铁电单晶铌铟镁酸铅—钛酸铅结构及电光性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
弛豫铁电固溶体单晶因其具有十分优异的压电、机电等性能广泛地应用于传感器、超声马达及超声换能器等器件当中。最近几年,高质量、均匀的三元弛豫铁电单晶铌铟镁酸铅-钛酸铅[Pb(In_(1/2)Nb_(1/2))O_3-Pb(Mg_(1/3)Nb_(2/3))O_3-PbTiO_3,(PIN-PMN-PT)]备受研究领域的瞩目,在具有优异压电与机电等特性的同时,其高的居里温度、相变温度和大矫顽场等优良特性使之有很大潜力成为新一代的声功能材料。本论文以弛豫铁电单晶铌铟镁酸铅-钛酸铅为研究对象,利用拉曼散射光谱、透射光谱、马赫-曾德干涉等光学研究手段,在材料的相结构及相转换、能带结构和电光性能等方面展开了系统全面的研究。
     首先利用拉曼散射光谱对材料的相结构以及相转换进行设计研究。对准同型相界组分0.24PIN-0.43PMN-0.33PT单晶的拉曼光谱进行Gauss拟合得到一系列的拉曼模式,通过分析拉曼模式的数量推断出室温下,单晶为单斜相结构。通过测试单晶样品表面不同区域的偏振拉曼光谱,判断出该组分单晶不同单斜相(MA、MB和MC)共存。通过研究该单晶材料偏振拉曼光谱随温度变化情况,并根据拉曼谱线的移动及合并,判断出单晶材料的相变过程,单斜到四方的相变温度为85°C,四方相到立方相的相转换温度为200°C。同时根据拉曼峰强度的比值分析了相变过程单晶晶格振动及畴结构变化。通过XRD和TSDC分析了材料的相变过程,并研究了[111]_c极化0.24PIN-0.43PMN-0.33PT单晶介温曲线中,从67°C升高到82°C时,介电系数出现了不连续跳变显示了在此温区发生多次相变。最后通过分析电场诱导下的单晶的偏振拉曼光谱分析出了MB到MC单斜相结构的相变过程。
     对单畴单晶材料的能带结构及相关物理参数进行研究。将0.24PIN-0.49PMN-0.27PT单晶沿[111]_c方向极化成稳定的单畴状态,具有较高的光学透过率,可以达到64%左右。和多畴态准同型相界组分0.24PIN-0.43PMN-0.33PT单晶进行对比,多畴态单晶由于其畴壁对光的散射作用会导致透射率降低,通过透射率计算材料吸收系数,进而求出了单晶直接禁带宽度和间接禁带宽度,分别为3.18eV和2.96eV。通过测试变温透射率,将室温和居里温度以上透射率进行对比发现单晶室温下的透射率和顺电相时的透射率非常接近,表明单晶在室温下可以极化成稳定的单畴状态。最后运用椭偏仪测量了单晶的折射率,通过最小二乘法拟合出了单晶折射率的塞尔迈耶尔色散方程,并通过线性拟合折射率关系得出了色散方程的相关参数。优异的基本光学性质表明该单晶在光学器件领域有很大的应用潜力。
     全面研究不同组分单晶的电光系数张量以及电光系数的温度稳定性。利用偏光显微镜观测不同组分0.24PIN-(0.76-x)PMN-xPT单晶的畴结构,利用布儒斯特角法测量了各组分单晶的寻常光折射率n_o和非寻常光折射率n_e,同时制作压电振子测试了单晶材料的横向压电应变系数d_(31)。选用改进的马赫-曾德干涉系统测量了各组分单晶的电光系数。对于准同型相界组分的单晶,其沿着[001]_c方向极化后,得到的最大的有效电光系数高达204pm/V,而单畴态的单晶也具有较高的电光系数,均高于传统的电光晶体LiNbO_3。由此可计算出材料具有的较小半波电压,同时我们还发现单晶PIN-PMN-PT具有较好的温度稳定性。因此,高的电光系数、较小的半波电压以及较好的温度稳定性使得该单晶材料在特定的应用领域中可以替代传统的LiNbO_3晶体。实验证实对准同型相界组分单晶沿[011]_c方向极化可诱导出稳定的单畴态,而此单畴态具有优异的透光性能和较高的电光系数分量。
Relaxor-based ferroelectric single crystals have been extensively studied due totheir extraordinary large electromechanical coupling coefficients (k33>90%),piezoelectric coefficients (d33=1500-2500pC/N), and excellent optical properties. Inrecent many years, the ternary xPb(In_(1/2)Nb_(1/2))O_3-(1-x-y)Pb(In_(1/2)Nb_(1/2))O_3-Pb(Mg_(1/3)Nb_(2/3))O_3-PbTiO_3(PIN-PMN-PT) single crystal system has been developed, which has higherrhombohedral-tetragonal phase transition temperature and2times lager coercivefield than that of PMN-PT single crystals. Devices using the ternary single crystalcan work at high temperatures range and the single domain state can be more stable.More importantly, they have just as excellent piezoelectric properties as that ofPMN-PT single crystals. Based on optical research methods, we have performedsystematic investigations on phase structure, phase transition, energy band structure,and electro-optic properties of PIN-PMN-PT single crystals.
     Firstly, polarized Raman spectroscopy was performed to investigate the locallattice structure and phase transitions of unpoled0.24PIN-0.43PMN-0.33PT singlecrystal. Local lattice structure was investigated by Micro-Raman spectroscopy atroom temperature. A total of12Raman active modes were ascertained using theGauss line shape approximation, which deduces that0.43PIN-0.26PMN-0.33PTsingle crystal with morph tropic phase boundary (MPB) composition has monoclinicsymmetry. MA-, MB-and MC-type monoclinic phases were detected in differentmicro areas. Temperature dependence of Raman intensities, frequency shifts, modemerge and intensity ratios in the VV and VH geometries were investigated, theresults indicat that the monoclinic-tetragonal (M-T) phase transition occurs at85°C,which is verified by the mode merging from520cm~(-1)and580cm~(-1)to500cm~(-1). Thetetragonal-cubic (T-C) phase transition happens at200°C based on the vanishingmode at780cm~(-1)measured in the VH polarization. The phase transition was alsoinvestigated by analyzing the temperature-dependent relative dielectric permittivityof both poled and unpoled0.43PIN-0.26PMN-0.33PT single crystal. The split of(200) and (002) peaks in detailed XRD spectra of0.24PIN-0.43PMN-0.33PT singlecrystal in the2θ range of44.6°-45.2°during heating from room temperature to200°C was also studied to confirm the phase transition. Several sharp peaks of thethermally stimulated depolarization current curve around the phase transitiontemperature from67to82°C arise in the sample poled along [111]_cdirection, whichis in accordance with the ‘step shape’ dielectric characteristic. MB-MCmonoclinicphase transition induced by electric field was studied.
     Optical transmission spectra of single crystal0.24PIN-(0.76-x)PMN-xPT(x=0.27,0.33) were measured in the pseudo-cubic crystallographic directions [111]_cand [112]_c. The ferroelectric domain structures were observed to explain thedifferences between the transmittances of the two composition crystals. Thewavelength dependence of the absorption coefficients was computed and the opticalenergy bandgaps were calculated for both direct and indirect transitions. Based onthe theory of band to band transitions, the direct and indirect energy gaps weredetermined to be E_(gd)=3.09~3.18eV and E_(gi)=2.89~2.96eV, respectively, and thephonon energy is E_p=0.07~0.08eV. The transmission spectra in transmission andabsorption regions were explained by the extinction coefficients measured byspectroscopic ellipsometry. Optical transmission spectra were recorded at both roomtemperature and200°C. The optical absorption edge at200°C has an obviousred-shift compared with that at room temperature, which indicates the change of thebandgap with temperature. Specifically, E_g=3.18eV and2.95eV, respectively, atroom temperature and200°C. The Sellmeier dispersion equation of n for0.24PIN-0.49PMN-0.27PT single crystal is calculated by fitting the experimentaldata. The parameters of room temperature Sellmeier oscillator were also calculated.
     Linear electro-optic properties of0.24PIN-(0.76-x) PMN-xPT single crystalswith compositions in rhombohedral, MPB and tetragonal phases have beeninvestigated. A very large effective electro-optic coefficientγ c(204pm/V) wasobserved when the crystal is poled along [001]_c with composition near the MPB.The rhombohedral phase (x=0.27and0.30) single crystals poled along [111]direction and tetragonal phase (x=0.39) single crystal poled along [001] directionhave excellent single domain state, and their electro-optic coefficients (γ c=76,94and43pm/V for the crystals with x=0.27,0.30and0.39, respectively) were found tobe much higher than that of traditional widely used electro-optic single crystalLiNbO_3(γ c=19.9pm/V). The electro-optic coefficients of the rhombohedral singlecrystal were proved to have excellent temperature stability. The half-wave voltageVπ was calculated to be much lower (less than1000V) than that of LiNbO_3singlecrystal (2800V). These excellent electro-optic properties make this kind of singlecrystal very promising for electro-optic modulation applications.
引文
[1] Jaffe B, Roth R S, Marzullo S. Piezoelectric Properties of Lead Zirconate LeadTitanate Solied-solution Ceramics[J]. Journal of Applied Physics,1954,25:809-810.
    [2] Zhao P, Goljahi S, Dong W. The Strength of PIN-PMN-PT Single Crystals UnderBending with a Longitudinal Electric field[J]. Smart Materials&Structures,2011,20(5):55006-1~55006-7.
    [3] Fu H X, Cohen R E. Polarization Rotation Mechanism for UltrahighElectromechanical Response in Single-Crystal Piezoelectrics[J]. Nature,2000,403:281-283.
    [4] Setter N, Damjanovic D, Eng L, et al. Ferroelectric Thin Films: Review ofMaterials, Properties, and Applications[J]. Journal of Applied Physics,2006,100(10):051606.
    [5] Damjanovic D. Ferroelectric, Dielectric and Piezoelectric Properties ofFerroelectric Thin Films and Ceramics[J]. Reports on Progress in Physics,1998,61(9):1267-1324.
    [6] Trolier-McKinstry S, Muralt P. Thin film Piezoelectrics for MEMS[J]. Journal ofElectroceramics,2004,12:7-17.
    [7] Messing G L, Trolier-McKinstry S. Templated Grain Growth of TexturedPiezoelectric Ceramics[J]. Critical Reviews in Solid State and Materials Sciences,2004,29(2):45-96.
    [8] Zhang Q M, Bharti V, Zhao X. Giant Electrostriction and Relaxor FerroelectricBehavior in Electron-Irradiated Poly(vinylidene fluoride-trifluoroethylene)Copolymer[J]. Science,1998,280(2372):2101-2104.
    [9] Wan X M, Chan H L W, Choy C L, et al. Optical Properties of(1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3Single Crystals Studied by SpectroscopicEllipsometry[J]. Journal of Applied Physics,2004,96(3):1387-1391.
    [10] He C J, Tang Y X, Zhao X Y, et al. Optical Dispersion Properties of TetragonalRelaxor Ferroelectric Single Crystals0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3[J].Optical Materials,2007,29:1055-1057.
    [11] Barad Y, Lu Y, Cheng Z Y, et al. Composition, Temperature, and CrystalOrientation Dependence of the Linear Electro-Optic Properties ofPb(Zn1/3Nb2/3)O3-PbTiO3Single Crystals[J]. Applied Physics Letters,2000,77(9):1247-1249.
    [12] Kim T H, Kojima S, Ko J H. Phase Transition Behaviors in Relaxor Ferroelectric
    [001]-poled Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3Single Crystals Studiedby Brillouin Light Scattering and Dielectric Spectroscopies[J]. Journal of AppliedPhysics,2012,111(5):54103-1~54103-5.
    [13] Li X Z, Wang Z J, He C. Growth and Piezo-/Ferroelectric Properties ofPIN-PMN-PT Single Crystals[J]. Journal of Applied Physics,2012,111(3):34105-1~34105-6.
    [14] Jaffe B, Cook W R, Jaffe H. Piezoelectric Ceramics[M]. London: Academic Press,1971:135-150.
    [15] Li F, Zhang S J, Xu Z, et al. Temperature Independent Shear PiezoelectricResponse in Relaxor-PbTiO3Based crystals[J]. Applied Physics Letters,2010,97(25):252903.
    [16] Li F, Zhang S J, Xu Z, et al. Critical Property in Relaxor-PbTiO3SingleCrystals-Shear Piezoelectric Response[J]. Advanced Functional Materials,2011,21(11):2118-2128.
    [17] Erhart J. Domain wall orientations in ferroelastics and ferroelectrics[J]. PHASETRANSITIONS,2004,77(12):989-1074.
    [18] Zhang S J, Li F. High Performance Ferroelectric Relaxor-PbTiO3Single CrystalsStatus and Perspective[J]. Journal of Applied Physics,2012,111(3):31301-1~31301-50.
    [19] Davis M, Damjanovic D, Hayem D, et al. Domain Engineering of The TransversePiezoelectric Coefficient in Perovskite Ferroelectrics[J]. Journal of AppliedPhysics,2005,98(1):014102-1~014102-9.
    [20] Slodczyk A, Daniel P, Kania A. Local Phenomena of(1-x)PbMg1/3Nb2/3O3-xPbTiO3Single Crystals (0≤x≤0.38) Studied by RamanScattering[J]. Physical Review B,2008,77(18):184114-1~184114-16.
    [21] Dietze M, Katzke H, Es-Souni M, et al. Single Domain vs. Polydomain [111]0.72Pb(Mg1/3Nb2/3)O3-0.28PbTiO3Single Crystal. Polarization Switching,Dielectric and Pyroelectric Properties[J]. Applied Physics Letters,2012,100(24):242905-1~242905-3.
    [22] Zhang S J, Luo J, Snyder D W, et al. High Performance, High TemperaturePiezoelectric Crystals[M]. Advanced Dielectric, Piezoelectric and FerroelectricMaterials-Synthesis, Characterization and Applications,2008:130-157.
    [23] Tsuzuki K, Sakata K, Ohara G, et al. The Growth of Ferroelectric Pb(Zr-Ti)O3Single Crystal[J]. Japanese Journal of Applied Physics,1969,8:816-818.
    [24] Smolenskii G A, Isupov V A, Agranovskaya V A, et al. Soviet Phys.-Solid State.1961,2:2584(Zhunal Tekhnicheskoi Fiziki,1960,2:2906, in Russian).
    [25] Kuwata J, Uchino K, Nomura S. Phase Transitions in the Pb(Zn1/3Nb2/3)O3PbTiO3System[J]. Ferroelectrics,1981,37:579-582.
    [26] Ye Z G, Tissot P, Schmid H. Pesudo-binary Pb(Mg1/3Nb2/3)O3-PbO PhaseDiagram and Crystals Growth of Pb(Mg1/3Nb2/3)O3[PMN][J]. Materials ResearchBulletin,1990,25(6):739-748.
    [27] Shrout T R, Chang Z P, Kim N, et al. Dielectric Behavior of Single Crystals Nearthe (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3Morphotropic Phase Boundaey[J].Ferroelectrics Letters Section,1990,12(3):63-69.
    [28] Wu X J, Xu J Y, Xiao J Z, et al. Growth of Ferroelectric Lead Germanate SingleCrystal by the Vertical Bridgman Method[J]. Journal of Crystal Growth,2004,263(1-4):208-213.
    [29] Zeng H R, Yu H F, Chu R Q, et al. Domain Orientation Imaging of PMN-PTSingle Crystals by Vertical and Lateral Piezoresponse Force Microscopy[J].Journal of Crystal Growth,2004,267(1-2):194-198.
    [30] Park S E, Shrout T R. Ultrahigh Strain and Piezoelectric Behavior in RelaxorBased Ferroelectric Single Crystals[J]. Journal of Applied Physics,1997,82(4):1804-1811.
    [31] Jin L, Xi Z Z, Xu Z, et al. Study of Ferroelectric Domain Morphology inPMN-32%PT Single Crystal[J]. Ceramics International,2004,30:1695-1698.
    [32] Li Z R, Xu Z, Yao X, et al. Phase Transition and Phase Stability in [110],[001],and [111]-oriented0.68Pb(Mg1/3Nb2/3)O3-0.32PbTiO3Single Crystal underElectric Field[J]. Journal of Applied Physics,2008,104(2):024112-1~024112-9.
    [33] Lim L C, Rajan K K. High-homogeneity High-performance Flux-grownPb(Zn1/3Nb2/3)O3-(6-7)%PbTiO3Single Crystals[J]. Journal of Crystal Growth,2004,271(3-4):435-444.
    [34] Yamashita Y, Harada K. Crystal Growth and Electrical Properties of LeadScandium Niobate Lead Titanate Binary Single Crystals[J]. Japanese Journal ofApplied Physics,1997,36(9B):6039-6042.
    [35] Bing Y H, Ye Z G. Effects of Chemical Compositions on the Growth of RelaxorFerroelectric Pb(Sc1/2Nb1/2)(1-x)TixO3Single Crystals[J]. Journal of CrystalGrowth,2003,250(1-2):118-125.
    [36] Bing Y H, Ye Z G. Synthesis, Phase Segregation and Properties ofPiezo-/Ferroelectric (1-x)Pb(Sc1/2Nb1/2)O3-xPbTiO3Single Crystals[J]. Journal ofCrystal Growth,2006,287(2):326-329.
    [37] Bing Y H, Ye Z G. Effects of Growth Conditions on the Domain Structure andDielectric Properties of (1-x)Pb(Sc1/2Nb1/2)O3-xPbTiO3Single Crystals[J].Materials Science and Engineering B-Solid State Materials for AdvancedTechnology,2005,120(1-3):72-75.
    [38] Zhang S J, Rehrig P W, Randall C, et al. Crystal Growth and Electrical Propertiesof Pb(Yb1/2Nb1/2)O3-PbTiO3perovskite single crystals[J]. Journal of CrystalGrowth,2002,234(2-3):415-420.
    [39] Zhang S J, Priya S, Furman E, et al. A Random-Field Model for PolarizationReversal in Pb(Yb1/2Nb1/2)O3-PbTiO3Single Crystals[J]. Journal of AppliedPhysics,2002,91(9):6002-6006.
    [40] Zhang S J, Laurent L, Rhee S, et al. Shear-Mode Piezoelectric Properties ofPb(Yb1/2Nb1/2)O3-PbTiO3Single Crystals[J]. Applied Physics Letters,2002,81(5):892-894.
    [41] Zhang S J, Randall C A, Shrout T R. Recent Developments in High CurieTemperature Perovskite Single Crystals[J]. IEEE Transactions on UltrasonicsFerroelectrics and Frequency Control,2005,52(4):564-569.
    [42] Zhang S J, Randall C A, Shrout T R. Dielectric, Piezoelectric and ElasticProperties of Tetragonal BiScO3-PbTiO3Single Crystal with Single Domain[J].Solid State Communications,2004,131(1):41-45.
    [43] Datta K, Walker D, Thomas P A. Structural investigations of the bismuthscandate-lead titanate xBiScO3-(1-x)PbTiO3solid solution for0.10<=x<=0.40[J].Physical Review B,2010,82(14):144108-1~144108-10.
    [44] Yasuda N, Mori N, Ohwa H, et al. Crystal Growth and Some Properties of LeadIndium Niobate-Lead Titanate Single Crystals Produced by Solution BridgmanMethod[J]. Japanese Journal of Applied Physics,2002,41:7007-7010.
    [45] Guo Y P, Luo H S, He T H, et al. Electric-Field-Induced Strain and PiezoelectricProperties of a High Curie Temperature Pb(In1/2Nb1/2)O3-PbTiO3Single Crystal[J].Materials Research Bulletin,2003,38(5):857-864.
    [46] Duan Z Q, Xu G S, Wang X F, et al. Electrical Properties of High CurieTemperature (1-x)Pb(In1/2Nb1/2)O3-xPbTiO3Single Crystals Grown by theSolution Bridgman Technique[J]. Solid State Communications,2005,134(8):559-563.
    [47] Zhang Y Y, Liu D A, Zhang Q H, et al. Complete Set of Material Constants of<011>-Poled Rhombohedral Single-Crystal0.25Pb(In1/2Nb1/2)O3-0.47Pb(Mg1/3Nb2/3)O3-0.28PbTiO3[J]. Journal of Electronic Materials,2011,40(1):92-96.
    [48] Finkel P, Benjamin K, Amin A. Large Strain Transduction Utilizing PhaseTransition in Relaxor-Ferroelectric Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3Single Crystals[J]. Applied Physics Letters,2011,98(19):192902-1~192902-3.
    [49] Zhang S J, Li F, Sherlock N P, et al. Recent Developments on High CurieTemperature PIN-PMN-PT Ferroelectric Crystals[J]. Journal of Crystal Growth,2011,318(1):846-850.
    [50] Amin A, Lee H Y, Kelly B. High Transition Temperature Lead MagnesiumNiobate-Lead Zirconate Titanate Single Crystals[J]. Applied Physics Letters,2007,90(24):242912-1~242912-3.
    [51] Zhang S J, Lee S M, Kim D H, et al. Electromechanical Properties of PMN-PZTPiezoelectric Single Crystals Near Morphotropic Phase BoundaryCompositions[J]. Journal of the American Ceramic Society,2007,90(12):3859-3862.
    [52] Xia Z G, Li Q, Zhang S F. Growth and Characterization ofPb(Mg1/3Nb2/3)O3-PbTiO3-PbZrO3Single Crystals with HighRhombohedral/Tetragonal Phase Transition Temperature[J]. Solid StateCommunications,2008(1-2),145:38-42.
    [53] Hosono Y, Harada K, Yamashita Y, et al. Growth, Electric and Thermal Propertiesof Lead Scandium Niobate-Lead Magnesium Niobate-Lead Titanate TernarySingle Crystals[J]. Japanese Journal of Applied Physics,2000,39(9B):5589-5592.
    [54] Zhang R, Jiang B, Cao W W. Orientation Dependence Of Piezoelectric Propertiesof Single Domain0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3crystals[J]. Applied PhysicsLetters,2003,82(21):3737-3739.
    [55] Zhang S J, Luo J, Hackenberger W, et al. Characterization ofPb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3ferroelectric crystal with enhancedphase transition temperature[J]. Journal of Applied Physics,2008,104(6):64106-1~64106-5.
    [56] Zhang S J, Lee S M, Kim D H, et al. Electromechanical properties of PMN-PZTpiezoelectric single crystals near morphotropic phase boundary compositions[J].Journal of the American Ceramic Society,2007,90(12):3859-3862.
    [57] Zhang S J, Randall C A, Shrout T R. Characterization of perovskite piezoelectricsingle crystals of0.43BiScO3-0.57PbTiO3with high Curie temperature[J]. Journalof Applied Physics,2004,95(8):4291-4295.
    [58] Zhang S J, Randall C A, Shrout T R. High Curie temperature piezocrystals in theBiScO3-PbTiO3perovskite system[J]. Applied Physics Letters,2003,83(15):3150-3152.
    [59] Wang L, Li Q, Xia Z G, et al. Compositional Dependence of Structural andElectrical Properties in (1-x)[PMN-PT(65/35)]-xPZ Solid Solutions[J]. Journal ofMaterials Science,2009,44(1):244-249.
    [60] Li F, Zhang S J, Lin D B, et al. Electromechanical Properties ofPb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3Single Crystals[J]. Journal of AppliedPhysics,2011,109(1):014108-1~014108-5.
    [61] Sun E W, Zhang S J, Luo J, et al. Elastic, Dielectric, and Piezoelectric Constantsof Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3Single Crystal Poled Along[011]c[J]. Applied Physics Letters,2010,97(3):032902-1~032902-3.
    [62] Li F, Zhang S J, Xu Z, et al. Investigation of Electromechanical Properties andRelated Temperature Characteristics in Domain-Engineered TetragonalPb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3Crystals[J]. Journal of the AmericanCeramic Society,2010,93(9):2731-2734.
    [63] Li F, Zhang S J, Xu Z, et al. Electromechanical Properties of TetragonalPb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3Ferroelectric Crystals[J]. AppliedPhysics Letters,2010,107(5):054107-1~054107-5.
    [64] Zhang S J, Luo J, Hackenberger W, et al. Electromechanical Characterization ofPb(In0.5Nb0.5)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3Crystals as a Function ofCrystallographic Orientation and Temperature[J]. Journal of Applied Physics,2009,105(10):104506-1~104506-5.
    [65] Liu X Z, Zhang S J, Luo J, et al. Complete Set of Material Constants ofPb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3Single Crystal with MorphotropicPhase Boundary Composition[J].2009,106(7):074112-1~074112-4.
    [66] Zhou D, Cheung K F, Lam K H, et al. Broad-Band and High-TemperatureUltrasonic Transducer Fabricated Using a Pb(In1/2Nb1/2)-Pb(Mg1/3Nb2/3)-PbTiO3Single Crystal/Epoxy1-3Composite[J]. Journal of Applied Physics,2011,82(5):055110-1~055110-7.
    [67] Hosono Y, Yamashita, Y, Sakamoto H, et al. Large Piezoelectric Constant ofHigh Curie Temperature Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)-PbTiO3Ternary SingleCrystal near Morphotropic Phase Boundary[J]. Japanese Journal of AppliedPhysics,2002,41(11A): L1240-L1242.
    [68] Hosono Y, Yamashita Y, Hirayama, K, et al. Dielectric and PiezoelectricProperties of Pb[(In1/2Nb1/2)0.24(Mg1/3Nb2/3)0.42Ti0.34]O3Single Crystals[J].Japanese Journal of Applied Physics,2005,44(9B):7037-7041.
    [69] Tian J, Han, P, Huang X, et al. Improved Stability for Piezoelectric CrystalsGrown in the Lead Indium Niobate-lead Magnesium Niobate–lead TitanateSystem[J]. Applied Physics Letters,2007,91(22):222903-1~222903-3.
    [70] Li Q, Zhang Y L, Xia Z G, et al. MPB design and crystal growth of PMN-PT-PZrelaxor ferroelectrics[J]. Journal of Crystal Growth,2011,318(1):851-855.
    [71] Sun P, Zhou Q F, Zhu B P, et al. Design and Fabrication of PIN-PMN-PTSingle-Crystal High-Frequency Ultrasound Transducers[J]. IEEE Transactions onUltrasonics Ferroelectrics and Frequency Control,2009,56(12):2760-2763.
    [72] Guo Y, Luo H, Ling D, et al. The Phase Transition Sequence and the Location ofthe Morphotropic Phase Boundary Region in (1-x)[Pb(Mg1/3Nb2/3)O3]-xPbTiO3single crystal[J]. Journal of Physics: Condensed Matter,2003,15: L77-L82.
    [73] Ye Z G, Dong M. Morphotropic Domain Structures and Phase Transitions inRelaxor-based Piezo-/ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3Single Crystals[J].Journal of Applied Physics,2000,87(5):2312-2319.
    [74] Ye Z G, Noheda B, Dong M, et al. Monoclinic Phase in the Relaxor-basedPiezoelectric/ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3System[J]. Physical ReviewB,2001,64(18):184114-1~184114-5.
    [75] Ren B, Zhang Y, Zhang Q, et al. Energy Harvesting using Multilayer StructureBased on0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3single crystal[J]. Applied Physics AMaterials Science&Processing,2010,100:125-128.
    [76] Ren B, Zhang Y, Zhang Q, et al. Energy Harvesting using Multilayer StructureBased on0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3single crystal[J]. Applied Physics AMaterials Science&Processing,2010,100:125-128.
    [77]徐家跃,童健,侍敏莉,等.弛豫铁电单晶PZNT93/7的生长与电性能研究[J].无机材料学报,2003,18(2):264-268.
    [78] Xu J, Tong J, Shi M. Flux Bridgman Growth of Pb[(Zn1/3Nb2/3)0.93Ti0.07]O3Piezocrystals[J]. Journal of Crystal Growth,2003,253(1-4):274-279.
    [79] Colla E V, Yushin N K, Viehland D. Dielectric Properties of (PMN)1-x(PT)xSingle Crystals for Various Electrical and Thermal Histories[J]. Journal ofApplied Physics,1998,83(6):3298-3304.
    [80] Zhao X, Wang J, Chew K H, et al. Composition Dependence of PiezoelectricConstant and Dielectric Constant Tunability in the001-orientedPb(Mg1/3Nb2/3)O3-PbTiO3Single Crystals[J]. Materials Lettrs,2004,58(14):2053-2056.
    [81] Yin J H, Jiang B, Cao W W. Elastic, Piezoelectric, and Dielectric Properties of0.955Pb(Zn1/3Nb2/3)O3-0.45PbTiO3Single Crystal with Designed Multidomains[J].IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control,2000,47(1):285-291.
    [82] Yin J H, Jiang B, Cao W W. Determination of Elastic, Piezoelectric and DielectricProperties of Pb(Zn1/3Nb2/3)O3-PbTiO3Single Crystals[C]. Part of the SPIEConference on Ultrasonic Transducer Engineering,1999:239-246.
    [83] Zhang R, Jiang B, Cao W W. Complete set of Material Constants of0.93Pb(Zn1/3Nb2/3)O3-0.07PbTiO3Domain Engineered Single Crystal[J]. Journalof Materials Science Letters,2002,21:1877-1879.
    [84] Zhang R, Jiang B, Cao W W, et al. Complete Set of Elastic, Dielectric, andPiezoelectric Coefficents of0.93Pb(Zn1/3Nb2/3)O3-0.07PbTiO3Single CrystalPoled along [011][J]. Applied Physics Letters,2006,89(24):242908-1~242908-3.
    [85] Cao H, Schmidt V H, Zhang R, et al. Elastic, Piezoelectric, and DielectricProperties of0.58Pb(Mg1/3Nb2/3)O3-0.42PbTiO3Single Crystal[J]. Journal ofApplied Physics,2004,96(1):549-554.
    [86] Zhang R, Jiang B, Jiang W H, et al. Complete set of Properties of0.92Pb(Zn1/3Nb2/3)O3-0.08PbTiO3Single Crystal with Engineered Domains[J].Materials Letters,2003,57:1305-1308.
    [87] Zhang R, Jiang B, Jiang W H, et al. Anisotropy in Domian Engineered0.92Pb(Zn1/3Nb2/3)O3-0.08PbTiO3Single Crystal and Analysis of Its PropertyFluctuations[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and FrequencyControl,2002,49(12):1622-1627.
    [88] Xiang Y, Zhang R, Cao W W. Optimization of Piezoelectric Properties For [001]cPoled0.94Pb[Zn1/3Nb2/3]O3-0.06PbTiO3Single Crystals[J]. Applied PhysicsLetters,2010,96(9):92902-1~92902-3.
    [89] Saitoh S, Kobayashi T, Harada K, et al. Forty-channel Phased Array UltrasonicProbe Using0.91Pb(Zn1/3Nb2/3)O3-0.09PbTiO3Single Crystal[J]. IEEETransactions on Ultrasonics, Ferroelectrics and Frequency Control,1999,46(1):152-157.
    [90] Zhou Q F, Xu X C, Gottlieb E J, et al. PMN-PT Single Crystal, High-frequencyUltrasonic Needle Transducers for Pulsed-wave Doppler Application[J]. IEEETransactions on Ultrasonics, Ferroelectrics and Frequency Control,2007,54(3):668-675.
    [91] Yang Y, Liu Y L, Ma S Y, et al. Polarized micro-Raman Study of theField-Induced Phase Transition in the Relaxor0.67PbMg1/3Nb2/3O3-0.33PbTiO3Single Crystal[J]. Applied Physics Letters,2009,95(5):51911-1~51911-3.
    [92] Cheng J, Yang Y, Tong Y H, et al. Study of Monoclinic-Tetragonal-Cubic PhaseTransition in Pb(Zn1/3Nb2/3)O3-0.08PbTiO3Single Crystals by micro-RamanSpectroscopy[J]. Journal of Applied Physics,2009,105(5):53519-1~53519-5.
    [93] Yang Y, Liu Y L, Zhu K, et al. Polarized Raman Mapping Study ofThemicroheterogeneity in0.67PbMg1/3Nb2/3O3-0.33PbTiO3Single Crystal[J].Journal of Raman Spectroscopy,2010,41:1735-174.
    [94]孙恩伟.铌锌酸铅-钛酸铅和铌镁铟酸铅-钛酸铅单晶的物性研究[D].哈尔滨:哈尔滨工业大学,2011:19-21.
    [95] Lu Y, Cheng Z Y, Park S E, et al. Linear Electro-optic Effect of0.88Pb(Zn1/3Nb2/3)O3-0.12PbTiO3Single Crystal[J]. Japanese Journal of AppliedPhysics,2000,39:141-145.
    [96] Wan X M, Luo H S, Zhao X Y, et al. Refractive Indices and Linear Electro-OpticProperties of (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3Single Crystals[J]. Applied PhysicsLetters,2004,85(22):5233-5235.
    [97] Sun E W, Cao W W, Jiang W H, et al. Complete Set of Material Properties ofSingle Domain0.24Pb(In1/2Nb1/2)O3-0.49Pb(Mg1/3Nb2/3)O3-0.27PbTiO3SingleCrystal and the Orientation Effects[J]. Applied Physics Letters,2011,99(3):32901-1~32901-3.
    [98] Liu X Z, Zhang S J, Luo J, et al. A Complete Set of Material Properties of SingleDomain0.26Pb(In1/2Nb1/2)O3-0.46Pb(Mg1/3Nb2/3)O3-0.28PbTiO3SingleCrystals[J]. Applied Physics Letters,2010,96(1):12907-1~12907-3.
    [99] Sun E W, Cao W W, Han P D. Frequency Dispersion of Longitudinal UltrasonicVelocity and Attenuation in [001]c Poled0.24Pb(In1/2Nb1/2)O3-0.45Pb(Mg1/3Nb2/3)O3-0.31PbTiO3Single Crystal[J]. IEEETransactions on Ultrasonics, Ferroelectrics and Frequency Control,2011,58(8):1669-1673.
    [100] Sun P, Zhou Q, Zhu B, et al. Design and Fabrication of PIN-PMN-PTSingle-crystal High-frequency Ultrasound Transducers[J]. IEEE Transactions onUltrasonics, Ferroelectrics and Frequency Control,2009,56(12):2760-2763.
    [101]孔晋芳.氧化锌基半导体材料的拉曼光谱研究[D].上海:上海交通大学,2009:23-43.
    [102]刘洁,蒋毅坚.偏振拉曼散射研究ZnO单晶纳米压痕区内的晶格畸变分布[J].光散射学报,2012,24(4):361-366.
    [103] Vanderbilt D, Cohen M H. Monoclinic and Triclinic Phases in Higher-OrderDevonshire Theory[J]. Physical Review B,2001,63(9):94108-1~94108-9.
    [104] Bellaiche L, Garcia A, Vanderbitt D. Electric-Field Induced Polarization Paths inPb(Zr1-xTix)O3alloys[J]. Physical Review B,2001,64(6):060103-1~060103-4.
    [105] Guo R, Cross L E, Park S E, et al. Origin of the High Piezoelectric Response inPbZr1-xTixO3[J]. Physical Review Letters,2000,84(23):5423-5426.
    [106] Noheda B, Cox D E, Shirane G, et al. Polarization Rotation Via a MonoclinicPhase in the Piezoelectric92%PbZn1/3Nb2/3O3-8%PbTiO3[J]. Physical ReviewLetters,2001,86(17):3891-3894.
    [107] Noheda B, Cox D E, Shirane G, et al. Phase diagram of the ferroelectric relaxor(1-x)PbMg1/3Nb2/3O3-xPbTiO3[J]. Physical Review B,2002,66(5):054104-1~054104-10.
    [108] Jin Y M, Wang Y U, Khachaturyan A G, et al. Conformal Miniaturization ofDomains with Low Domain-Wall Energy: Monoclinic Ferroelectric States Nearthe Morphotropic Phase Boundaries[J]. Physical Review Letters,2003,91(19):197601-1~197601-4.
    [109] Viehland D. Symmetry-Adaptive Ferroelectric Mesostates in OrientedPb(BI1/3BII2/3)O3-PbTiO3crystals[J]. Journal of Applied Physics,2000,88(8):4794-4806.
    [110] Dragan M D, Damjanovic D, Setter N. Electric-Field-, Temperature-, andStress-induced Phase Transitions in Relaxor Ferroelectric Single Crystals[J].Physical Review B,2006,73(1):14115-1~14115-16.
    [111] Lin D B, Li Z R, Li F, et al. Characterization and Piezoelectric Thermal Stabilityof PIN-PMN-PT Ternary Ceramics Near the Morphotropic Phase Boundary[J].Journal of Alloys and Compounds,2010,489(1):115-118.
    [112] Chen H B, Liang Z, Luo L H, et al. Bridgman Growth, CrystallographicCharacterization and Electrical Properties of Relaxor-Based Ferroelectric SingleCrystal PIMNT[J]. Journal of Alloys and Compounds,2012,518:63-67.
    [113] Wang Z, Zhang R, Sun E W, et al. Temperature Dependence ofElectric-Field-Induced Domain Switching in0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3Single Crystal[J]. Journal of Alloys and Compounds,2012,527:101-105.
    [114] Li J B, Rao G H, Liu G Y, et al. Structural Transition in Unpoled (1-x)PMN-xPTCeramics Near the Morphotropic Boundary[J]. Journal of Alloys and Compounds,2006,425(1-2):373-378.
    [115] Slodczyk A, Colomban P. Probing the Nanodomain Origin and Phase TransitionMechanisms in (Un)Poled PMN-PT Single Crystals and Textured Ceramics[J],Materials,2010,3(12):5007-5028.
    [116] Colomban P, Slodczyk A. Raman Intensity: An Important Tool to Study theStructure and Phase Transitions of Amorphous/Crystalline Materials[J]. OpticalMaterials,2009,31(12):1759-1763.
    [117] Lima J A, Paraguassu W, Freire P T C, et al. Lattice Dynamics andLow-Temperature Raman Spectroscopy Studies of PMN-PT Relaxors[J]. Journalof Raman Spectroscopy,2009,40(9):1144-1149.
    [118] Ge W Y, Zhu W L, Pezzotti G. Raman Selection Rules and Tensor Elements forPMN-0.3PT Single Crystal[J]. Physica Status Solidi B-Basic Solid State Physics,2009,246(6):1340-1344.
    [119] Zhao X Y, Fang B J, Cao H, et al. Dielectric and Piezoelectric Performance ofPMN-PT Single Crystals with Compositions Around the MPB: Influence ofComposition, Poling Field and Crystal Orientation[J]. Materials Science andEngineering,2002, B96:254-262.
    [120] Kalia R, Kalia S. Investigation of Dielectric Relaxation Parameters ofPolyetheretherketone (PEEK) Films Using TSDC Technique[J]. Journal ofPolymer Materials,2012,29(3):293-300.
    [121] Jain D, Chandra L S, Sharath N R, et al. Low Temperature Thermal Windowing(TW) Thermally Stimulated Depolarization Current (TSDC) Setup[J].Measurement Science&Technology,2012,23(2):25603-25607.
    [122] Kotp A E. Modeling of Thermally Stimulated Depolarization Current (TSDC)Using Dipole-Dipole Interaction Concept[J].2011,34(2):365-369.
    [123]汪相.晶体光学[M].南京:南京大学出版社,2009:43-48.
    [124] Zhang S J, Luo J, Li F, et al. Polarization Fatigure in Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3Single Crystals[J]. Acta Materialia,2010,58(10):3773-3780.
    [125] Wan X, Huo H, Wang J, et al. Investigation on Optical Transmission Spectra of(1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3Single Crystals[J]. Solid State Communications,2004,129(6):401-405.
    [126]孙恩伟,张锐,曹文武,等.弛豫铁电单晶0.93Pb(Zn1/3Nb2/3)O3-0.07PbTiO3的电光性能研究[J].光子学报,2009,38(6):1442-1445.
    [127]万新明,贺天厚,林迪,等.铁电单晶0.62Pb(Mg1/3Nb2/3)O3-0.38PbTiO3折射率的研究[J].物理学报.2003,52(9):2319-2323.
    [128] Yang W L, Zhou Z X, Yang B, et al. Effect of Oxygen Atmosphere on TheStructure and Refractive Index Dispersive Behavior of KTa0.5Nb0.5O3Thin FilmsPrepared by PLD on Si (001) Substrates[J]. Applied Surface Science,2012,29(1):2489-2493.
    [129] Liu A, Xue J Q, Meng X J. Infrared Optical Properties of Ba(Zr0.20Ti0.80)O3andBa(Zr0.30Ti0.70)O3Thin Films Prepared by Sol-Gel Method[J]. Applied SurfaceScience,2008,254(18):5660-5663.
    [130]贺崇君.四方相弛豫铁电单晶PMN-PT的光学与压电性能研究[D].哈尔滨:哈尔滨工业大学,2007:36-42.
    [131]俞文海,刘皖育.晶体物理学[M].合肥:中国科学技术大学出版社,1998:145-158.
    [132]王继扬,黄林勇,覃方丽,等.电光晶体研究进展及其对称性研究[M].物理学进展,2012,32(1):33-56.
    [133] Onodera H, Awai I, Ikenoue J. Refractive Index Measurement of Bulk MaterialsPrism Coupling Method[J]. Applied Optics,1983,22(8):1194-1197.
    [134] Marinova V, Shurulinkov S, Daviti M, et al. Refractive Index Measurements ofMixed HgBrxI2-x Single Crystals[J]. Optical Materials,2000,14(2):95-99.
    [135] Aillerie M, Fontana M D, Abdi F. Influence of the Temperature-DependentSpontaneous Birefringence In the Electro-optic Measurements of LiNbO3[J].Journal of Applied Physics,1989,65(6):2406-2408.
    [136] He C J, Jing W P, Zhu K J, et al. Linear Electro-Optic Properties of OrthorhombicPZN-8%PT Single Crystal[J]. IEEE Transactions on Ultrasonics, Ferroelectrics,and Frequency Control,2011,58(6):1118-1121.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700