems.IEEE Control Systems Magazine,1991,11 (5):4-8
    [10].Mackey, P.J., Hout, J.Y., Wraith, A.E., On Technology Trends in Copper Smelting and Refining in the European Context:Quality Perspectives, Proceedings of the European Metallurgical Conference,2001, pp.61-78.
    [11]张英才.棒、砾磨磨矿过程的调节给矿自动控制[J].矿业研究与开发,2000,20(3):32-35.
    [12]Con way-Baker, J., Barley, R.W., Williams, R.A., Jia, X., Kostuch, J., McLoughlin, B. and Parker,D.J.Measurement and motion of grinding media in a vertically stirred mill using positron emission particle tracking (PEPT). Mineral Engineering,2002,vol 15, pp53-59.
    [13]刘廷安.自动化矿山——21世纪矿业技术的主旋律[J].国外金属矿山,2000,(1):1-4.
    [14]Austin L.G.,A mill power equation for SAG mills. Minerals and Metallurgical Processing.1990,pp57-63.
    [15]Ata, S., Ahmed, N. and Jameson, GJ. (2002). Collection of hydrophobic particles in the froth phase.International Journal of Mineral Processing, Vol.64, pp.101-122.
    [16]王新盈.磨矿分级过程控制系统的研究[J].云南冶金,2000,29(2):61-66.
    [17]刘洋洲.一次闭路磨矿自动控制在弓长岭选矿厂的应用[J].中国矿业,1999,8(2):71-76.
    [18]明云辉.多段磨矿分级控制技术在选矿厂生产中的应用[J].1999,28(3):27-31.
    [19]Barnard, J. P., Aldrich, C. and Gerber, M. (2001) Identification of dynamic process models with surrogate data. AIChE Journal, vol.47, no.9, pp.2064-2075.
    [20]Houseman, L.A., Schubert, J.H., Hart, J.R., Carew, W.D. (2001). PlantStar 2000:a plant-wide control platform for minerals processing. Minerals Engineering, vol 14, no 6, pp 593-600.
    [21]Jia, X., Gopinathan, N. and Williams, R. A. (2002). Modelling complex packing structures and their thermal properties. Advanced Powder Technology, vol 13, pp 55-71.
    [22]孙传尧,有色金属选矿技术新进展.中国工程院广西院士专家行论文集.2002,12:1190-1196.
    [23]周高云,曾新民,刘元科,等.新型起泡剂BK-206在金川镍矿的应用研究[J].有色金属(选矿部分),2000,6(6):32-35.
    [24]Cho, Y.S. and Laskowski, J. (2002). Effect of flotation frothers on bubble size and foam stability.International Journal of Mineral Processing, Vol.64 (2/3), pp.69-80.
    [25]Lelinski, D. Allen, J., Redden, L. and Weber, A. (2002). Analysis of the residence time distribution in large flotation machines. Minerals Engineering, Vol.15, pp.499-505.
    [26]Power, A, and Franzidis, J.P. (2000). The characterization of hydrodynamic conditions in industrial flotation cells. Proceedings AusIMM 7th Mill Operators Conference, Kalgoorlie, WA, pp.243-255.
    [27]Pyke, B., Duan, J., Fornasiero, D. and Ralston, J. (2002). Proceedings of an Strategic Conference and Workshop, Flotation and Flocculation:From Fundamentals to Applications, Hawaii, July 28-August 2.pp:24-29.
    [28]Schwarz, S., and Grano, S. (2002). Effect of particle hydrophobicity on particle and water transport across a flotation froth. Strategic Conference, Flotation and Flocculation:From Fundamentals to Applications, Hawaii, July 28-August 2.pp:1120-1125.
    [29]卢伯英,译.人工智能.北京:科学出版社,2003.
    [30]王永初.智能控制理论与系统的发展评述.华侨大学学报(自然科学版),2004,25(1):1-4.
    [31]李少远,席裕庚,陈增强.智能控制的新进展(Ⅱ).控制与决策,2000,15(2):136-140.
    [32]Schulze, H.J. (2002). Stability and rupture of thin aqueous films and flotation. StrategicConference, Flotation and Flocculation:From Fundamentals to Applications, Hawaii, July 28-August 2.pp:1434-1437.
    [33]Bloom, F. and Heindel, T.J. (2002). On the structure of collision and detachment frequencies in flotation models. Chemical Engineering Science, Vol.57, pp.2467-2473.
    [34]Hunter, Dr. C., BIOHEAPTM Leaching of a Primary Nickel-Copper Sulphide Ore, Titan Resources Website 2003.pp:1095-1200.
    [35]胡寿松.自动控制原理.北京:科学出版社,2002.
    [36]王积伟.现代控制理论与工程.北京:高等教育出版社,2003.
    [37]Hyvarinen, O (2002)., Hamalainen, M., Leimala, R., Outokumpu HydroCopperTM Process, A Novel Concept in Copper Production, Chloride Metallurgy 2002 (October).pp:1341-1346.
    [38]吴明.磨矿分布式自动控制中Visual Basic的应用[J].金属矿山,2000,(7):32-37.
    [39]Smith, G.C., Hulbert, D.G., Singh, A., Smith, V.C. (2002). New Developments in Milling and Flotation Control. Minerals Processing Conference 2002. Cape Town. Pp:1422-1428.
    [40]Van der Spuy, D. d.V., Muller, B., Smith, V.C. (2002), Advance Process Control Tools for Milling and Flotation. Minerals Processing Conference 2002. Cape Town. Pp:1872-1877.
    [41]Manlapig, E.V., Franzidis, J.P. (2001). A framework for simulating the flotation process. Paper presented at the annual SME meeting held in Denver. Preprints Soc. Min. Metall. Explor.,No 01-87,7pp:1124-1129.
    [42]Mathe, Z.T., Harris, M.C., O.Connor, C.T. (2000). A review of methods to model the froth phase in nonsteady state flotation systems. Minerals Engineering, vol 13, No 2, pp 127-140.
    [43]张恩勤,施颂椒,高卫华等.模糊控制系统近年来的研究与发展.控制理论与应用,2001,18(1):7-11.
    [44]唐兵勇,路林吉,王文杰.模糊控制理论与应用技术.北京:清华大学出版社,2002.
    [45]章卫国,杨向忠.模糊控制理论与应用.西安:西北工业大学出版社,2001
    [46]RIVALS I,PERSONNAZ L.Nonlinear internal model control using neural networks:application to processes with delay and design issue.IEEE Trans on Neural Networks,2000,11(1):80-90.
    [47]Ahmed M.S.Neural net based MRAC for a class of nonlinear plants.IEEE Neural Networks,2000,13(1):111-124.
    [48]姚华,鲍亮亮,孙健国.基于神经网络的航空发动机全包线PID控制.南京航空航天大学学报,2007,39(2):236-239.
    [49]安大伟,王江江,娄承芝.神经网络PID控制器在高大空间恒温空调系统中的应用.天津大学学报,2005,38(3):268-273.
    [50]牛建军,吴伟,陈国定.基于神经网络自整定PID控制策略及其仿真.系统仿真学报,2005,17(6):1425-1427.
    [51]王俊国,王永骥,万淑芸.基于动态神经网络的PID参数整定与实时控制.系统工程与电子技术,2004,26(6):777-780.
    [52]武国庆,姜长生,张锐等.基于径向基神经网络的不确定非线性系统的鲁棒自适应控制.航空学报,20023(6):530-533.
    [53]张显库,吕晓菲,郭晨等.船舶航向保持的鲁棒神经网络控制.船舶力学,2006,10(5):54-58.
    [54]彭济根,倪元华,乔红.柔性关节机操手的神经网络控制.自动化学报,2007,33(2):175-180.
    [55]Sun F,Sun Z Q,Woo P.Neural network-based adaptive control design of robotic manipulators with an observIEEE Transactions on Neural Network,2001,12(1):54-67.
    [56]郭迎清.航空发动机神经网络自适应控制研究.航空动力学报,,2001,16(1):83-86.
    [57]丛爽,梁艳阳,李国栋.多变量自适应型神经网络控制器及其设计方法.信息与控制,2006,35(5):568-573.
    [58]David A. Mendez, Edelmira D. Galvez, Luis A. Cisternas Modeling of grinding and classification circuits as applied to the design of flotation processes[J]. Computers & Chemical Engineering,2009,33(1):97-111.
    [59]林棻,赵又群,姜宏.基于Simulink的四轮转向汽车神经网络控制策略仿真[J].江苏大学学报(自然科学版),2008,29(5):390-393.
    [60]G.D. Gonzalez, D. Miranda, A. Casali, G. Vallebuona. Detection and identification of ore grindability in a semiautogenous grinding circuit model using wavelet transform variances of measured variables[J].International Journal of Mineral Processing, 2008,89(1):53-59.
    [61]T.J. Choi, N. Subrahmanya, H. Li, Y.C. Shin. Generalized practical models of cylindrical plunge grinding processes[J]. International Journal of Machine Tools and Manufacture, 2008,48(1):61-72.
    [62]高越,高振海,李向瑜.基于自适应Kalman滤波的汽车横摆角速度软测量算法[J].江苏大学学报(自然科学版),2005.,26(1):24-27.
    [63]Berkan,R.C. Upadhyaya,B.R. Tsoukalas,L.H.et al.Advanced Automation Concepts for Large-Scale Systems[J].IEEE Control Systems Magazine,1991,11(6):4-12.
    [64]王湖皎,刘苏,姚正军.基于遗传神经网络的AZ91镁合金力学性能预测[J].江苏大学学报(自然科学版),2006,,27(5):67-70.
    [65]Iftikhar U. Sikder, Aryya Gangopadhyay. Managing uncertainty in location services using rough set and evidence theory [J]. Expert Systems with Applications, 2007,32(2):386-396.
    [66]田野,李平,李杜生.用RBF神经网络建立航空煤油密度软测量模型[J].石油化工自动化,1999,(4):20-22.
    [67]汪若尘,陈龙,江浩斌,张孝良.半主动悬架模糊动态建模与神经网络控制[J].江苏大学学报(自然科学版),2009,30(1):23-26.
    [68]杨会志.BP网络和RS理论在浮选生产数据分析中的应用[J].计算机工程与应用.2002,(7):218-220.
    [69]李明,李会莹,杨汉生等.基于一种新型动态神经网络的非线性自适应逆控制.系统仿真学报,20019(17):4021-4024.
    [70]李运华等.神经网络离散变结构控制的算法及其应用.控制与决策,2000,9(4):301-305.
    [71]陈丽,陈卫东,王洪瑞.改进的机器人神经网络变结构混合控制.系统工程与电子技术,,2006,,2(8):429-433.
    [72]王伟,易建强,赵冬斌等.一种新型神经网络滑模控制器的设计.电机与控制学报,,2005,,(9)6:603-606.
    [73]季春光,王朋,李士勇等.基于神经网络的时变大滞后系统的Smith预估控制.哈尔滨工业大学学报,2003,35(3):303-306.
    [74]孙富春,孙增圻.采样非线性系统的动态神经网络稳定自适应控制.自动化学 报,2000,26(6):721-728.
    [75]程启明,陈刚,王勇浩.一种模糊神经网络控制系统研究.系统工程与电子技术,2005,27(3):501-504.
    [76]周志坚,毛宗源.一种最优模糊神经网络控制器.控制与决策,2000,15(3):358-360.
    [77]王耀南,张昌凡,刘治.专家模糊神经网络控制系统在复杂工业过程中的应用.电机与控制学报,2000,4(3):175-178.
    [78]鲍鸿,黄心汉.用模糊RBF神经网络简化模型设计多变量自适应模糊控制器.控制理论与应用,2006,17(2):169-170.
    [79]Robert J,Schilling.James J.carroll,Ahmad F.Al-Ajlouni.Approximation of nonlinear systems with radial basis function neural networks.IEEE Transactions on Neural Networks,2001,12(1):1-15.
    [80]谢辉,孙艳辉,夏超英.基于动态递归神经网络的HCCI发动机燃烧相位辨识模型.内燃机学报,20025(4):352-357.
    [81]罗南华,王伟.基于动态递归模糊神经网络的水轮发电机组建模.控制与决策,2007,22(10):1125-1128.
    [82]孙强,程明.基于模糊神经网络的双凸极永磁电机非线性建模.控制理论与应用,2007,24(4):601-606.
    [83]房振勇,游文虎,冯汝鹏.改进BP算法在模糊神经网络中的应用.北京航空航天大学学报,2007,33(111321-1324.
    [84]王兆礼,陈晓宏,李艳.基于BPNNSI的多年平均水面蒸发量插值方法[J].中山大学学报(自然科学版),2007(1):114-115.
    [85]王碧善.国外大型浮选机的研制与应用[C].大型浮选机学术研讨会.1988:17-27.
    [86]沈振昌,刘振春..KYF-50充气机械搅拌式浮选机研制[J].矿冶,2001,(3):31-36.
    [87]黄开国,陈万雄.一种低品位镍矿石的浮选工艺[J].中国有色金属学报,1999,9(3):601-605.
    [88]沃国经,左焕莹,周俊武.矿浆液位测量控制系统[J].有色金属(选矿部分),1996,(1):31-37.
    [89]罗中良,麦宜佳,余剑峰.基于多传感器的神经网络模式识别方法[J].中山大学学报(自然科学版),,2001(9):21-22.
    [90]朱国瑜.过程补入量与仿人智能控制.第二届全国智能控制专家讨论会论文集[C].清华大学,1994,481-486.
    [91]周其鉴.仿人智能控制器[J].中国仪器仪表,1993(2):5-9.
    [92]柏建国,胡可剑.补偿纯滞后过程的新方法——智能采样调节[J].化工自动化仪表,1989(5):23-27.
    [93]蔡武昌,孙淮清,纪纲.流量测量方法和仪表的选用[M].化学工业出版社.2004.
    [94]于海雁,林茂六,许洪光.基于RBF神经网络的射频功放器件大信号建模方法研究[J].重庆邮电大学学报(自然科学版),2004,16(4):89-92.
    [95]李娟,李战明.有效克服静差的滤波辨识预测式模糊控制器[J].工业仪表与自动化装置,2001,(2):7-9..
    [96]王礼珊,刘嘉荔.优化磨矿分级系统负荷的探讨[J].有色金属(选矿部分),2009,(1):16-19.
    [97]张守元.动态过程中PID控制参数模糊整定的探索[J].矿冶工程,2000,(02):43-45.
    [98]李绍铭,刘寅虎.基于改进型RBF神经网络多变量系统的PID控制[J].重庆大学学报(自然科学版),2007,30(2):53-57.
    [99]田华,李相林.一种基于混合学习算法的模糊神经网络控制.哈尔滨理工大学学报,2002,7(1):18-20.
    [100]Dong Hwa Kim.Parameter tuning of fuzzy neural networks by immune algorithm.IEEE international conference on fuzzy systems.Honolulu,Hawaii,2002,1:408-413.
    [101]Han K H,kin J H.Quantum-inspired evolutionary algorithm for a class of combinatorial optimization.IEEETrans Evol Comput,2002,6(6):580-593.
    [102]Cauwenberghs GPoggio T.Incremental and Decremental Support Vector Machine Learning.MachineLearning,2001,44(13):409-415.
    [103]Ma J H,Theiler J,Perkins S.Accurate On-line Support Vector Regression.Neural Computation,2003,15(11)2683-2703.
    [104]Mario Martin.On-line Support Vector Machine Regression.Berlin:Springer-Verlag ECML,LNAI,2002,282-294.
    [105]王会清,张守元.预测模糊控制在磨矿分级过程的应用研究[J].矿冶工程,2002,(3):60-62.
    [106]冯冬青,马书磊,陈铁军,等.一类时变非线性系统的参数反馈模糊控制器分析与设计[J].信息与控制,2002,31(4):310-314.
    [107]Antonio Sala, Carlos Arino. Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control:Applications of Polya's theorem[J]. Fuzzy Sets and Systems,2007,158(24):2671-2686.
    [108]Libor Behounek. On the difference between traditional and deductive fuzzy logic[J]. Fuzzy Sets and Systems,2008,159(10):1153-1164.
    [109]张昌凡,王耀南,何静等.遗传算法和神经网络融合的滑模控制系统及其在印刷机中的应用.控制理论与应用,2003,20(2):217-222.
    [110]HA Q P,NGUYEN Q H,RYE D C,et al.Fuzzy sliding-mode controllers with applications.IEEE Trans onlndustrial Electronics,2001,48(1):38-41.
    [111]刘金琨.滑模变结构控制MATLAB仿真.北京:清华大学出版社,2005.
    [112]U. Volk, D.-W. Kniese, R. Hahn, et al. Optimized multivariable predictive control of an industrial distillation column considering hard and soft constraints [J]. Control Engineering Practice,2005,13(7):913-927.
    [113]J. Brian Froisy. Model predictive control—Building a bridge between theory and practice[J]. Computers & Chemical Engineering,2006,30(10):1426-1435.
    [114]Paisan Kittisupakorn, Piyanuch Thitiyasook, M.A. Hussain,et al. Neural network based model predictive control for a steel pickling process[J]. Journal of Process Control, 2009,19(4):579-590.
    [115]Stuart R. Borrett, Will Bridewell, Pat Langley, et al. A method for representing and developing process models[J]. Ecological Complexity,2007,4(1):1-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700