赤铁矿选矿厂综合生产指标分解的优化方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
赤铁矿选矿通过原料处理、竖炉焙烧、磨矿、磁选、精矿以及尾矿处理工序将赤铁矿矿石中的有用元素与脉石及有害元素进行分离,得到铁精矿作为原料供给钢铁工业。综合生产指标是反映企业产品产量、质量、成本以及消耗的指标,赤铁矿选矿厂的综合生产指标包括月的精矿产量、精矿品位、全选比以及原矿消耗量。选矿厂的计划调度主要任务一是根据综合生产指标的目标值产生生产计划及作业计划,最终形成生产指令用来启停选矿生产设备,调配水电气及原料等资源;二是将综合生产指标层层分解到日综合生产指标:各工序(原料处理、竖炉焙烧、磨矿、磁选、精矿以及尾矿处理)作业班的生产量、精矿品位、精矿产量及全选比。工艺技术部门将日综合生产指标转化各工序的工艺指标,如磨矿工序的磨矿粒度、竖炉焙烧工序的一次溢流回收率,然后转化为选矿过程控制系统设定值,控制系统使输出跟踪设定值,从而将综合生产指标控制在目标值范围内。因此,将综合生产指标分解为日综合生产指标的正确与否对能否将选矿厂综合生产指标控制在目标值范围内具有重要意义。
     选矿厂综合生产指标分解过程具有多层次、多目标、多约束、时变、非线性等特性。多层次表现在需要将月原矿消耗量层层分解到各工序作业班的生产量,将月的精矿品位、精矿产量、全选比层层分解到日;多目标表现在分解过程须按精矿品位、精矿产量、全选比、原矿消耗量的顺序依次保证在目标值范围内,同时要求精矿库存适量,精矿产量均衡,精矿品位的废次尽量减少,各工序作业班生产量均衡;分解过程受设备能力,库存能力,精矿需求,入选原矿的品位、价格、供应能力等多方面约束;其中设备能力,精矿需求等约束具有时变特性;每日库存状态与库存能力,每日精矿产量与设备能力等之间具有强非线性。因此,难以采用已有的计划调度优化方法求日综合生产指标,只能通过人工凭经验分解与试凑来产生日综合生产指标。但人工分解过程费时保守,难以在满足上述约束的条件下保证综合生产指标在目标值范围内。
     本文在国家高技术研究发展计划(863计划)“选矿工业过程综合自动化系统研究与开发(2004AA412030)”的支持下,以实现综合生产指标的优化控制为目标,开展了综合生产指标分解的优化方法研究,提出了保证综合生产指标在目标值范围内的确定日综合生产指标的优化方法;设计开发了实现上述优化方法的软件包,并应用该软件包进行了综合生产指标优化分解的实验,实验结果验证了所提方法的有效性。本文主要工作归纳如下:
     (1)提出的日综合生产指标优化方法包括月原矿消耗量优化方法,日原矿消耗量优化方法及各工序作业班生产量优化方法,该方法首先求得月原矿消耗量的最优值并以此为基础通过金属平衡公式求得精矿品位,精矿产量,全选比作为约束求得日原矿消耗量优化值,并以此为基础通过金属平衡公式求得精矿品位,精矿产量,全选比作为约束求得各工序作业班生产量优化值,并以此为基础采用金属平衡公式求得精矿品位,精矿产量及全选比,从而确定了日综合生产指标。
     月原矿消耗量优化方法以按重要程度与综合生产指标目标值偏差量最小为目标函数,将综合生产指标目标值范围、精矿成本、各种原矿供应总量作为约束条件,建立了以月原矿消耗量为决策变量的非线性目标规划模型,采用了以递归排序为核心的遗传算法求出月原矿消耗量的最优值。
     日原矿消耗量优化方法以每日精矿产量与月精矿产量的日平均值偏差以及精矿库存量最小为目标函数,以月原矿消耗量优化值为基础通过金属平衡求出的精矿品位、精矿产量、全选比以及每日设备能力、各种原矿混合后品位、精矿库存及精矿品位的上下限作为约束条件,建立以日原矿消耗量为决策变量的非线性多目标规划模型。采用改进的多目标粒子群算法求出了每日各种原矿消耗量的最优值。
     各工序作业班生产量优化方法以降低每日精矿品位废次惩罚费用以及各工序前后班生产量变化最小为目标函数,将日原矿消耗量优化值为基础通过金属平衡计算出的精矿品位、精矿产量、全选比以及进入到磁选工序的矿石品位、各种缓冲仓料位、精矿品位的上下限作为约束条件,建立了以各工序作业班生产量为决策变量的非线性多目标规划模型,采用改进的多目标粒子群算法求解得了各工序作业班生产量的优化值。
     (2)应用Microsoft Visual Studio 2005开发环境,编程语言采用C#和Matlab,后台数据库使用SQL Server 2000,基于Web Service技术采用模块化方法设计开发了实现上述优化方法的软件包。该软件由系统管理、月原矿消耗量优化及金属平衡、日原矿消耗量优化及金属平衡、各工序作业班生产量优化及金属平衡、信息查询、系统维护等模块组成。
     (3)结合某赤铁矿选矿厂综合生产指标分解过程,将该厂综合生产指标目标值:精矿品位52.66%,精矿产量18.23万吨,全选比2.0049,原矿消耗量36.55万吨应用优化软件包进行了分解,得到当月每天的日综合生产指标,以此进行生产可得综合生产指标精矿品位52.69%,精矿产量18.3386万吨,全选比1.9887倍,原矿消耗量36.47万吨,综合生产指标均处于目标值范围内。与人工分解所得实际综合生产指标相比,精矿品位与目标值的偏差由0.11%降为0.03%,精矿产量与目标值的偏差由0.33万吨降为0.1086万吨,原矿消耗量由超出目标值范围的39.53万吨降为在目标值范围内的36.47万吨,全选比由超出目标值范围的2.131倍变为在目标值范围内的1.9887倍,此外,当月精矿产量均衡性提高16.09%,精矿库存量降低5.86%,精矿品位废次从18次减少为6次。实验结果表明本文方法可以用于确定日综合生产指标的优化参考值。
Hematite ore dressing process, a procedure of sequential ore processing comprising of raw material treatment, shaft furnace roasting, ore grinding, magnetic separation, and concentrated ore disposal,is adopted to separate the useful elements from the gangue and other harmful ingredients in the hematite ores, while its product of concentrated iron ore will be supplied as the raw material to the steel production industry. Global production indices reflecting the output, quality, cost and production efficiency include monthly concentrate output, concentrate grade, concentration ratio and ore consumption in hematite ore dressing process.One of the objective of planning and scheduling in the dressing process is to determine the production and operating planning based on the target values of global production indices, subsequently, instruction is also determined to start or stop equipments, assign water and power, and so on.The other is that the global production indices are decomposed hierarchically to determine the daily global production indices including processing capacity, concentrate grade, concentrate output and ratio of operation shift. Technical indices of working procedure are determined by the technical department based on the daily global production indices, such as particle size in grinding process, recovery rate of overflow for shaft furnace roasting process.Set points of process control system are determined according to the technical indices, and outputs track the set points. As a result, global production indices can be controlled to achieve their target values.
     There are multi-layer, multi-objective, multi-restriction, time varying, and nonlinear characteristic in decomposing process for global production indices in mineral-processing factory. For example, monthly ore consumption is decomposed to the output of operation shift; and concentrate grade, output and ratio are decomposed from month to day. Concentrate grade, output and ratio, and ore input, should be controlled in the target range,,as well as stock of concentrate should be minimum and equilibrium, and so on. Lots of restrictions in decomposing process such as equipments, stock, ore grade and ore cost. There are strong nonlinear characteristic between state and capacity of stock, and between daily concentrate output and production capacity of equipments.It is difficult to optimize global production indices using the conventional approach, so manual decomposing for global production indices is adopted in the mineral processing factory today. The process is time-wasting, and the global production indices can not achieve target values while satisfating the restrictions.
     Combining the the National 863 High Technology Program Project of "Research and Development of Integrated Automatic System on Ore Concentrate Process (2004AA412030)",the research of optimizing decomposing approach for the optimizing control of the global production indices is developed. The optimizing approach to determine the daily global production indices is proposed, which ensures the actual global production indices are controlled in the target range. The optimizing software is designed and developed. The optimizing decomposing approach is tested by some experiments, the results proves the validity of the approach.The main works are as follows:
     (1)The optimizing approach for daily global production indices proposed in this dissertation consists of optimizing approach for monthly ore consumption, daily ore consumption and processing capcity of operation shift in each process.At first, optimal values for monthly ore input can be obtained with the optimizing approach. Based on optimal values for monthly ore consumption, concentrate grade and output and ratio are determined with the metal equilibrium formula. Considering the restriction for concentrate grade and output and ratio,the optimal value of daily ore consumption can be obtained.Based on the daily ore consumption, concentrate grade and output and ratio are determined with the metal equilibrium formula. Considering the restriction for concentrate grade, output and ratio,the optimal output for operation shift in each process can be obtained. Based on the optimal output for operation shift in each process, concentrate grade, output and ratio are determined with the metal equilibrium formula. After above steps, daily global production indices are determined.
     Nonlinear objective programming model which decision value is monthly ore consumption is built in the optimizing algorithm for monthly ore consumption, which takes the least error of global production indices based on importance as objective function, and considers the restriction for the target range of global production indices, concentrate cost, the summation of ore supply. Using the improved genetic algorithm as recursion, the optimal monthly ore consumption is determined.
     Nonlinear multi-objective programming model whose decision value is daily ore consumption is built in the optimizing algorithm for daily ore input, which takes the least error between daily concentrate output and the mean daily concentrate output of one month as objective function, and considers the restriction for the target range of global production indices, concentrate cost, the summation of ore supply. Using the improved particle swarm optimization algorithm,the optimal daily ore consumption is determined.
     Nonlinear multi-objective programming model whose decision value is the processing capacity of operation shift is built in the optimizing algorithm for operation shift, which takes the least prcessing capacity variety between the previous operation shift and next as objective function, and considers the restriction for the range of the concentrate cost, the summation of ore supply. Using the improved particle swarm optimization algorithm with multi-objective, the optimal processing capacity of operation shift is determined.
     (2) Base on the Web Service technology and Microsoft Visual Studio 2005,the optimizing software package is build with Visual C# and Matlab programming language and SQL Server 2000 database. The above optimizing approach is implemented using this software package.This software package includes system management module, optimizing for monthly ore consumption and metal equilibrium computation module, optimizing for daily ore consumption and metal equilibrium computation module, optimizing for processing capacity of each operation shift and metal equilibrium computation module, information query module, system maintenance module, and so on.
     (3)In a certain hematite ore dressing factory, the target values of global production indices are as follows:concentrate grade is 52.66%, concentrate output is 182.3 thousands ton, concentrate ratio is 2.0049, ore consumption is 365.5 thousands ton. Using the optimizing software package, the decomposing results are as follows:concentrate grade is 52.69%, concentrate output is 183.386 thousands ton, concentrate ratio is 1.9887, ore consumption is 364.7 thousands ton, the global production indices are in their target values bound. Comparing with the manual operation, the error between actual and target value of concentrate grade descends from 0.11% to 0.03%,the error between actual and target value of concentrate output descends from 3.3 thousands ton to 1.086 thousands ton, actual value of ore consumption descends from 395.3 thousands ton beyond target range to 364.7 thousands ton in the target range, actual value of concentrate ratio descends from 2.131 beyond target range to 1.9887 in the target range, equilibrium for concentrate output heighten 16.09%,5.86% reduction for concentrate stock is achieved, waster of concentrate grade descends from 18 to 6.The results of experiment show that this approach can provide optimizing reference values of daily global production.
引文
1.姚建初,刘伯龙,李卫国.流程工业管控一体化系统的研究与开发[J],自动化博览,2000,1:58-60.
    2.Kallrath J.Planning and scheduling in the process industry [J],OR Spektrum,2002,24(3): 219-250.
    3.柴天佑,金以慧,任德祥等.基于三层结构的流程工业现代集成制造系统[J],控制工程,2002,9(3):1-6.
    4.张翼鹏.流程工业CIMS体系结构探讨[J],化工自动化及仪表,1998,25(1):28-31.
    5.MESA International.The Benefits of MES:A Report from the Field[R],MESA International White Paper Number 1,1997.
    6.蒋慰孙,蒋敏倩,顾幸生.对连续过程系统适应调度的若干看法[J],自动化学报,2006,增刊B:101-105.
    7.张传芹,盛昭瀚.连续过程生产调度预警及专家系统的应用研究[J],信息与控制,2002,31(4):300-303
    8.杨文明,顾幸生.基于混沌优化算法的连续生产过程重调度与库存优化[J],华东理工大学学报(自然科学版),2006,32(7):790-792.
    9.李慧芳,李人厚.化工批处理过程动态调度[J],系统工程,2000,18(1):1-7.
    10. Leong, G.K.,Oliff, M. D.. A sequencing heuristic for dependent setups in a batch process industry [J],Omega,1990,18(3):283-297.
    11.van Dam P, Gaalman G, Sierksma G. Scheduling of packaging lines in the process industry:an empirical investigation [J], International Journal of Production Economics,1993,30-31: 579-89.
    12.Dessouky, Y., Beaumariage, T.,Roberts, C.,Ogle, M.. An intelligent system for batch scheduling for the process industry [J], Computers in Industry,1993,22(3):233-247.
    13.秦绪伟,罗焕佐.流程工业计划调度技术研究与发展分析[J],计算机工程与应用,2004,19:1-5.
    14.郭锦标,杨明诗.化工生产计划与调度的优化[M],北京:化学工业出版社,2006,4
    15.Pinto, J.M., Joly, M., Moro, L.F.L.Planning and scheduling models for refinery operations[J], Computers & Chemical Engineering,2000,24(9-10):2259-2276.
    16. Moro, L.F.L., Zanin, A.C.,Pinto, J.M.. A planning model for refinery diesel production [J], Computers & Chemical Engineering,1998,22:S1039-1042.
    17.Guido Berning, Marcus Brandenburg, Korhan Gtirsoy. Integrating collaborative planning and supply chain optimization for the chemical process industry (I)-methodology [J], Computers and Chemical Engineering,2004,28(6-7):913-927.
    18.Nilay Shah. Process industry supply chains:Advances and challenges [J], Computers and Chemical Engineering,2005,29(6):1225-1235.
    19. Luis Puigjaner, Gonzalo Guill'en-Gos'albez. Towards an integrated framework for supply chain management in the batch chemical process industry. Computers and Chemical Engineering, In Press,2007.
    20.乔长青,裴建平.化工企业生产计划与量本利分析[J],价值工程,2003,4:56-58.
    21.朱岚,张钢,舒炎泰.流程CIMS中生产计划管理系统的设计与开发[J],工业工程,1998,1(4):31-35.
    22.许本忠,田国明.某石油化工公司生产计划优化研究[J],工业工程与管理,2002,3:58-61.
    23.张奎旭,赵元生,华贲等.炼油企业生产计划优化的边际价格研究[J],炼油技术与工程,2004,34(2):34-37.
    24.李绍军,林海波,阳永荣.模糊规划在炼油厂生产计划优化中的应用[J],石油学报(石油加工),2002,18(1):78-83.
    25.采峰,曾凤章.一种流程型企业主生产计划优化方法研究[J],工业工程与管理,2006(4):16-20.
    26.刘琦,顾幸生.基于模糊规划的不确定性条件下递阶生产计划模型[J],信息与控制,2000,29(5):399-406.
    27.廖国勤,阳永荣,吕德伟.炼油企业生产计划多目标优化研究[J],石油学报(石油加工),2003,19(2):39-43.
    28.周章玉,成思危,华贲.可持续发展的流程工业生产计划[J],石油化工,2002(29):858-862.
    29.Chi-Wai Hui, Gupta A.A novel MILP formulation for short-term scheduling of multistage m ulti-product batch plants[J],Computers and Chemical Engineering,2000,24(2-7):1611-1617.
    30. Chi-Wai Hui, Gupta A.,van der Meulen H.A.J.. A novel MILP formulation for short-term scheduling of multi-stage multi-product batch plants with sequence-dependent constraints [J], Co mputers and Chemical Engineering,2000,24(12):2705-2717.
    31.Pinto JM, Turkay A,Bolio B, Grossmann I.E.. STBS:A continuous-time MILP optimization for short-term scheduling of batch plants[J],Computers and Chemical Engineering,1998,22 (9): 1297-1308.
    32.Lin X.,Floudas C A.Design, synthesis and scheduling of multipurpose batch plants via an efective continuous-time formulation[J],Computers and Chemical Engineering,2001,25(4-6): 665-674.
    33.Rodrigues M.T.M.,Latre L.G.,Rodrigues L.C.A..Short-term planning and scheduling in multipurpose batch chemical plants:a multi-level approach [J]. Computers and Chemical E ngineering,2000,24(9-10):2247-2258.
    34.Chang Sup Sung, Young Hwan Kim, Sang Hum Yoon. A problem reduction and decomposition approach for scheduling for a flowshop of batch processing machines[J],European Journal of Operational Research,2000,121(1):179-192.
    35.Jae Hak Jung, Chang Hyung Lee, In-Beum Lee. A genetic algorithm for scheduling of multi-product batch processes [J].Computers Chemical and Engineering,1998,22(11): 1725-1730.
    36.Rodrigues L.A.,Graells M.,Canton J.,et al.Utilization of processing time windows to enhance planning and scheduling in short term multipurpose batch plants [J], Computers and Chemical Engineering,2000,24(1):353-359.
    37.Gonnet Silvio, Chioti Omar. Modeling of the supervising control system of a multipurpose batch plant[J].Computers and Chemical Engineering,1997,21(SuppL.l):S691-S696.
    38.Minseok Kim, In-Beum Lee.Rule Based reactive rescheduling system for multi-purpose batch processes[J].Computers Chemical and Engineering,1997,21(Suppl.):S1197-S1202.
    39.郭沛俊,袁一.化工过程集成智能生产调度系统开发[J],化工自动化及仪表,1994,21(5):8-11.
    40.霍艳芳,齐二石,陈美飞.基于流程CIMS的生产作业计划模式研究[J],西北大学学报(自然科学版),1999,29(S.I):116-119.
    41.霍艳芳,齐二石.流程制造业生产作业计划模式研究[J].工业工程,1998,1(4):36-39.
    42.Sam G Taylor, Steven F Bolander. A framework for flow manufacturing scheduling systems [J], Industrial Management,1995,27:1-4.
    43.徐俊刚.流程企业生产调度方法与应用研究[D),中国科学院研究生院(软件研究所)2003.
    44.丁锋,杨家本,兰鸿森等.连续过程生产调度5日滚动作业计划的研究[J],系统工程理论与实践,1998,11:11-19.
    45.杨家本.第四讲连续过程CIMS中生产计划/调度系统[J].化工自动化及仪表,1997,24(6):52-56.
    46.周岳松,曾智刚,于兆勤等.炼油厂生产与输油作业计划/调度系统的设计[J].现代电子技术,2003,22:78-80.
    47.宋洁蔚,荣冈.成品油配送中时间窗的确定及运输的安排[J],系统工程理论与实践,2003,4:63-68.
    48.Jun Wang, Rong Chen, Yihui Jin.Botleneck analysis and maximum yield solution for a class of production process [C],1997 IEEE International Conference on Intelligent Processing systems, Beijing,1997,2:1361-1365.
    49.Xiong R, Fan Y S, Wu C.A dynamic job shop scheduling method based on lagrangian relaxation[J],Tsinghua Science and Technology,1999,4(1):1297-1130.
    50.Xiong Gang, Nyberg Timo.R.. Push/pull production plan and schedule used in modern refinery CIMS [J],Robotics and Computer-Integrated Manufacturing,2000,16(6):397-410.
    51.Xiong Q N, Yberg T. R.,Xiong G. Y.Production plan&schedule system used in modern refinery CIMS [A].Proceedings of the 2000 IEEE, International Conference on Control Applications, Archorage[C].Piscatway, N.J.,USA:IEEE Press,2000:754-759.
    52.罗焕佐,宋国宁,王晓峰.流程企业智能排产与优化调度技术[J],计算机集成制造系统一CIMS,2003,9(11):980-984.
    53.De Almeida M.R, Hamacher S, Pacheco, M.A.C., Vellasco, M.B.R. The energy minimization method:a multiobjective fitness evalution technique and its application to the production scheduling in a petroleum refinery [C],Proceedings of the 2001 Congree on Evolutionary Computation,2001,1:560-567.
    54.王朝晖,陈浩勋,胡保生.化工批处理过程调度[J],控制与决策,1998,13(2):97-102.
    55.宋洁蔚.油品生产与储运调度问题研究(D),杭州:浙江大学,2003.
    56. Blomer F.,Gunther H.-O..Scheduling of a multi-product batch process in the chemical industry [J],Computers in industry,1998,36(3):245-259.
    57. Chen Jinfa, Yao David D.,Zheng Shaohui.Optimal control of a multi-product inventory system with substitution [C].Proceeding of 38th IEEE Conference on Decision and Control, Phoenix, Arizona, USA,1999:468-473.
    58.Hui Chi-Wai, Gupta A.A novel MILP formulation for short-term scheduling of multi-stage multi-product batch plants [J],Computers and Chemical Engineering,2000,24(2-7):1611-1617.
    59.Hui Chi-Wai, Gupta A, van der Meulen, H.A.J. A novel MILP formulation for short-term scheduling of multi-stage multi-product batch plants with sequence-dependent constraints [J], Computers and Chemical Engineering,2000,24(12):2705-2717.
    60. Lee Ho-Kyung, Lee In-Beum, Reklaitis G V. Capacity expansion problem of multisite batch plants with production and distribution [J],Computers and Chemical Engineering,2000,24 (2): 1597-1602.
    61.Mendez Carlos A.,Cerda Jaime. Optimal scheduling of a resource-constrained multiproduct batch plant supplying in termediates to nearby end-product facilities [J], Computers and Chemical Engineering,2000,24(2):369-376.
    62. Mendez C.A.,Henning G P, Cerda, J.An MILP continuous-time approach to short-term scheduling of resource-constrained multistage flowshop batch facilities [J],Computers and Chemical Engineering,2001,25(4-6):701-711.
    63.Mendez C A, Henning G.P.,Cerda J. Optimal scheduling of batch plants satisfying multiple product orders with different due-dates [J], Computers and Chemical Engineering,2000,24(9): 2223-2245.
    64.秦宏启,王克峰,袁一.基于改进遗传算法的多产品连续化工过程生产调度[J],大连理工大学学报,1997,37(6):653-657.
    65.Sahinidis N.V.,Grossmann I.E.. MINLP model for cyclic multiproduct scheduling on continuous parallel lines [J],Computers and Chemical Engineering,1991,15(2):85-103.
    66.王朝晖,甘文泉,陈浩勋等.具有模糊缓冲库存约束的化工批处理过程的调度[J].系统工程理论与实践,1998,7:62-68.
    67.Gonnet Silvio, Chiotti Omar. Modeling of the supervisory control system of a multipurpose batch plant [J].Computers and Chemical Engineering,1999,23(4-5):611-622.
    68.Dimitriadis A.D.,Shah N, Pantelides C.C.RTN-based rolling horizon algorithms for medium term scheduling of multipurpose plants [J], Computers and Chemical Engineering.1997, 21(Suppl.1):1061-1066.
    69.Ln Lee, Shaw M.J. A neural-net approach to real time flow-shop sequencing. Computers and Industrial Engineering,2000,38(1):125-147.
    70. Ruiz D.,Canton J.,Nougues, J.M.,Espuna, A.,Puigianer, L..On-line fault diagnosis system support for reactive scheduling in multipurpose batch chemical plants. Computers and Chemical Engineering,2001,25(4-6):829-837.
    71.Brucker P.,Hurink J. Solving a chemical batch scheduling problem by local search [J],Annals of Operation Research,2000,96:17-38.
    72.张冰剑,华贲,陆明亮.炼油企业生产计划与公用工程多周期集成优化研究[J],石油学报(石油加工),2006,22(2):56-68.
    73.何银仁,陈先芽,杨华英等.炼油和石油化工生产计划模型中公用工程的优化[J],石油炼制与化工,1996,27(12):45-48.
    74.石李胜.蒸汽动力系统的优化调度[D],西安交通大学,2002.
    75.王西兵,钱燕云,郁鸿凌等.大型钢铁企业低压蒸汽系统优化调度研究[J],上海理工大学学报,2006,28(6):391-395.
    76.李国俊,郁鸿凌,李瑞阳等.大型蒸汽管网系统的运行优化调度[J],化工进展,2007,26(1):77-81.
    77.朱健勇.大型企业动力厂调度与变电运行管理系统的开发(D),南昌大学,2006.
    78.夏燕萍,吕泽华,赵士杭.热电厂锅炉-汽轮机的优化调度[J],清华大学学报,2000,40(11):59-62.
    79.张国喜,华贲,刘金平.石化企业蒸汽动力系统的多工况操作优化[J],石油炼制与化工,2001,32(5):42-46.
    80.罗向龙,华贲.炼油厂蒸汽动力系统优化调度策略研究[J],计算机与应用化学,2006,23(11):1057-1060.
    81.张冰剑,华贲,罗向龙,梁喜革.炼油企业全厂多周期生产计划优化研究[J],计算机与应用化学,2006,23(1):64-68.
    82.Iyer Ramaswamy R, Grossmann Ignacio E. Optimal multiperiod operational planning for utility systems [J], Computers and Chemical Engineering,1997,21(8):787-800.
    83.Zhang J., Zhu X.X.,Towler, G.P..A simultaneous optimization strategy for overall integration in refinery planning [J],Industrial and Engineering Chemistry Research,2001,40(12):2640-2653.
    84.Kim J.H,, Yi H.,Han C.,et al.Plant-wide multiperiod optimal energy resource distribution and byproduct gas holder level control in the iron and steel making process under varying energy demands [A],In:Bingzhen Chen, Arthur W Westerberg. Process Systems Engineering,2003. Hungary:Elsevier,2003:934-939.
    85.Duran M.A.,Grossmann I.E.. SIMULTANEOUS OPTIMIZATION AND HEAT INTEGRATION OF CHEMICAL PROCESSES [J] AIChE Journal,1986,32(1):123-138.
    86.鄢烈祥,胡晟华,魏登贵.公用工程系统多周期操作的优化调度[J],武汉理工大学学报,2003,25(2):51-54.
    87.鄢烈祥,胡晟华,麻德贤.锅炉蒸汽系统多操作周期的优化调度[J].化工学报,2003,54(12):1708-1712.
    88.马宪国.间歇用汽负荷的蒸汽优化调度方法[J],上海机械学院学报,1994,16(2):103-105.
    89.巫世晶,向农.电力设备维修计划优化管理研究[J].电力建设,2004,25(2):48-51.
    90.吴琼.电气设备检修计划排程优化模型的提出[J],广东电力,2004,17(5):7-8.
    91.李晓林,张彦铎,闵华清.基于三层结构的设备计划管理系统开发[J],武汉化工学院学报,2002,24(3):61-64.
    92.王善永,范文,钟敦美.基于状态监测的水电厂主设备检修计划决策系统[J],电力系统自动化,2001,8:45-47.
    93.黄武新,郭年琴,施飞.基于神经网络的设备维修计划预测[J],南方冶金学院学报,2002,23(2):37-40.
    94.黄武新,古莹奎.矿山选厂设备维修计划智能预测系统[J],有色设备,2005,6:14-16.
    95.杨顺良,林任英.选矿知识问答第二版[M],北京:冶金工业出版社,2003,5-10,45,116.
    96.Jamsa-Jounela,S.L., Poikonen,R.,Vatanski,N.,Rantala, A..Evaluation of control performance: methods, monitoring tool and applications in a flotation plant [J],Minerals Engineering 2003, 16(11):1069-1074.
    97.Hulbert, D.G.,Review Papers on Automation in Mineral and Metal Processing [J],Control Engineering Practice,2001,9(9):973.
    98.Hulbert,D.G.Preface to the revised papers from the 1995 IFAC symposium on automation in mining, mineral and metal processing [J],Control Engineering Practice,1997,5(2):229-230.
    99. Araki Mituhiko. Special section on automation in mining, mineral and metal processing [J], Control Engineering Practice,2003,11(1):39.
    100.周兴龙.1998年云南选矿年评,云南冶金,1999,28(2):10-16.
    101.王丰雨,张覃,黄宋魏.我国选矿自动化评述[J],国外金属矿选矿,2006,8:18-21.
    102.Bascur O.A.. Integrated grinding/flotation controls and management [C].Proceedings of copper, Oxford:Pergamon Press,1991,2:411-428.
    103.Reuter M.A.,Sudhoelter S.C..Use of simulated annealing and neural nets for the eco-techno-economic synthesis of mineral and metallurgical flowsheets [J],Minerals Engineering,1996,9(3):283-299.
    104.卫国雄.磁选厂选矿比与精矿品位经济关系的研究[J],山西冶金,1999,1:18-19,52.
    105.Hellmer Stefan. The role of product differentiation in the iron ore industry:The case of LKAB [J],1996,22(1-2):49-60.
    106.勒晓阳,周婷俐,李松仁等.回收率与利润多目标规划Fuzzy解法及应用[J].矿冶工程,1994,14(4):35-39.
    107.陈高波.偏最小二乘回归在选矿效益建模中的应用[J].数理统计与管理,2006,25(3):312-314.
    108.全介,杨致东,郭占峰.冶金企业金属物流流量的经济分析[J],物流技术与应用,1999,4(1):25-27.
    109.勒晓阳,周婷俐,沃廷枢等.采选冶系统动态回收率最优控制模型[J],中国有色金属学报,1993,3(3):92-96.
    110.勒晓阳,周婷俐,沃廷枢.采选冶系统利润与回收率多目标优化模型研究及其应用[J],矿冶,1995,4(3):108-113.
    111.Le Xiaoyang, Li Songreng, Jia Chunlin. Study on the optimal recovery model of mining, mineral processing, metallurgy system [J], Zhongnan Kuangye Xueyuan Xuebao/Journal of Central-South Institute of Mining and Metallurgy,1991,22(4):397-400.
    112.Le Xiaoyang. Input-output model and recovery optimal control model of mining, mineral processing, metallurgy system [C],Proceedings of the 2nd International Conference on Environmental Issues and Management of Waste in Energy and Mineral Production, Alberta, 1992:1123-1126.
    113.勒晓阳,李松仁,贾春霖.采选冶产值最优计划模型的研究[J],金属矿山,1992,1:48-52,47.
    114.范体军,李宏余,常香云等.磷化工企业计划模型及其算法研究[J],系统工程学报,2007,22(2):113-121.
    115.范体军,李宏余,陈荣秋.磷化工企业生产分销计划的数学模型及其应用[J],系统工程理论方法应用,2006,15(6):481-489.
    116.云庆夏.优化采选冶产品品位的遗传算法[J].金属矿山,1999,10:11-13.
    117.王义达,周伟,袁怀雨.矿山经营参数整体动态优化系统的研究[J],金属矿山,2003,10:10-15.
    118.Enjie Ma, Jinliang Ding, Tianyou Chai.The optimization methods based on PSO for global production indices of mineral process[C], Proceedings of the International Conference on Sensing, Computing and Automation, Chongqing,2006.
    119. Hodouin D. Jamsa-Jounela S.-L, Carvalho M.T.,Bergh L.. State of the art and challenges in mineral processing control [J].Control Engineering Practice,2001,9(9):995-1005.
    120.Huang Xiao-Ling, Chai Tian-You.Production process management system for production indices optimization of mineral processing [C].16th IFAC World Congress, Prague Czechic,2005.
    121.黄肖玲,丁进良,柴天佑.面向生产指标优化的选矿过程调度研究[J],系统工程学报,2006,21(2):136-142.
    122.郭西进,高莉,许世范.选煤厂CIMS日生产作业计划编制研究[C],中国控制与决策学术年会论文集,2001:817-821.
    123.张明明,阮仁满,温建康.选煤厂生产计划的优化[J],中国矿业,2000,9(1):70-73.
    124.刘满洲.金堆城铝业公司生产管理信息系统的应用研究[J],中国钼业,1998,12(4):64-65.
    125.石建华.大型选矿厂生产过程实时监控与综合管理信息系统[J],矿山机械,2001,7:44-46.
    126.闫长斌,徐国元,刘俊.喀拉通克铜镍矿选矿车间管理信息子系统的设计与实现[J],金属矿山,2004,1:47-50.
    127.何花金,罗开贤.计算机在凡口矿选矿中的应用实践[J],有色金属(选矿部分),2004,2:48-51.
    128.王云亮.选矿生产管理信息系统的设计与实现[D],济南:山东大学,2006.
    129.尤官林,韩英.选矿生产管理决策支持系统初探[J],武汉化工学院学报,1998,20(3)40-43.
    130.李俊萌.选矿生产指标管理信息系统[J],中国钨业,1999,3:28-31.
    131.Houseman L.A.,Schubert J.H.,Hart J.R.,Carew W.D.. PlantStar 2000:A plant-wide control platform for minerals processing [J].Minerals Engineering,2001,14(6):593-600.
    132.柴天佑,李小平,周晓杰等.基于三层结构的金矿企业现代集成制造系统[J],控制工程,2003,10(1):18-22.
    133.Tianyou Chai.Integrated automation system for minerals processing [R], Plenary Lecture, IFAC Workshop on New Technologies for Automation of Metallurgical Industry,2003.
    134.严洪森.一种基于关联预测的车间生产计划的最优分解方法[J],系统工程理论与实践,1997,12:58-63.
    135.Simon H.A..Models of man [M],New York:John Wiley&Sons.1957.
    136.Ignizio,J.P..Goal Programming and Extensions [M],Heath, Lexington, MA,1976.
    137.Deb,K., Goyal M..A flexible optimization procedure for mechanical component design based on genetic adaptive search[J],Trans, of the ASME J of Mechanical Design,1998,120.
    138.Kim Yeo Keun, Kim Yong Ju, Kim Yeongho. Genetic algorithms for assembly line balancing with various objectives [J],Computer and Industrial Engineering,1996,30(3):397-409.
    139.Hwang C.L., Masud A.S.M.. Multiple Objective Decision Making Methods and Application. A state of the art survey [M],Springer, Berlin,1979.
    140. Weistroffer H.R.. An interactive goal programming method for nonlinear multiple-criteria decision-making problems [J], Computers and Operations Research,1983,10(4):311-320.
    141.陆泓,郑秉霖.马钢中板厂生产计划分解模型[J],冶金自动化,2001,5:29-33.
    142.李昕,刘连臣,吴澄.一种基于目标规划的AHP参数学习算法[J],清华大学学报(自然科学版),2004,44(4):466-469.
    143.孙建华,徐骏,任艳频.目标规划在CIMS--ERC单元层作业计划系统中的应用[J],系统工程理论与实践,1995,(12):7-11.
    144. Saber H.M., Ravindran A..Nonlinear goal programming theory and practice:a survey [J], Computers and Operations Research,1993,20(3):275-291.
    145.Taguchi T., Yokoya T.,Gen M.Method for solving multiobjective nonlinear integer programming problems using hybrid genetic algorithm [J], Transations of the Institute of Electronics, Information and Communication Engineers A,1999, J82-A(10):1668-1671.
    146.Gen M.,Baoding Liu. Evolution algorithm for optimal capacity expansion, Journal of the Operations Research Society of Japan,1997,40(1):1-9.
    147.刘彬,陈大平.一类整数性目标规划的遗传算法[J],计算机工程与科学,2003,35(3)63-65.
    148.罗映红,崔成刚.遗传算法在目标规划中的应用[J].兰州铁道学院学报,1997,16(2)71-74.
    149.玄光男,程润伟.遗传算法与工程设计[M],北京:科学出版社,2000,55-56.
    150.陆磊,施保昌.非线性目标规划的一类有效方法[J],系统工程,1999,7:1-4,26.
    151.Gen.M, B.liu. A genetic algorithm for nonlinear goal programming [J], Evolutionary Optimization,1999,1(1):1-9.
    152.de Haan Job, Yamamoto, Masaru. Zero inventory management:facts of fiction? Lessons from Japan [J],International Journal of Production Economics,1999,59(1):65-75.
    153.宋克勤,陈文安.工业企业生产管理与控制[M],上海:立信会计出版社,1997,116-120.
    154.E.Zitzler. Evolutionary algorithms for multiobjective optimization:methods and applications [D],Ph D thesis. Swiss Federal Institute of Technology, Zurich,1999.
    155.Konaka Abdullah, Coit David W.,Smith Alice E.. Multi-objective optimization using genetic algorithms:A tutorial [J],Reliability Engineering and System Safety,2006,91(9):992-1007.
    156. Kennedy James, Eberhart Russell, Particle swarm optimization [C].IEEE International Conference on Neural Networks Proceedings, Perth, Aust,1995,4:1942-1948.
    157.Eberhart R.C.,Shi Y. Particle swarm optimization:Developments, applications and resources [J].Proceedings of the IEEE Conference on Evolutionary Computation, ICEC,2001,1:81-86.
    158.Xiaohui Hu, Eberhart R.C.,Yuhui Shi. Particle swarm with extended memory for multiobjective particle swarm optimization [C],2003,Proceedings of the 2003 IEEE Swarm Intelligence Symposium, USA,2003:193-197.
    159.Parsopoulos K.E., Varhatis M.N.. Particle swarm optimization method in multiobjective problems [C].Proceeding of the ACM Symposium on Applied Computing, Madrid, Spain,2002: 603-607.
    160.Coello Coello C.A.,Lechuga, M.S..MOPSO:a proposal for multiple objective particle swarm optimization [C], Proceedings of the 2002 Congress on Evolutionary Computation, CEC 2002, Honolulu,Hawaii,USA,2002,2:1051-1056.
    161.Wilson E.O. Sociobiology:The New Synthesis [M],MA:Belknap Press,1975.
    162.许时.矿石可选性研究[M],北京:冶工业出版社.1989:296-297.
    163.钱积新,邵之江,董浩等.工业自动化发展的必由之路——商品化软件的开发研究[J],石油化工自动化,1997,5,1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700