无机双电层栅介质及其低电压氧化物微纳晶体管应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于氧化物半导体的微纳晶体管,由于其制备温度低、高电子迁移率等独特优势在平板显示、电子纸、传感器等领域具有广泛的应用价值。常规器件采用的热氧化SiO2栅介质由于其低介电常数导致较弱的栅电极/沟道耦合作用,工作电压一般都大于20V。较高的工作电压对于低功耗的便携式电子产品应用是个巨大的障碍。本研究论文主要研究基于具有双电层效应的SiO2固态电解质的全无机低电压氧化物微纳晶体管,包括薄膜晶体管和纳米线晶体管。并在以下几个方面取得了突出的研究成果:
     (1)通过特殊的等离子体化学汽相沉积(PECVD)工艺制备了具有高双电层单位电容的SiO2固态电解质,并且对SiO2固态电解质的极化机理进行了详细的研究。在不同频率下SiO2具有三种不同的极化:双电层形成(低频),离子迁移(中频)以及偶极子极化(高频)。通过改变SiO2固态电解质的制备条件,我们改善了SiO2固态电解质的极化响应速度,120℃C沉积的SiO2固态电解质在1kHz时双电层电容高达1μF/cm2,在10kHz时仍高达0.6μF/cm2。分析了不同温度下Si02固态电解质的形貌。同时我们利用SiO2固态电解质制备了In-Zn-O薄膜晶体管,其工作电压降低到1V以内。器件的场效应电子迁移率,电流开关比以及亚阈值斜率分别为46.2cm2/Vs,106和69mV/decade。由于SiO2固态电解质具有快速的极化响应时间,因此基于该栅介质的In-Zn-O薄膜晶体管有望具有kHz的开关频率。
     (2)制备了SiO2质子导体以及利用单掩模自组装法制备了基于SiO2质子导体的In-Zn-O共面同质结透明薄膜晶体管,并对其电学特性和光学特性进行了研究。随着磷酸溶液浓度从0%增加到50%,SiO2质子导体在20Hz的单位电容逐渐增加,最大为8μF/cm2。并且器件的双电层形成的上限频率逐渐升高。随着磷酸溶液浓度的增加,器件的饱和迁移率、工作电压、亚阈值摆幅、阈值电压和开关电流比都会发生不同程度的变化。变化最明显的是器件的工作电压,随着磷酸溶液浓度的增加,器件的工作电压从1.5V降低到0.6V,器件的亚阈值斜率也逐渐的减小到68mV/decade。器件的迁移率为12cm2/Vs。器件的光学透光特性优异,其透光率高达75%以上。
     (3)研制了基于SiO2固态电解质的纸张薄膜晶体管(Sb掺杂SnO2和InGaZnO4沟道)及其通过氧压调制技术实现不同工作模式的薄膜晶体管。首先,我们制备了基于SiO2固态电解质的电池可驱动的低电压Sb掺杂SnO2纸张薄膜晶体管,由于SiO2固态电解质具有形成双电层的能力,因而器件的栅介质单位电容在40Hz时高达1.36μF/cm2,纸张器件的工作降低到1.5V以内,并且器件的阈值电压接近于0V(Vth=0.06V)。纸张器件的具有优异的电学特性,其亚阈值斜率,电流开关比和饱和场效应电子迁移率分别为-80mV/decade,大于105和21cm2/Vs。这是世界上报道过的最低工作电压的纸张薄膜晶体管。同时,我们还在纸张衬底上制备了低电压In-Ga-Zn-O薄膜晶体管,通过阻抗谱以及傅里叶转换红外光谱表征了SiO2的固态电解质特性。最重要的是,我们通过氧压调制技术改变了In-Ga-Zn-O的沟道电导,从而实现了耗尽模式(Vth=-0.45)和增强模式(Vth=0.25V)的低电压In-Ga-Zn-O纸张薄膜晶体管。
     (4)引入了全新的单根纳米线晶体管的制作工艺,不需要采用任何的光刻技术。我们发展了一种镍网掩模技术制备全透明的单根Sb掺杂8nO2纳米线晶体管在没有热退火和表面钝化的情况下,纳米线的表面损伤可以避免,这种方法非常有利于一维无机纳米线材料的光电特性研究。制备的Sb掺杂SnO2纳米线晶体管是利用高单位电容的SiO2固态电解质作为栅介质(2μF/cm2),其工作电压降低到1.5V。器件的饱和电子迁移率、电流开关比以及亚阈值斜率分别为175cm2/Vs,105和116mV/decade。动态和静态偏压应力测试证明我们的单根Sb掺杂SnO2纳米线透明晶体管能够持续的运行在低电压并保持极好的稳定性和重复性。
     (5)研究了基于SiO2固态电解质的In-Zn-O薄膜晶体管的不规则阈值电压漂移以及表面钝化对其电学性能的影响。没有经过表面钝化的器件在短时间的光照和负偏压应力条件下出现较大负阈值电压漂移(0.68V)。经过长时间的负偏压应力测试,没有钝化和已经钝化的器件都出现不规则的正阈值电压漂移,这主要是由于SiO2固态电解质中离子漂移现象产生的。经过表面钝化以后,器件的负阂值电压小于0.1V,这主要是由于经过表面钝化以后器件的光解吸附氧离子的现象得到抑制。
     (6)利用自主设计的掩模板,通过单掩模自组装法制备了具有新型双栅结构的低电压纸张薄膜晶体管。该双栅纸张薄膜晶体管具有底栅和共平面栅两个栅极。并且我们对共平面栅极对双栅纸张薄膜晶体管的电学特性影响进行了研究。当共平面栅极电压从2V变化到-2V时,纸张薄膜晶体管的阈值电压从-0.98V变化到0.94V。制备的纸张薄膜晶体管具有高性能,在不同的共平面栅极电压下,电流开关比为6×105,亚阈值斜率为0.14-0.19V/decade,以及饱和场效应电子迁移率为8.64-9.45cm2/Vs。
Oxide semiconductor-based micro/nanotransistors have potential applications in flat-panel displays, E-paper and chemical-biological sensors because of their low processing temperature and high electron mobility. Traditional transistors are gated by themally grown SiO2which shows high operating voltage because of the week gate coupling of such dielectrics. It is not compitable with the portable electronics. In this dissertation, inorganic low-voltage oxide-based micro/nanotransistors gated by SiO2solid electrolyte with electric-double-layer (EDL) effect were stuied, including thin-film transistors (TFTs) and nanowire transistors. The obtained results are summarized below.
     (1) SiO2solid electrolytes with high specific EDL capacitance were deposited by specific plasma enhanced chemical vapor deposition (PECVD) technology. The polarization mechnisim of a SiO2solid electroclyte was developed. Three polarizations are indentified at different:EDL formation (low frequencies), ionic relaxation (intermediate frequencies) and dipole relaxation (high frequencies). The polarization response of the SiO2solid electroclyte was optimized by changing the deposition condition and the improved specific capacitance is1μF/cm2at1kHz and remains0.6μF/cm2at10kHz. We have also stuied the morphology of SiO2solid electrolyte. Ultralow-voltage (<1V) transparent In-Zn-O TFTs gated by such dielectrics were fabricated. The field-effect mobility, current on/off ratio and subthreshold swing were estimated to be46.2cm2/Vs,106and69mV/decade. Such TFTs hold promise to perate at1kHz because of the fast polarization response of the SiO2solid electroclyte.
     (2) The SiO2-based proton conductors and transparent In-Zn-O coplanar homojunction TFTs gated by such dielectrics were prepared. As the H3PO4concentration changed from0%to50%, the specific EDL capacitance of the SiO2-based proton conductors and the upper frequency limit of EDL formation were increased, and the field-effect mobility, operating voltage, subthreshold swing and current on/off ratio were also changed. The operating voltage of such TFTs was changed from1.5V to0.6V as the H3PO4concentration increased. The transparent high performance In-Zn-O TFTs with a field-effect mobility of12cm2/Vs and a average transmittance of75%were obtained.
     (3) The paper TFTs (Sb-doped SnO2and InGaZnO4channels) gated by SiO2solid electrolyte were fabricated and the operation mode of such devices were tuing by oxygen-modulation technology. Battery drivable low-voltage sb-doped SnO2-based paper TFTs with a near-zero threshold voltage (Vth=0.06V) gated by microporous SiO2dielectric with EDL effect were firstly fabricated by our group. The operating voltage is found to be as low as1.5V due to the huge gate specific capacitance (1.34μF/cm2at40Hz) related to EDL formation. The subthreshold gate voltage swing, current on/off ratio and field-effect mobility were found to be<80mV/decade,>105and>21cm2/Vs, respectively. InGaZnO4thin-film transistors (TFTs) on paper substrates gated by SiO2solid electrolyte were fabricated at room temperature and the impedance spectroscopy (ionic-conductivity-frequency and capacitance-voltage characteristics) and Fourier-transformed infrared spectroscopy of SiO2were characterized. Most importantly, both depletion-mode (Vth=-0.45V) and enhancement-mode (Vth=0.25V) operations were realized by rationally controlling the oxygen concentration in argon ambient during InGaZnO4channel deposition.
     (4) We introduce a simple nickel grid mask method to fabricate transparent single Sb-doped SnO2nanowire transistors without use of lithographic tools. Damage of the nanowire's surface can be avoided without any thermal annealing and surface modification, which is very convenient for the fundamental electrical and photoelectric characterization of one-dimensional inorganic nanomaterials. The high specific capapcitance (2μF/cm2) SiO2solid electrolyte was used as the gate dielectric which results in the operating voltage was reduced to less than1.5V. The field-effect mobility, current on/off ratio and subthreshold swing were estimated to be175cm2/Vs,105, and116mV/decade, respectively. The static and dynamic bias stress measurements indicate that transparent SnO2nanowire FETs can operate at low-voltage with highly reproducibility.
     (5) Threshold voltage (Vth) instability and surface passivation effect of transparent In-Zn-O EDL TFTs were investigated. Unpassivated devices show a large negative threshold voltage shift of0.68V in the beginning of light-illuminated negative gate bias stress. Under longer time stress, anomalous positive Vth shifts were observed for both unpassivated and passivated TFTs, which was due to the mobile ions drifting in the SiO2-based solid-electrolyte gate dielectric. After surface passivation, the devices show neglectable negative Vth shifts of less than0.1V due to the protection of channel against the photodesorption of adsorbed oxygen ions.
     (6) Novel double-gate low-voltage paper TFTs were fabricated by self-assembled method. Such paper TFTs have a bottom-gate gate and an in-plane electrode gate and the electrical modulation effect of the in-plane electrode was investigated. The threshold voltage (Vth) of such paper TFTs was tuned from-0.98to0.94V as the voltage biases of the in-plane electrode was changed from2V to-2V. High electrical performance with a current on/off ratio of6×105~106, a subthreshold swing of0.14~0.19V/decade, and a mobility of8.64~9.45cm2/V s was obtained at different in-plane electrode voltage biases.
引文
[1]Weimer P K. The TFT-A new thin film transistor. Proceedings of the Institute of Radio Engineers,1962,50(6):1462-1469
    [2]Kwon J Y, Lee D J, Kim K B. Transparent amorphous oxide semiconductor thin fim transistors. Electronic Materials Letters,2011,7(1):1-11
    [3]Frenzel H, Lajn A, Wenckstern H, et al. Recent progress on ZnO-based metal-semiconductor field-effect transistors and their application in transparent integrated circuits. Advanced Materials,2010,22(47):5332-5349
    [4]Guo Y, Yu G, Liu Y. Fuctional organic field-effect transistors. Advanced Materials,2010,22(40):4427-4447
    [5]Sun Y, Roger J A. Inorganic semiconductors for flexible electronics. Advanced Materials,2007,19(15):1897-1916
    [6]Abraham D, Poehler T O. A physical description of CdSe TFT operation. International Journal of Electronics,1965,19(2):165-166
    [7]Lecomber P G, Spear W E, Ghaith A. Amorphous-silicon field effect device and possible application. Electronics Letters,1979,15(6):179-181
    [8]Mcgroddy J C, Nathan M I. High field effects in n-type InSb. Journal of the Physical Society of Japan,1966, S21(4):437-437
    [9]Lovinger A J, Rothberg L J. Electrically active organic and polymeric materials for thin-film-transistor-applications. Journal of Materials Research,1996, 11(6):1581-1592
    [10]Katz H E. Organic molecular solids as thin film transistor semiconductors. Journal of Materials Chemistry,1997,7(3):369-376
    [11]Brown A R, Jarrett C P, de Leeuw D M, et al. Field-effect transistors made from solution-processed organic semiconductors. Synthetic Metals,1997, 88(1):37-55
    [12]Garnier F. Thin film transistors based on organic conjugated semiconductors. Chemical Physics,1998,227(1-2):253-262
    [13]Horowitz G. Organic field-effect transistors. Advanced Materials,1998,10(5): 365-377
    [14]Katz H E, Bao Z. The physical chemistry of organic field-effect transistors. The Journal of Physical Chemistry B,2000,104(4):671-678
    [15]Gelinck G, Heremans P, Nomoto K, et al. Organic transistors in optical displays and microelectronic applications. Advanced Materials,2010,22(34): 3778-3798
    [16]Hoffman R L, Norris B J, Wager J F. ZnO-based transparent thin-film transistors. Applied Physics Letters,2003,82(5):733-735
    [17]Bae H S, Im S. ZnO-based thin-film transistors of optimal device performance. Jornal of Vaccum Science and Technology B,2004,22(3):1191-1195
    [18]Fortunato E M C, Barquinha P M C, Pimentel A C M B G, et al. Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature. Applied Physics Letters,2004,85(13):2541-2543
    [19]Sun B, Sirringhaus H. Surface tension and fluid flow driven self-assembly of ordered ZnO nanorod films for high-performance field effect transistors. Journal of the American Chemical society,2006,128(50):16231-16237
    [20]Bae H S, Yoon M H, Kim J H, et al. Photodetecting properties of ZnO-based thin-film transistors. Applied Physics Letters,2003,83(25):5313-5315
    [21]Norris B J, Anderson J, Wager J F, et al. Spin-coated zinc oxide transparent transistors. Journal of Physics D:Applied Physics,2003,36(20 L105-L107
    [22]Hsieh H H, Wu C C. Scaling behavior of ZnO transparent thin-film transistors. Applied Physics Letters,2006,89(4):041109 1-3
    [23]Hong D, Wager J F. Passivation of zinc-tin-oxide thin-film transistors. Journal of Vaccum Science and Technology B,2005,23(6):L25-L27
    [24]Jackson W B, Hoffman R L, Herman G S, et al. High-performance flexible zinc tin oxide field-effect transistors. Applied Physics Letters,2005,87(19): 1935031-3
    [25]Yaglioglu B, Yeom H Y, Beresford R, et al. High-mobility amorphous In2O3-10wt%ZnO thin film transistors. Applied Physics Letters,2006,89(06): 062103 1-3
    [26]Kang D, Lim H, Kim C, et al. Amorphous gallium indium zinc oxide thin film transistors:Sensitive to oxygen molecules. Applied Physics Letters,2007, 90(19):1921011-3
    [27]Shin J H, Hwang C S, Cheong W S, et al. Analytical modeling of IGZO thin-film transistors based on the exponential distribution of deep and tail states. Journal of the Korean Physics Society,2009,54(1):527-530
    [28]Lee J M, Cho I T, Lee J H, et al. Bias-stress-induced stretched-exponential time dependence of threshold voltage shift in InGaZnO thin film transistors. Applied Physics Letters,2008,93(09):093504 1-3
    [29]Ahn B D, Shin H S, Kim H J, et al. Comparison of the effects of Ar and H2 plasmas on the performance of homojunctioned amorphous indium gallium zinc oxide thin film transistors. Applied Physics Letters,2008,93(20):203506 1-3
    [30]Lim W, Jang J H, Kim S H, et al. High performance indium gallim zinc oxide thin film transistors fabricated on polyethylene terephthalate substrates. Applied Physics Letters,2008,93(08):082102 1-3
    [31]Sun J, Lu A, Wang L, et al. High-mobility transparent thin-film transistors with an Sb-doped SnO2 nanocrystal channel fabricated at room temperature. Nanotechnology,2009,20(33):335204 1-4
    [32]Noh J F, Ryu S Y, Jo S J, et al. Indium oxide thin-film transistors fabricated by RF sputtering at room temperature. IEEE Electron Device Letters,2010,31(6): 567-569
    [33]Chiang H Q, Hong D, Hung C M, et al. Thin-film transistors with amorphous indium gallium oxide channel layers. Journal of Vaccum Science and Technology B,2006,24(6):2702-2705
    [34]Kim H S, Kim M G, Ha Y G, et al. Low-temperature solution-processed amorphous indium tin oxide field effect transistors. Journal of The American Chemical Society,2009,131(31):10826-10827
    [35]Fortunato E M C, Barquinha P M C, Pimentel A C M B, et al. Fully transparent ZnO thin-film transistor produced at room temperature. Advanced materials, 2005,17(5):590-594
    [36]Kang K, Lim H H, Kim H G, et al. High field-effect mobility ZnO thin-film transistors with Mg-doped Bao.6Sro.4TiO3 gate insulator on plastic substrates. Applied Physics Letters,2007,90(04):043502 1-3
    [37]Dhananjay, Cheng S S, Yang C Y, et al. Dependence of channel thickness on the performance of In2O3 thin film transistors. Journal of Physics D:Applied Physics,2008,41(9):092006 1-6
    [38]Presley R E, Munsee C L, Park C H, et al. Tin oxide transparent thin-film transistors. Journal of Physics D:Applied Physics,2004,37(20):2810-2813
    [39]Ou C W, Dhananjay, Ho Z Y, et al. Anomalous p-channel amorphous oxide transistors based on tin oxide and their complementary circuits. Applied Physics Letters,2008,92(12):122113 1-3
    [40]Dhananjay, Chu C W, Ou C W, et al. Comlementary inverter circuits based on p-SnO2 and n-InO3 thin film transistors. Applied Physics Letters,2008,92(23): 232103 1-3
    [41]Nomura K, Ohta H, Takagi A, et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature,2004,432(7016):488-492
    [42]Yabuta H, Sano M, Abe K, et al. High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering. Applied Physics Letters,2006,89(11):112123 1-3
    [43]Fortunato E, Barquinha P, Pimentel A, et al. Amorphous IZO TTFTs with saturation mobilities exceeding 100 cm2/Vs. Physica Status Solidi-Rapid Research Letters,2007,1(1):R34-R36
    [44]Ofuji M, Abe K, Shimizu H, et al. Fast thin-film transistor circuits based on amorphous oxide semiconductor. IEEE Electron Device Letters,2007,28(4): 273-275
    [45]Sun J, Mourey A, Zhao D L, et al. ZnO thin-film transistor ring oscillators with 31-ns propagation delay. IEEE Electron Device Letters,2008,29(7):721-723
    [46]Park S H, Hwang C S, Ryu M, et al. Transparent and photo-stable ZnO thin-film transistors to drive an active matrix organic-light-emitting-diode display panel. Advanced Materials,2009,21(6):678-682
    [47]Arnold M S, Avouris P, Pan Z, et al. Field-effect transistors based on single semiconducting oxide nanobelts. The Journal of Physical Chemistry B,2003, 107(3):659-663
    [48]Sun B, Sirringhaus H. Solution-processed zinc oxide field-effect transistors based on self-assembly of colloidal nanorods. Nano Letters,2005,5(12): 2408-2413
    [49]Keem K, Kang J, Yoon C, et al. A fabrication technique for top-gate ZnO nanowire field-effect transistors by a photolithography process. Microelectronic Engineering,2007,84(5-8):1622-1626
    [50]Liao Z M, Liu K J, Zhang J M, et al. Effect of surface states on electron transport in individual ZnO nanowires. Physics Letters A,2007,367(3): 207-210
    [51]Ju S, Lee K, Yoon M H, et al. High performance ZnO nanaowire field effect transistors with organic gate nanodielectrics:effects of metal contacts and ozone treatment. Nanotechnology,2007,18(15):1552011-7
    [52]Lu W, Xie P, Lieber C M. Nanowire transistor performance limits and applications. IEEE Transaction on Electron Devices,2008,55(11):2859-2876
    [53]Hong W K, Kim B J, Kim T W, et al. Electrical properties of ZnO nanowire field effect transistors by surface passivation. Colloids and Surfaces A: Physicochemcal and Engineering Aspects.2008,313-314(1):378-382
    [54]Ju S, Kim S, Mohammadi S, et al. Interface studies of ZnO nanowire transistors using low-frequency noise and temperature-dependent I-V measurements. Applied Physics Letters,2008,92(02):022104 1-3
    [55]Suh D I, Lee S Y, Hyung J H, et al. Multiple ZnO nanowires field-effect transistors. The Journal of Physical Chemistry,2008,112(4):1276-1281
    [56]Yuan G D, Zhang W J, Jie J S, et al. p-type ZnO nanowire arrays. Nano Letters, 2008,8(8):2591-2597
    [57]Unalan H E, Zhang Y, Hiralal P, et al. Zinc oxide nanowire networks for macroelectronic devices. Applied Physics Letters,2009,94(16):163501 1-3
    [58]Kim S, Delker C, Chen P, et al. Oxygen plasma exposure effects on indium oxide nanowire transistors. Nanotechnology,2010,21(14):145207 1-7
    [59]Lee S H, Jo G, Park W, et al. Diameter-engineered SnO2 nanowires over contact-printed gold nanodots using size-controlled carbon nanopost array stamps. ACS Nano,2010,4(4):1829-1836
    [60]Lee S W, Ham M H, Kar J P, et al. Selective alignment of a ZnO nanowire in a magnetric field for the fabrication of an air-gap field-effect transistor. Microelectronic Engineering,2010,87(1):10-14
    [61]Tobjork D, Osterbacka R. Paper electronic. Advanced Materials,2011,23(17): 1935-1961
    [62]Goncalves D, Prazeres D M F, Chu V, et al. Amorphous silicon thin-film transistors gated through an electrolyte solution. IEEE Electron Device Letters, 2008,29(9):1030-1033
    [63]Kergoat L, Herlogsson L, Braga D, et al. A water-gate organic field-effect transistor. Advanced Materials,2010,22(23):2565-2569
    [64]Uemura T, Hirahara R, Tominari Y, et al. Electronic functionalization of solid-to-liquid interfaces between organic semiconductors and ionic liquids: Realization of very high performance organic single-crystal transistors. Applied Physics Letters,2008,93(26):263305
    [65]Yuan H, Shimotani H, Tsukazaki A, et al. High-density carrier accumulation in ZnO field-effect transistors gated by electric double layers of ionic liquids. Advanced Functional Materilas,2009,19(7):1046-1053
    [66]Ono S, Minder N, Chen Z, et al. High-performance n-type organic field-effect transistors with ionic liquid gates. Applied Physics Letters,2010,97(14): 143307 1-3
    [67]Uemura T, Yamagishi M, Ono S, et al. Low voltage operation of n-type organic field-effect transistors with ionic liquid. Applied Physics Letters,2009,95(10): 103301 1-3
    [68]Panzer M J, Newman C R, Frisbie C D. Low voltage operation of a pentacene field-effect transistor with a polymer electrolyte gate dielectric. Applied Physics Letters,2005,86(10):103503 1-3
    [69]Takeya J, Yamada K, Hara K, et al. High-density electrostatic carrier doping in organic single-crystal transistors with polymer gel electrolyte. Applied Physics Letters,2006,88(11):112102 1-3
    [70]Said E, Crispin X, Herlogsson L, et al. Polymer field-effect transistor gated via a poly(styrenesulfonic acid) thin film. Applied Physics Letters,2006,89(14): 143507 1-3
    [71]Herlogsson L, Crispin X, Robinson N D, et al. Low-voltage polymer field-effect transistors gated via a proton conductors. Advanced Materilas, 2007,19(1):97-101
    [72]Matti A, Gabrielsson E O, Berggren M, et al. Ultra-low voltage air-stable polyelectrolyte gated n-type organic thin film transistors. Applied Physics Letters,2011,99(06):063305 1-3
    [73]Zhou B, Sun J, Han X, et al. Low-voltage organic/inorganic hybrid transparent thin-film transistors gated by chitosan-based proton conductors. IEEE Electron Device Letters,2011,32(11):1549-1551
    [74]Lee J, Panzer M J, He Y, et al. Ion gel gated polymer thin-film transistors. Journal of the American Chemical Society,2007,129(15):4532-4533
    [75]Cho J H, Lee J, He Y, et al. High-capacitance ion gel gate dielectrics with faster polarization response times for organic thin film transistors. Advanced Materials,2008,20(4):686-690
    [76]Bong H, Lee W H, Lee D Y, et al. High-mobility low-temperature ZnO transistors with low-voltage operation. Applied Physics Letters,2010,96(19): 192115 1-3
    [77]Pal B N, Dhar B M, See K C, et al. Solution-deposited sodium beta-alumina gate dielectrics for low-voltage and transparent field-effect transistors. Nature Materials,2009,8(11):898-903
    [78]Jiang J, Wan Q, Sun J, et al. Ultralow-voltage transparent electric-double-layer thin-film transistors processed at room-temperature. Applied Physics Letters, 2009,95(15):152114 1-3
    [79]Sun J, Jiang J, Lu A, Low-voltage transparent indium-zinc-oxide coplanar homoj unction thin-film transistors self-assembled on inorganic proton conductors. IEEE Transactions on Electron Devices,2011,58(3):764-768
    [80]Ono S, Seki S, Hirahara R, et al. High-mobility, low-power, and fast-switching organic field-effect transistors with ionic liquids. Applied Physics Letters, 2008,92(10):103313 1-3
    [81]Panzer M J, Frisbie C D. High charge carrier densities and conductance maxima in single-crystal organic field-effect transistors with a polymer electrolyte gate dielectric. Applied Physics Letters,2006,88(20):203504 1-3
    [82]Taniguchi M, Kawai T. Vertical electrochemical transistor based on poly(3-hexylthiophene) and cyanoethylpullulan. Applied Physics Letters,2004, 85(15):3298-3300
    [83]Larsson O, Said E, Berggren M, et al. Insulator polarization mechanisms in polyelectrolyte-gated organic field-effect transistors. Advanced Functional Materials,2009,19(20):3334-3341
    [84]Lu C, Fu Q, Huang S, et al. Polymer electrolyte-gated carbon nanotube field-effect transistor. Nano Letters,2004,4(4):623-627
    [85]Siddons G P, Merchin D, Back J J, et al. Highly efficient gating and doping of carbon nanotubes with polymer electrolytes. Nano Letters,2004,4(5):927-931
    [86]Herlogsson L, Colle M, Tierney S, et al. Low-voltage ring oscillators based on polyelectrolyte-gated polymer thin-film transistors. Advanced Materials,2010, 20(1):72-76
    [87]Herlogsson L, Crispin X, Tierney S, et al. Polyelectrolyte-gated organic complementary circuits operating at low power and voltage. Advanced Materials,2011,23(40):4684-4689
    [88]Cho J H, Lee J, Xia Y, et al. Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. Nature Materials,2008,7(11): 900-906
    [89]Xia Y, Zhang W, Ha M, et al. Printed sub-2 V gel-electrolyte-gated polymer transistors and circuits. Advanced Functional Materials,2010,20(4):587-594
    [90]Ha M, Xia Y, Green A A, et al. Printed sub-3 V digital circuits on plastic from aqueous carbon nanotube inks. ACS Nano,2010,4(8):4388-4395
    [91]Said E, Andersson P, Engquist I, et al. Electrochromic display cells driven by an electrolyte-gated organic field-effect transistor. Organic Electronics,2009, 10(6):1195-1199
    [92]Kaihovirta N J, Wikman C J, Makela T, et al. Self-supported ion-conductive membrane-based transistors. Advanced Materials,2009,21(24):2520-2523
    [93]Andersson P, Nilsson D, Svensson P O, et al. Active matrix displays based on all-organic electrochemical smart pixels printed on paper. Advanced Materials, 2002,14(20):1460-1464
    [94]Steinhoff G, Hermann M, Schaff W J, et al. pH response of GaN surfaces and its application for pH-sensitive field-effect transistors. Applied Physics Letters, 2003,83(1):177-179
    [95]Bergveld P. Thirty years of ISFETOLOGY—What happened in the past 30 years and what may happen in the next 30 years. Sensors and Actuators B: Chemical,2003,88(1):1-20
    [96]Daguenet C, Dyson P J, Krossing I, et al. Dielectric response of imidazolium-based room-temperature ionic liquids. The Journal of Physical Chemistry B,2006,110(25):12682-12688
    [97]Thackeray J W, White H S, Wrighton M S. Poly(3-methylthiophene)-coated electrodes:optical and electrical properties as a function of redox potential and amplification of electrical and chemical signals using poly(3-methylthiophene)-based microelectrochemical transistors. The Journal of Physical Chemistry,1985,89(23):5133-5140
    [98]Dabke R B, Singh G D, Dhanabalan A, et al. An ion-activated molecular electronic device. Analytical Chemistry,1997,69(4):724-727
    [99]Jiang J, Dai M, Sun J, et al. Electrostatic modification of oxide semiconductors by electric double layers of microporous SiO2-based solid electrolytes. Journal of Applied Physics,2011,109(5):054501 1-6
    [100]Kang M S, Lee J, Norris D J, et al. High carrier densities achieved at low voltages in ambipolar PbSe nanocrystal thin-film transistors. Nano Letters, 2009,9(11):3848-3852
    [101]Shimotani H, Asanuma H, Tsukazaki A, et al. Insulator-to-metal transition in ZnO by electric double layer gating. Applied Physics Letters,2007,91(8): 082106 1-3
    [102]Dhoot A S, Yuen J D, Heeney M, et al. Beyond the metal-to-insulator transition in polymer electrolyte gated polymer field-effect transistors. Proceedings of the National Academy of Sciences,2006,103(32): 11834-11837
    [103]Ueno K, Nakamura S, Shimotani H, et al. Electric-field-induced superconductivity in an insulator. Nature Materials,2008,7(11):855-858
    [104]Ye J T, Inoue S, Kobayashi K, et al. Liquid-gated interface superconductivity on an atomically flat film. Nature Materials,2010,9(2):125-128
    [105]Nomura K, Ohta H, Ueda K, et al. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science,2003,300(5623): 1269-1272
    [106]Wang L, Yoon M H, Lu G, et al. High-performance transparent inorganic-organic hybrid thin-film n-type transistors. Nature Materials,5(11):893-900
    [107]Dehuff N L, Kettenring E S, Hong D, et al. Transparent thin-film transistors with zinc indium oxide channel layer. Journal of Applied Physics,97(6): 064505 1-5
    [108]Carcia P F, McLean R S, Reilly M H, et al. Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering. Applied Physics Letters, 2003,82(7):1117-1119
    [109]Panzer M J, Frisbie C D. Exploiting Ionic Coupling in Electronic Devices: Electrolyte-Gated Organic Field-Effect Transistors. Advanced Materials, 2008,20(16):3177-3180
    [110]Martins R, Barquinha P, Ferreira I, et al. Role of order and disorder on the electronic performances of oxide semiconductor thin film transistors. Journal of Applied Physics,2007,101(4):0445051-7
    [111]McDowell M G, Hill I G. Influence of Channel Stoichiometry on Zinc Indium Oxide Thin-Film Transistor Performance. IEEE Transactions on Electron Devices,2009,56(2):343-347
    [112]Facchetti A, Yoon M H, Marks T J. Gate dielectric for organic field-effect transistors:New opportunities for organic electronics. Advanced Materials, 2005,17(14):1705-1725
    [113]Robertson J. High dielectric constant oxides. The European Physical Journal-Applied Physics,2004,28(3):265-291
    [114]Lin C P, Tsui B Y, Yang M J, et al. High-performance poly-silicon TFTs using HfO2 gate dielectrics. IEEE Electron Device Letters,2006,27(5):360-363
    [115]Yamada M, Li D, Honma I, et al. A self-ordered, crystalline glass, mesoporous nanocomposite with high proton conductivity of 2×10-2Scm-1 at intermediate temperature. The Journal of American Chemical Society,2005, 127(38):13092-13093
    [116]Martins R, Barquinha P, Pimentel A, et al. Transport in high mobility amorphous wide band gap indium zinc oxide films. Physca Status Solidi (A), 2005,202(9):R95-R97
    [117]Kumar B, Gong H, Akkipeddi. High mobility undoped amorphous indium zinc oxide transparent thin films. Journal of Applied Physics,2005,98(7): 073703 1-5
    [118]Song J I, Park J S, Kim H, et al. Transparent amorphous indium zinc oxide thin-film transistors fabricated at room temperature. Applied Physics Letters, 2007,90(2):022106 1-3
    [119]Davis M E. Ordered porous materials for emerging applications. Nature,2002, 417(20):813-821
    [120]Echelmeyer T, Meyer H W, van Wullen L. New ternary composite electrolytes: Li ion conducting ionic liquids in silica glass. Chemistry of Materials,2009, 21(11):2280-2285
    [121]Matsuda A, Honjo H, Tatsumisago M, et al. Electric double-layer capacitors using HClO4-doped silica glass as a solid electrolyte. Sold State Ionics,1998, 113-115(1):97-102
    [122]Matsuda A, Nono Y, Kanzaki T, et al. Proton conductivity of acid-impregnated mesoporous silica gels prepared using surfactants as a template. Solid State Ionics,2001,145(1-4):135-140
    [123]Sato A, Abe K, Hayashi, et al. Amorphous In-Ga-Zn-O coplanar homojunction thin-film transistors. Applied Physics Letters,2009,94(13): 133502 1-3
    [124]Ono S, Miwa K, Seki S, et al. Acomparative study of organic single-crystal transistors gated by various ionic-liquid electrolytes. Applied Physics Letters, 2009,94(6):063301 1-3
    [125]Ito M, Kon M, Miyazaki, et al. Amorphous oxide TFT and their applications in electrophoretic displays. Physica Status Solidi (A),2008,205(8): 1885-1894
    [126]Huitema H E A, Gelinck G H, van der Putten J B P, et al. Plastic transistors in active-matrix displays. Nature,2001,414(11):599
    [127]Lim W, Douglas E A, Kim S H, et al. Low-temperature-fabricated InGaZnO4 thin film transistors on polyimide clean-room tape. Applied Physics Letters, 2008,93(25):252103 1-3
    [128]Martins R, Barquinha P, Pereira L, et al. Write-erase and read paper memory transistor. Applied Physics Letters,2008,93(20):2035011-3
    [129]Eder F, Klauk H, Halik M, et al. Organic electronics on paper. Applied Physics Letters,2004,84(14):2376-2378
    [130]Kim Y H, Moon D G, Han J I, et al. Organic TFT array on a paper substrate. IEEE Electron Device Letters,2004,25(10):702-704
    [131]Lim W, Douglas E A, Kim S H, et al. High mobility InGaZnO4 thin-film transistors on paper. Applied Physics Letters,2009,94(7):072103 1-3
    [132]Fortunato E, Correia N, Barquinha P, et al. High-Performance Flexible Hybrid Field-Effect Transistors Based on Cellulose Fiber Paper. IEEE Electron Device Letters,2008,29(9):988-900
    [133]Lim M H, Kang K T, Kim H G, et al. Low leakage current-stacked MgO/Bi1.5Zn1.0Nb1.5O7 gate insulator-for low voltage ZnO thin film tansistors. Applied Physics Letters,2006,89(20):2029081-3
    [134]Kim J B, Fuentes-Hernandez C, Potscavage W J, et al. Low-voltage InGaZnO thin-film transistors with Al2O3 gate insulator grown by atomic layer deposition. Applied Physics Letters,2009,94(14):142107 1-3
    [135]Halik M, Klauk H, Zschieschang U, et al. Low-voltage organic transistors with an amorphous molecular gate dielectric. Nature,2004,431(7011): 963-966
    [136]Barquinha P, Vila A, Goncalves G, et al. Gallium-indium-zinc-oxide based thin-film transistors:Influence of the source/drain material. IEEE Transactions on Electron Devices,2008,55(4):954-960
    [137]Ogo Y, Hiramatsu H, Nomura K, et al. p-channel thin-film transistor using p-type oxide semiconductor, SnO. Applied Physics Letters,2008,93(3): 032113 1-3
    [138]Lee C A, Jin S H, Jung K D, et al. Full-swing pentacene organic inverter with enhancement-mode driver and depletion-mode load. Solid State Electronics, 2006,50(7-8):1216-1218
    [139]Wang R, Cai Y, Tang C W, et al. Enhancement-mode Si3N4/AlGaN/GaN MISHFETs. IEEE Electron Device Letters,2006,27(10):793-795
    [140]Hoffman R L. ZnO-channel thin-film transistors:Channel mobility. Journal of Applied Physics,2004,95(10):5813-5819
    [141]Levy D H, Freeman D, Nelson S F, et al. Stable ZnO thin film transistors by fast open air atomic layer deposition. Applied Physics Letters,2008,92(19): 192101 1-3
    [142]Suresh A, Wellenius P, Muth J F. High performance transparent thin film transistors based on indium gallium zinc oxide as the channel material. IEEE International Electron Devices Meeting,2007,587-590
    [143]Ju S, Ishikawa F, Chen P, et al. High performance In2O3 nanowire transistors using organic gate nanodielectrics. Applied Physics Letters,2008,92(22): 222105 1-3
    [144]Zhang W, Jie J, Luo L, et al. Hysteresis in2O3:Zn nanowire field-effect transistor and its application as a nonvolatile memory device. Applied Physics Letters,2008,93(18):183111 1-3
    [145]Zhang W, Jie J, He Z, et al. Single zinc-doped indium oxide nanowire as driving transistor for organic light-emitting diode. Applied Physics Letters, 2008,92(15):153312 1-3
    [146]Ju S, Li J, Liu J, et al. Transparent avtive matrix organic ligh-emitting diode displays driven by nanowire transistor circuitry. Nano Letters,2008,8(4): 997-1004
    [147]Shen G, Chen P C, Ryu K, et al. Devices and chemical sensing applications of metal oxide nanowires. Journal of Materials Chemistry,2009,19(7):828-839
    [148]Duan X. Nanowire thin-film transistors:A new avenue to high-performance macroelectronics. IEEE Transactions on Electron Devices,2008,55(11): 3056-3062
    [149]Wan Q, Dattoli E, Lu W. Doping-dependent electrical characteristics of SnO2 nanowires. Small,2008,4(4):451-454
    [150]Hong W K, Song S, Hwang D K, et al. Effects of surface roughness on the electrical characteristics of ZnO nanowire field effect transistors. Applied Surface Science,2008,254(23):7559-7564
    [151]Hong W K, Jo Gm Kwon S S, et al. Electrical properties of surface-tailored ZnO nanowire field-effect transistors. IEEE Transactions on Electron Devices, 2008,55(11):3020-3029
    [152]Kwon S S, Hong W K, Jo G, et al. Piezoelectric effect on the electronic transport characteristics of ZnO nanowire field-effect transistors on bent flexible substrates. Advanced Materials,2008,20(23):4557-4562
    [153]Kim D, Kim Y K, Park S C, et al. Photoconductance of aligned SnO2 nanowire field effect transistors. Applied Physics Letters,2009,95(4): 043107 1-3
    [154]Dattoli E N, Kim K H, Fung W Y, et al. Radio-frequency operation of transport nanowire thin-film transistors. IEEE Electron Device Letters,2009, 30(7):730-732
    [155]Gao Z, Zhou J, Gu Y, et al. Effects of piezoelectric potential on the transport characteristics of metal-ZnO nanowire-metal field effect transistor. Journal of Applied Physics,2009,105(11):113707 1-6
    [156]Liao L, Fan H J, Yan B, et al. Ferroelectric transistors with nanowire channel: Toward nonvolatile memory applications. ACS Nano,2009,3(3):700-706
    [157]Na J, Huh J, Park S C, et al. Degradation pattern of SnO2 nanowire field effect transistors. Nanotechnology,2010,21(48):485201 1-6
    [158]Park H H, Kang P S, Kim G T, et al. Effect of gate dielectrics on the device performance of SnO2 nanowire field effect transistors. Applied Physics Letters,2010,96(10):1029081-3
    [159]Choe M, Jo G, Maeng J, et al. Electrical properties of ZnO nanowire field effect transistors with varying high-k Al2O3 dielectric thickness. Journal of Applied Physics,2010,107(3):034504 1-4
    [160]Yoon J, Hong W K, Jo M, et al. Nonvolatile memory functionality of ZnO nanowire transistors controlled by mobile protons. ACS Nano,2011,5(1): 558-564
    [161]Sohn J I, Choi S S, Morris S M, et al. Novel nonvolatile memory with multibit storage based on a ZnO nanowire transistor. Nano Letters,2010, 10(11):4316-4320
    [162]Pachauri V, Vlandas A, Kern K, et al. Site-specific self-assembled liquid-gated ZnO nanowire transistors for sensing applications. Small,2010, 6(4):589-594
    [163]Ju S, Li J, Pimparker N, et al. N-type field-effect transistors using multiple Mg-doped ZnO nanorods. IEEE Transactions on Nanotechnology,2007,6(3): 390-395
    [164]Park W I, Kim J S, Yi G C, et al. ZnO nanorod logic circuits. Advanced Materials,2005,17(11):1393-1397
    [165]Cheng Y, Chen K S, Meyer N L, et al. Functionalized SnO2 nanobelt field-effect sensors for label-free detection pf cardiac torponin. Biosensors and Bioelectronics,2011,26(11):4538-4544
    [166]Cheng Y, Fields L, Zheng J P, et al. Intrinsic characteristics of semiconducting oxide nanobelt field-effect transistors,2006,89(9):093114 1-3
    [167]Fan Z, Lu J G. Chemical sensing with ZnO nanowire field-effect transistor. IEEE Transactions on Nanotechnology,2006,5(4):393-396
    [168]Liu N, Fang G, Zeng W, et al. High performance ZnO nanorod strain driving transistor based complementary metal-oxide-semiconductor logic gate. Applied Physics Letters,2010,97(24):243504 1-3
    [169]Kim H J, Lee C H, Kim D W, et al. Fabrication and electrical characteristics of dual-gate ZnO nanorod metal-xode-semiconductor field-effect transistors. Nanotechnology,2006,17(11):S327-S331
    [170]Sun B, Peterson R L, Sirringhaus H. Low-temperature sintering of in-plane self-assembled ZnO nanorods for solution-processed high-performance thin film transistors. The Journal of Physical Chemistry C,2007,111(51): 18831-18835
    [171]Chen Y, Zhu C, Cao M, et al. Photoresponse of SnO2 nanobelts grown in situ on interdigital electrodes. Nanotechnology,2007,18(28):285502 1-5
    [172]Fan Z, Wang D, Chang P C, et al. ZnO nanowire field-effect transistor and oxygen sensing property. Applied Physics Letters,2004,85(24):5923-5925
    [173]Wang D, Wang Q, Javey A, et al. Germanium nanowire field-effect transistors with SiO2 and high-k HfO2 gate dielectrics. Applied Physics Letters,2003, 83(12):2432-2435
    [174]Chen P C, Shen G, Chen H, et al. High-performance single-crystalline arsenic-doped indium oxide nanowires for transparent thin-film transistors and active matrix organic light-emitting diode displays. ACS Nano,2009, 3(11):3383-3390
    [175]Lee S W, Lee H J, Choi J H, et al. Periodic array of polyelectrolyte-gated organic transistors from electrospun poly(3-hexylthiophene) nanofibers. Nano Letters,2010,10(1):347-351
    [176]Rosenblatt S, Yaish Y, Park J, et al. High performance electrolyte gated carbon nanotube transistors. Nano Letters,2002,2(8):869-872
    [177]Siddons G P, Merchin D, Back J H, et al. Highly efficient gating and doping of carbon nanotubes with polymer electrolytes. Nano Letters,2004,4(5): 927-931
    [178]Shimotani H, Kanbara T, Iwasa Y, et al. Gate capacitance in electrochemical transistor of single-walled carbon nanotube. Applied Physics Letters,2006, 88(7):073104 1-3
    [179]Ju S, Facchetti A, Xuan Y, et al. Fabrication of fully transparent nanowire transistors for transparent and flexible electronics. Nature Nanotechnology, 2007,2(6):378-384
    [180]Dottoli E N, Wan Q, Guo W, et al. Fully transparent thin-film transistor devices based on SnO2 nanowires. Nano Letters,2007,7(8):2463-2469
    [181]Zhang W F, He Z B, Yuan G D, et al. High-performance, fully transparent, and flexible zinc-doped indium oxide nanowire transistors. Applied Physics Letters,2009,94(12):123103 1-3
    [182]Zschieschang U, Weitz R T, Kern K, et al. Bias stress effect in low-voltage organic thin-film transistors. Applied Physics A,2009,95(1):139-145
    [183]Cha S H, Oh M S, Lee K H, et al. Electrically stable low voltage ZnO transistors with organic/inorganic nanohybrid dielectrics. Applied Physics Letters,2008,92(2):023506 1-3
    [184]Oh M S, Kwang D K, Lee K, et al. Low voltage complementary thin-film transistor inverters with pentacene-ZnO hybrid channels on A1Ox dielectrics. Applied Physics Letters,2007,90(17):173511 1-3
    [185]Shang L, Liu M, Tu D, et al. Low-voltage organic field-effect transistor with PMMA/ZrO2 bilayer dielectric. IEEE Transactions on Electron Devices,2009, 56(3):370-376
    [186]Yoon M H, Yan H, Facchetti A, et al. Low-voltage organic field-effect transistors and inverters enabled by ultrathin cross-linked polymers as gate dielectrics. Journal of the American Chemical Society,2005,127(29): 10388-10395
    [187]Lu Y, Lee W H, Lee H S, et al. Low voltage organic transistors with titanium oxide/polystyrene bilayer dielectrics. Applied Physcis Letters,2009,94(11): 113303 1-3
    [188]Park Y D, Kim D H, Jang Y, et al. Low-voltage polymer thin-film transistors with a self-assembled monolayer as the gate dielectric. Applied Physcis Letters,2005,87(24):243509 1-3
    [189]Lee K, Kim J H, Im S, et al. Low-voltage-driven top-gate ZnO thin-film transistors with polymer/high-k oxide double-layer dielectric. Applied Physcis Letters,2006,89(13):1335071-3
    [190]Oh M S, Hwang D K, Lee K, et al. Pentacene and ZnO hybrid channels for complementary thin-film transistor inverters operating at 2 V. Journal of Applied Physics,2007,102(7):076104 1-3
    [191]Nomura K, Kamiya T, Hirano M, et al. Origins of threshold voltage shifts in room-temperature deposited and annealed a-In-Ga-Zn-O thin-film transistors. Applied Physics Letters,2009,95(1):013502 1-3
    [192]Chen T C, Chang T C, Hsieh T Y, et al. Light-induced instability of an InGaZnO thin film transistor with and without SiOx passivation layer formed by plasma enhanced chemical vapor deposition. Applied Physics Letters, 2010,97(19):192103 1-3
    [193]Oh H, Yoon S M, Ryu M K, et al. Photo-accelerated negative bias instability involving subgap states creation in aporphous In-Ga-Zn-O thin film transistor. Applied Physics Letters,2010,97(18):183502 1-3
    [194]Barquinha P, Pimentel A, Marques A, et al. Effects of UV and visible light radiation on the electrical performances of transparent TFTs based on amorphous indium zinc oxide. Journal of Non-Crystalline Solids,2006, 352(9-20):1756-1760
    [195]Barquinha P, Goncalves G G, Pereira L, et al. Effects of annealing temperature on the properties of IZO films and IZO based transparent TFTs. Thin Solid Films,2007,515(24):8450-8454
    [196]Young N D, Gill A. Water-related instability in TFTs formed using deposited gate oxides. Semiconductor Science and Technology,1992,7(8):1103-1108
    [197]Zilker S J, Detcheverry C, Cantatore E, et al. Bias stress in organic thin-film transistors and logic gates. Applied Physics Letters,2001,79(8):1124-1126
    [198]Kwon D W, Kim J H, Chang J S, et al. Charge injection from gate electrode by simultaneous stress of optical and electrical biases in HfInZnO amorphous oxide thin film transistor. Applied Physics Letters,2010,97(19):193504 1-3
    [199]Cross R B M, Souza M M D. Investigating the stability of zinc oxide thin film transistors. Applied Physics Letters,2006,89(26):263513 1-3
    [200]Lopes M E, Gomes H L, Medeiros M C R, et al. Gate-bias stress in amorphous oxide semiconductors thin-film transistors. Applied Physics Letters,2009,95(6):063502 1-3
    [201]Yang S, Cho D H, Ryu M K, et al. Improvement in the photo-induced bias stability of Al-Sn-Zn-In-O thin film transistors by adopting A1Ox passivation layer. Applied Physics Letters,2010,96(21):213511 1-3
    [202]Taur Y. Analytic solutions of charge and capacitance in symmetric and asymmetric double-gate MOSFETs. IEEE Transactions on Electron Devices, 2001,48(12):2861-2869
    [203]Hsu H H, Lin H C, Chan L, et al. Threshold-voltage fluctuation of double-gated poly-Si nanowire field-effect transistor. IEEE Electron Device Letters,2009,30(3):243-245
    [204]Spijkman M J, Brondijk J J, Geuns T C T, et al. Dual-gate organic filed-effect transistors as potentiometric sensor in aqueous solution. Advanced Functional Materials,2010,20(6):898-905
    [205]Kaihovirta N, Aarnio H, Wikman C J, et al. The effect of moisture in low-voltage organic field-effect transistors gated with a hydrous solid electrolyte. Advanced Functional Materials,2010,20(16):2605-2610
    [206]Spijkman M, Smits E C P, Blom P W M, et al. Increasing the noise margin in organic circuits using dual gate field-effect transistors. Applied Physics Letters,2008,92(14):143304 1-3
    [207]Iba S, Sekitani T, Kato Y, et al. Control of threshold voltage of organic field-effect transistors with double-gate structures. Applied Physics Letters, 2005,87(2):023509 1-3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700