石墨烯及其复合结构的设计、制备和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石墨烯是一种由碳原子以sp2杂化轨道组成的六角型晶格单原子层二维晶体。石墨烯有许多独特的性质,它是零带隙的半金属半导体材料,具有超高的费米速度(光速的1/300)、载流子迁移率(达到200,000cm2V-1s-1)和热导率(~5000W/mK),良好的透光特性(单层石墨烯的吸收-2.3%)和优异的力学性能(弹性模量和抗拉强度分别达到1.1TPa和125GPa),因此在透明电极、晶体管、传感器、能源存储、高强度复合材料等方面存在广泛的应用前景。
     另一方面,石墨烯具有原子级的平整度、良好的生物兼容性、去局域化的π键以及良好的化学惰性,为研究表面增强拉曼及其机理提供了一个全新的平台;同时,它丰富的表面有利于石墨烯-半导体复合结构的设计、集成和制备。本文基于石墨烯的上述特性,侧重开展石墨烯及其新型纳米复合结构在表面增强拉曼光谱以及光电探测方面的应用基础研究。本论文共有五章,各章内容简述如下:
     在第一章中,我们首先简要回顾了石墨烯的发现历史、主要制备方法和性质,以及石墨烯各种潜在的应用前景。接着介绍了表面增强拉曼光谱和光电探测器的基本原理、研究现状与发展趋势,以及石墨烯在表面增强拉曼光谱和光电探测器研究中的应用前景。最后,概述了本论文的选题背景和科学意义。
     在第二章中,我们设计和制备了金属/石墨烯/金属三明治纳米结构的新型表面增强拉曼衬底,解决了表面增强拉曼效应研究中精确构筑“热点”和放置分子这些长期存在的问题。在金属/石墨烯/金属纳米结构中,通过改变石墨烯、金属纳米颗粒大小以及金属纳米颗粒的种类实现了对电磁场“热点”的调节;通过石墨烯对分子的吸附,实现了将分子精确放置于复合纳米结构的等离子体激元“热点”处。此外,我们发现金属/石墨烯/金属纳米结构的表面增强拉曼效应还与激发光的入射倾角相关,在合适的角度下,能够进一步增强拉曼信号。该结构有超高的灵敏度,能够探测到50nM溶液浓度的RhB分子信号。
     在第三章中,我们发展了一种通过金属纳米颗粒局域催化分解碳制备多孔石墨烯的新方法,并将之应用于表面增强拉曼光谱。该方法中,通过调节Cu薄膜的厚度可以调节多孔石墨烯中孔的大小、密度以及边缘长度。以RhB为检测分子,我们发现多孔石墨烯有比纯石墨烯衬底更强的拉曼化学增强特性,同时发现其化学增强能力同多孔结构中的边缘长度相关。通过拉曼光谱表征和电输运测量,我们推断多孔石墨烯中大量的边缘结构可实现自发的p型掺杂,从而导致显著的拉曼化学增强。此外,多孔石墨烯的孔洞边缘还可以高效吸附待测分子,实现对分子拉曼增强的快速检测。这些结果表明,多孔石墨烯可以用作一种快速、高效拉曼增强检测的优质衬底。
     在第四章中,我们利用水热反应制备出无表面活性剂的氧化锌纳米颗粒/还原石墨烯复合结构,并研究了其光电响应特性。研究发现复合结构中氧化锌单晶纳米颗粒的平均直径为5纳米,这些颗粒均匀分布在还原石墨烯表面,其密度可以通过反应物的浓度进行有效调节。我们进一步构建了基于这种复合结构的光电探测器,该探测器对紫外光的响应很快,光电流响应变化可达四个量级,表明该复合结构特别适合作为替代材料用于设计和构建高性能的紫外光探测器件。
     在第五章中,我们展望了石墨烯研究中的一些挑战和发展趋势。
Graphene is a two dimensional crystal with a single monolayer of carbon atoms packed into a honeycomb lattice with sp2-hybridized. It has attracted great attention and has been studied greatly due to its prominent properties since discovered. For example, it is a semimetal with zero bandgap at room temperature and possesses ultrhigh electron Femi speed (-c/300), mobility (-200,000cm2V-1s-1) and thermal conductivity (-5000W/mK). It also holds good transparency (-98%) and extreme mechanical properties (Young's modulus and tensile strength are about1.0TPa and125GPa respectively). Therefore, it has a great of potential applications for transparent conductive electrode, field effect transistor, sensor, energy generation and storage as well as a variety of graphene-based nanocomposites. Moreover, graphene is also a unique platform for SERS study due its atomic uniformity, biological compatibility, delocalized π bonds and chemical inertness. In addition, it is feasible to design, combine and synthesis graphene-semiconductor nanocomposites owing to lots of function groups in the graphene derivative. To this end, we focused on how to design, synthesis and characterization of novel graphene nanostructure and the graphene-based nanocomposites for the application in SERS and the photodetector. This dissertation contains five chapters and the contents are outlined as following.
     In charater one, we first briefly reviewed the history, synthesis strategies, properties and potential applications of graphene. Then we introduced the principle of SERS and photodetector, as well as the research status and trends with the graphene. We also presented the background and motivation of our study.
     In chapter two, we designed and synthesized metal/graphene/metal (MGM) nanostructure for the application of SERS. With systematic experimental investigations and FDTD simulations, we showed that the MGM nanostructure can not only control the intensity and distribution of the electronmagnetic field "hot spots", but also can put the probe molecules in the exact "hot spots", which are two challenges in SERS. Furthermore, we demonstrated that the field "hot spots" in MGM nanostructure can be readily controlled by the size and the composition of metal NPs as well as the assembled sequence of graphene and NPs, while the target molecules can be anchored to the "hot spots" through absorbed onto the in-between layer of graphene of MGM nanostructure. Additionally, the SERS of MGM are dependent on the incident angle of the excitated light and the signal can be improved with tuning the angle. Finally, we found that the MGM nanostructure can detect Raman signal of RhB as low solution concentration as50nM.
     In chapter three, we demonstrated a novel method to fabricate the graphene nanomesh based on the local catalytic hydrogenation of carbon in the high temperature. The size, the density, and the edge length of holes of the nanomesh can be facilely tuned through the control of the thickness of the Cu film. The nanomesh showed stronger chemical SERS of RhB molecules as compared to the pristine graphene. Raman characterization revealed that the produced nanomeshes are p-type doped, resulting the dipole moment near the edge of hole to serve as a source for the chemical enhancement. Moreover, the edges in the nanomesh are found to be capable acted as a chemical hot spot (CHS) to quickly trap adsorbed molecules with enhanced Raman intensity. The result provides a way to effectively modify the electronic structure of graphene and also a highly sensitive Raman sensor that offers a rapid and nondestructive in situ detection of molecules.
     In chapter four, we prepared ZnO NPs-RGO hybrid by simple hydrothermal process without any surfactant. TEM characterization shows the ZnO NPs, with an average diameter of5nm, are uniformally anchored on the surface of RGO sheet. The density of ZnO NPs on the RGO can be readily controlled by the precursor weight ratio of GO to Zn(Ac)2. The UV photodetector constructed by the ZnO NPs-RGO hybrid demonstrates an excellent photoresponse compared to the previous reported. The behavior can be attributed to the improved interfacial contact between ZnO NPs and RGO, resulting in the enhancement of photo-generated carriers transfer from ZnO to RGO. Our results indicate this hybrid providing a novel alternate material for the design and fabrication of high performance UV photodector.
     In chaper five, we prospected several existing challenges as well as the opportunities for the future researches of the graphene.
引文
1. Wu, Y. H.,Yu, T.,Shen, Z. X., Two-dimensional carbon nanostructures:Fundamental properties, synthesis, characterization, and potential applications. JAppl Phys 2010,108 (7).
    2. Kroto, H. W.,Heath, J. R.,O'Brien, S. C.,Curl, R. F.,Smalley, R. E., C60: Buckminsterfullerene. Nature 1985,318 (6042),162-163.
    3. Iijima, S., Helical microtubules of graphitic carbon. Nature 1991,354 (6348),56-58.
    4. Landau, L. D., Zur Theorie der phasenumwandlungen Ⅱ.. Phys. Z. Sowjetunion 1937,11 (26-35).
    5. Peierls, R. E., Quelques proprietes typiques des corpses solides. Ann. I. H. Poincare 1935,5, 177-222.
    6. Landau, L. D. L., E. M., Statistical Physics, Part I. Pergamon, Oxford 1980.
    7. Mermin, N. D., Crystalline Order in Two Dimensions. Phys Rev 1968,176 (1),250-254.
    8. Venables, J. A.,Spiller, G. D. T.,Hanbucken, M., Nucleation and Growth of Thin-Films. Rep Prog Phys 1984,47 (4),399-459.
    9. Evans, J. W.,Thiel, P. A.,Bartelt, M. C., Morphological evolution during epitaxial thin film growth:Formation of 2D islands and 3D mounds. Surf Sci Rep 2006,61 (1-2),1-128.
    10. Brodie, B. C., On the Atomic Weight of Graphite. Philosophical Transactions of the Royal Society of London 1859,149,249-259.
    11. Ruess, G.,Vogt, F., Hochstlamellarer Kohlenstoff aus Graphitoxyhydroxyd. Monatshefte fur Chemie 1948,78 (3-4),222-242.
    12. Boehm, H. P.,Clauss, A.,Fischer, G. O.,Hofmann, U., Das Adsorptionsverhalten sehr dunner Kohlenstoff-Folien. Zeitschrift fur anorganische und allgemeine Chemie 1962,316 (3-4), 119-127.
    13. Lu, X.,Yu, M.,Huang, H.,Ruoff, R. S., Tailoring graphite with the goal of achieving single sheets. Nanotechnology 1999,10 (3),269.
    14. Novoselov, K. S.,Geim, A. K.,Morozov, S. V.,Jiang, D.,Zhang, Y.,Dubonos, S. V.,Grigorieva, I. V.,Firsov, A. A., Electric field effect in atomically thin carbon films. Science 2004,306 (5696),666-669.
    15. Meyer, J. C.,Geim, A. K.,Katsnelson, M. I.,Novoselov, K. S.,Booth, T. J.,Roth, S., The structure of suspended graphene sheets. Nature 2007,446(7131),60-63.
    16. Lifshitz, E. M., The Theory of Molecular Attractive Forces between Solids. Sov Phys Jetp-Ussr 1956,2 (1),73-83.
    17. Lin, S. S.,Chen, B. G.,Pan, C. T.,Hu, S.,Tian, P.,Tong, L. M., Unintentional doping induced splitting of G peak in bilayer graphene. Appl Phys Lett 2011,99 (23).
    18. Hossain, M. Z., Chemistry at the graphene-SiO2 interface. Appl Phys Lett 2009,95 (14).
    19. Gao, L. B.,Ren, W. C.,Xu, H. L.,Jin, L.,Wang, Z. X.,Ma, T.,Ma, L. P.,Zhang, Z. Y.,Fu, Q.,Peng, L. M.,Bao, X. H.,Cheng, H. M., Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nature Communications 2012,3.
    20. Li, Z. C.,Wu, P.,Wang, C. X.,Fan, X. D.,Zhang, W. H.,Zhai, X. F.,Zeng, C. G.,Li, Z. Y.,Yang, J. L.,Hou, J. G., Low-Temperature Growth of Graphene by Chemical Vapor Deposition Using Solid and Liquid Carbon Sources. Acs Nano 2011,5 (4),3385-3390.
    21. Sun, Z. Z.,Yan, Z.,Yao, J.,Beitler, E.,Zhu, Y.,Tour, J. M., Growth of graphene from solid carbon sources. Nature 2010,468 (7323),549-552.
    22. Hamilton, J. C.,Blakely, J. M., Carbon Segregation to Single-Crystal Surfaces of Pt,Pd and Co. Surf Sci 1980,91 (1),199-217.
    23. Reina, A. Jia, X. T.,Ho, J.,Nezich, D.,Son, H. B.,Bulovic, V.,Dresselhaus, M. S.,Kong, J., Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Lett 2009,9 (1),30-35.
    24. Land, T. A.,Michely, T.,Behm, R. J.,Hemminger, J. C.,Comsa, G, Stm Investigation of Single Layer Graphite Structures Produced on Pt(111) by Hydrocarbon Decomposition. SurfSci 1992,264 (3),261-270.
    25. Sutter, P. W.,Flege, J. I.,Sutter, E. A., Epitaxial graphene on ruthenium. Nat Mater 2008,7 (5), 406-411.
    26. Coraux, J.,N'Diaye, A. T.,Busse, C.,Michely, T., Structural coherency of graphene on Ir(111). Nano Lett 2008,8 (2),565-570.
    27. Sutter, P.,Sadowski, J. T.,Sutter, E., Graphene on Pt(111):Growth and substrate interaction. Phys Rev B 2009, 80 (24).
    28. Lin, Y. C.,Jin, C. H.,Lee, J. C.,Jen, S. F.,Suenaga, K.,Chiu, P. W., Clean Transfer of Graphene for Isolation and Suspension. Acs Nano 2011,5 (3),2362-2368.
    29. Li, X. S.,Zhu, Y. W.,Cai, W. W.,Borysiak, M.,Han, B. Y.,Chen, D.,Piner, R. D.,Colombo, L.,Ruoff, R. S., Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes. Nano Lett 2009,9 (12),4359-4363.
    30. Losurdo, M.,Giangregorio, M. M.,Capezzuto, P.,Bruno, G, Graphene CVD growth on copper and nickel:role of hydrogen in kinetics and structure. Physical Chemistry Chemical Physics 2011, 13 (46),20836-20843.
    31. Bartelt, N. C.,McCarty, K. F., Graphene growth on metal surfaces. Mrs Bull 2012,37(12), 1158-1165.
    32. Berger, C.,Song, Z. M.,Li, X. B.,Wu, X. S.,Brown, N.,Naud, C.,Mayou, D.,Li, T. B.,Hass, J.,Marchenkov, A. N.,Conrad, E. H.,First, P. N.,de Heer, W. A., Electronic confinement and coherence in patterned epitaxial graphene. Science 2006,312 (5777),1191-1196.
    33. de Heer, W. A.,Berger, C., Epitaxial graphene. JPhys DAppl Phys 2012,45 (15).
    34. de Heer, W. A., Epitaxial graphene:A new electronic material for the 21st century. Mrs Bull 2011,36 (8),632-639.
    35. Paredes, J. I.,Villar-Rodil, S.,Martinez-Alonso, A.,Tascon, J. M. D., Graphene oxide dispersions in organic solvents. Langmuir 2008,24 (19),10560-10564.
    36. Stankovich, S.,Dikin, D. A.,Piner, R. D.,Kohlhaas, K. A.,Kleinhammes, A.,Jia, Y.,Wu, Y.,Nguyen, S. T.,Ruoff, R. S., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007,45 (7),1558-1565.
    37. Shin, H.-J.,Kim, K. K.,Benayad, A.,Yoon, S.-M.,Park, H. K.,Jung, I.-S.,Jin, M. H.,Jeong, H.-K.,Kim, J. M.,Choi, J.-Y.,Lee, Y. H., Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance. Advanced Functional Materials 2009, 19 (12),1987-1992.
    38. Dua, V.,Surwade, S. P.,Ammu, S.,Agnihotra, S. R.,Jain, S.,Roberts, K. E.,Park, S.,Ruoff, R. S.,Manohar, S. K., All-Organic Vapor Sensor Using Inkjet-Printed Reduced Graphene Oxide. Angew Chem Int Edit 2010,49 (12),2154-2157.
    39. Wang, G X.,Yang, J.,Park, J.,Gou, X. L.,Wang, B.,Liu, H.,Yao, J., Facile synthesis and characterization of graphene nanosheets. JPhys Chem C 2008,112 (22),8192-8195.
    40. Kosynkin, D. V.,Higginbotham, A. L.,Sinitskii, A.,Lomeda, J. R.,Dimiev, A.,Price, B. K.,Tour, J. M., Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 2009,458 (7240),872-U5.
    41. Jiao, L. Y.,Zhang, L.,Wang, X. R.,Diankov, G.,Dai, H. J., Narrow graphene nanoribbons from carbon nanotubes. Nature 2009,458 (7240),877-880.
    42. Yang, X. Y.,Dou, X.,Rouhanipour, A.,Zhi, L. J.,Rader, H. J.,Mullen, K., Two-dimensional graphene nanoribbons. Journal of the American Chemical Society 2008,130 (13),4216-+.
    43. Geim, A. K.,Novoselov, K. S., The rise of graphene. Nat Mater 2007,6(3),183-191.
    44. Castro Neto, A. H.,Guinea, F.,Peres, N. M. R.,Novoselov, K. S.,Geim, A. K., The electronic properties of graphene. Reviews of Modern Physics 2009,81 (1),109-162.
    45. Wallace, P. R., The Band Theory of Graphite. Phys Rev 1947,71 (7),476-476.
    46. Novoselov, K. S.,Jiang, Z.,Zhang, Y.,Morozov, S. V.,Stormer, H. L.,Zeitler, U.,Maan, J. C.,Boebinger, G. S.,Kim, P.,Geim, A. K., Room-temperature quantum hall effect in graphene. Science 2007,315 (5817),1379-1379.
    47. Ostrovsky, P. M.,Gornyi, I. V.,Mirlin, A. D., Theory of anomalous quantum Hall effects in graphene. Phys Rev B 2008,77 (19).
    48. Guimaraes, M. H. D.,Veligura, A.,Zomer, P. J.,Maassen, T.,Vera-Marun, I. J.,Tombros, N.,van Arees, B. J., Spin Transport in High-Quality Suspended Graphene Devices. Nano Lett 2012, 12 (7),3512-3517.
    49. Jia, X. T.,Campos-Delgado, J.,Terrones, M.,Meunier, V.,Dresselhaus, M. S., Graphene edges: a review of their fabrication and characterization. Nanoscale 2011,3 (1),86-95.
    50. Du, X.,Skachko, I.,Barker, A.,Andrei, E. Y., Approaching ballistic transport in suspended graphene. Nat Nanotechnol 2008,3 (8),491-495.
    51. Mayorov, A. S.,Gorbachev, R. V.,Morozov, S. V.,Britnell, L.Jalil, R.,Ponomarenko, L. A.,Blake, P.,Novoselov, K. S.,Watanabe, K.,Taniguchi, T.,Geim, A. K., Micrometer-Scale Ballistic Transport in Encapsulated Graphene at Room Temperature. Nano Lett 2011,11 (6), 2396-2399.
    52. Masubuchi, S.,Iguchi, K.,Yamaguchi, T.,Onuki, M.,Arai, M.,Watanabe, K.,Taniguchi, T.,Machida, T., Boundary Scattering in Ballistic Graphene. Phys Rev Lett 2012,109 (3).
    53. Craciun, M. F.,Russo, S.,Yamamoto, M.,Tarucha, S., Tuneable electronic properties in graphene. Nano Today 2011,6 (1),42-60.
    54. Peres, N. M. R.,Guinea, F.,Neto, A. H. C., Electronic properties of disordered two-dimensional carbon. Phys Rev B 2006,73 (12).
    55. Gusynin, V. P.,Sharapov, S. G.,Carbotte, J. P., Unusual microwave response of Dirac quasiparticles in graphene. Phys Rev Lett 2006,96 (25).
    56. Nair, R. R.,Blake, P.,Grigorenko, A. N.,Novoselov, K. S.,Booth, T. J.,Stauber, T.,Peres, N. M. R.,Geim, A. K., Fine structure constant defines visual transparency of graphene. Science 2008,320 (5881),1308-1308.
    57. Bao, Q. L.,Zhang, H.,Wang, Y.,Ni, Z. H.,Yan, Y. L.,Shen, Z. X.,Loh, K. P.,Tang, D. Y, Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers. Advanced Functional Materials 2009,19 (19),3077-3083.
    58. Liu, M.,Yin, X. B.,Ulin-Avila, E.,Geng, B. S.,Zentgraf, T.,Ju, L.,Wang, F.,Zhang, X., A graphene-based broadband optical modulator. Nature 2011,474 (7349),64-67.
    59. Kurum, U.,Ekiz, O. O.,Yaglioglu, H. G.,Elmali, A.,Urel, M.,Guner, H.,Mizrak, A. K.,Ortac, B.,Dana, A., Electrochemically tunable ultrafast optical response of graphene oxide. Appl Phys Lett 2011,98 (14).
    60. Lee, C.,Wei, X. D.,Kysar, J. W.,Hone, J., Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008,321 (5887),385-388.
    61. Seol, J. H.,Jo, I.,Moore, A. L.,Lindsay, L.,Aitken, Z. H.,Pettes, M. T.,Li, X. S.,Yao, Z.,Huang, R.,Broido, D.,Mingo, N.,Ruoff, R. S.,Shi, L., Two-Dimensional Phonon Transport in Supported Graphene. Science 2010,328 (5975),213-216.
    62. Balandin, A. A.,Ghosh, S.,Bao, W. Z.,Calizo, I.,Teweldebrhan, D.,Miao, F.,Lau, C. N., Superior thermal conductivity of single-layer graphene. Nano Lett 2008,8 (3),902-907.
    63. Blake, P.,Hill, E. W.,Neto, A. H. C.,Novoselov, K. S.,Jiang, D.,Yang, R.,Booth, T. J.,Geim, A. K., Making graphene visible. Appl Phys Lett 2007,91 (6).
    64. Park, J. S.,Reina, A.,Saito, R.,Kong, J.,Dresselhaus, G.,Dresselhaus, M. S., G'band Raman spectra of single, double and triple layer graphene. Carbon 2009,47 (5),1303-1310.
    65. Malard, L. M.,Pimenta, M. A.,Dresselhaus, G.,Dresselhaus, M. S., Raman spectroscopy in graphene. Phys Rep 2009,473 (5-6),51-87.
    66. Ferrari, A. C.,Meyer, J. C.,Scardaci, V.,Casiraghi, C.Lazzeri, M.,Mauri, F.,Piscanec, S.,Jiang, D.,Novoselov, K. S.,Roth, S.,Geim, A. K., Raman spectrum of graphene and graphene layers. Phys Rev Lett 2006,97(18).
    67. Ferrari, A. C., Raman spectroscopy of graphene and graphite:Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun 2007,143 (1-2),47-57.
    68. Casiraghi, C.,Hartschuh, A.,Qian, H.,Piscanec, S.,Georgi, C.,Fasoli, A.,Novoselov, K. S.,Basko, D. M.,Ferrari, A. C., Raman Spectroscopy of Graphene Edges. Nano Lett 2009,9 (4),1433-1441.
    69. Meyer, J. C.,Kisielowski, C.,Erni, R.,Rossell, M. D.,Crommie, M. F.,Zettl, A., Direct Imaging of Lattice Atoms and Topological Defects in Graphene Membranes. Nano Lett 2008,8(11), 3582-3586.
    70. Morgenstern, M., Scanning tunneling microscopy and spectroscopy of graphene on insulating substrates. Phys Status Solidi B 2011,248 (11),2423-2434.
    71. Zhu, Y. W.,Murali, S.,Cai, W. W.,Li, X. S.,Suk, J. W.,Potts, J. R.,Ruoff, R. S., Graphene and Graphene Oxide:Synthesis, Properties, and Applications (vol 22, pg 3906,2010). Adv Mater 2010,22 (46),5226-5226.
    72. Becerril, H. A.,Mao, J.,Liu, Z.,Stoltenberg, R. M.,Bao, Z.,Chen, Y., Evaluation of solution-processed reduced graphene oxide films as transparent conductors. Acs Nano 2008, 2 (3),463-470.
    73. Wang, X.,Zhi, L. J.,Mullen, K., Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett 2008,8 (1),323-327.
    74. Eda, G.,Fanchini, G.,Chhowalla, M., Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 2008,3 (5),270-274.
    75. Cote, L. J.,Kim, F.,Huang, J. X., Langmuir-Blodgett Assembly of Graphite Oxide Single Layers. Journal of the American Chemical Society 2009,131 (3),1043-1049.
    76. Biswas, S.,Drzal, L. T., A Novel Approach to Create a Highly Ordered Monolayer Film of Graphene Nanosheets at the Liquid-Liquid Interface. Nano Lett 2009,9 (1),167-172.
    77. Bae, S.,Kim, H.,Lee, Y.,Xu, X. F.,Park, J. S.,Zheng, Y.,Balakrishnan, J.,Lei, T.,Kim, H. R.,Song, Y. I.,Kim, Y. J.,Kim, K. S.,Ozyilmaz, B.,Ahn, J. H.,Hong, B. H,lijima, S., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 2010,5 (8),574-578.
    78. Barone, V.,Hod, O.,Scuseria, G. E., Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett 2006,6 (12),2748-2754.
    79. Son, Y. W.,Cohen, M. L.,Louie, S. G., Energy gaps in graphene nanoribbons. Phys Rev Lett 2006,97 (21).
    80. Han, M. Y.,Ozyilmaz, B.,Zhang, Y. B.,Kim, P., Energy band-gap engineering of graphene nanoribbons. Phys Rev Lett 2007,98 (20).
    81. Bai, J. W.,Duan, X. F.,Huang, Y., Rational Fabrication of Graphene Nanoribbons Using a Nanowire Etch Mask. Nano Lett 2009,9 (5),2083-2087.
    82. Li, X. L.,Wang, X. R.,Zhang, L.,Lee, S. W.,Dai, H. J., Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 2008,319 (5867),1229-1232.
    83. Heydrich, S.,Hirmer, M.,Preis, C.,Korn, T.,Eroms, J.,Weiss, D.,Schuller, C., Scanning Raman spectroscopy of graphene antidot lattices:Evidence for systematic p-type doping. Appl Phys Lett 2010,97 (4).
    84. Bai, J. W.,Zhong, X.,Jiang, S.,Huang, Y.,Duan, X. F., Graphene nanomesh. Nat Nanotechnol 2010,5(3),190-194.
    85. Liang, X. G.,Jung, Y. S.,Wu, S. W.,Ismach, A.,Olynick, D. L.,Cabrini, S.,Bokor, J., Formation of Bandgap and Subbands in Graphene Nanomeshes with Sub-10 nm Ribbon Width Fabricated via Nanoimprint Lithography. Nano Lett 2010,10 (7),2454-2460.
    86. Zeng, Z. Y.,Huang, X.,Yin, Z. Y.,Li, H.,Chen, Y.,Li, H.,Zhang, Q.,Ma, J.,Boey, F.,Zhang, H., Fabrication of Graphene Nanomesh by Using an Anodic Aluminum Oxide Membrane as a Template. Adv Mater 2012,24 (30),4138-4142.
    87. Akhavan, O., Graphene Nanomesh by ZnO Nanorod Photocatalysts. Acs Nano 2010,4 (7), 4174-4180.
    88. Ohta, T.,Bostwick, A.,Seyller, T.,Horn, K.,Rotenberg, E., Controlling the electronic structure of bilayer graphene. Science 2006,313 (5789),951-954.
    89. Xia, F. N.,Farmer, D. B.,Lin, Y. M.,Avouris, P., Graphene Field-Effect Transistors with High On/Off Current Ratio and Large Transport Band Gap at Room Temperature. Nano Lett 2010, 10 (2),715-718.
    90. Zhang, Y. B.,Tang, T. T.,Girit, C.,Hao, Z.,Martin, M. C.,Zettl, A.,Crommie, M. F.,Shen, Y. R.,Wang, F., Direct observation of a widely tunable bandgap in bilayer graphene. Nature 2009,459 (7248),820-823.
    91. Shytov, A. V.,Abanin, D. A.,Levitov, L. S., Long-Range Interaction between Adatoms in Graphene. Phys Rev Lett 2009,103(1).
    92. Ponomarenko, L. A.,Schedin, F.,Katsnelson, M. I.,Yang, R.,Hill, E. W.,Novoselov, K. S.,Geim, A. K., Chaotic dirac billiard in graphene quantum dots. Science 2008,320 (5874), 356-358.
    93. Chernozatonskii, L. A.,Sorokin, P. B.,Bruning, J. W., Two-dimensional semiconducting nanostructures based on single graphene sheets with lines of adsorbed hydrogen atoms. Appl Phys Lett 2007, 91 (18).
    94. Choi, S. M.,Jhi, S. H.,Son, Y. W., Effects of strain on electronic properties of graphene. Phys Rev B 2010,81 (8).
    95. Ni, Z. H.,Yu, T.,Lu, Y. H.,Wang, Y. Y.,Feng, Y. P.,Shen, Z. X., Uniaxial Strain on Graphene: Raman Spectroscopy Study and Band-Gap Opening. Acs Nano 2008,2 (11),2301-2305.
    96. Leenaerts, O.,Partoens, B.,Peeters, F. M., Adsorption of H_{2}O, NH_{3}, CO, NO_{2}, and NO on graphene:A first-principles study. Phys Rev B 2008,77 (12),125416.
    97. Schedin, F.,Geim, A. K.,Morozov, S. V.,Hill, E. W.,Blake, P.,Katsnelson, M. I.,Novoselov, K. S., Detection of individual gas molecules adsorbed on graphene. Nat Mater 2007,6 (9), 652-655.
    98. Dan, Y. P.,Lu, Y.,Kybert, N. J.,Luo, Z. T.Johnson, A. T. C., Intrinsic Response of Graphene Vapor Sensors. Nano Lett 2009,9 (4),1472-1475.
    99. Robinson, J. T.,Perkins, F. K.,Snow, E. S.,Wei, Z. Q.,Sheehan, P. E., Reduced Graphene Oxide Molecular Sensors. Nano Lett 2008,8 (10),3137-3140.
    100. Ohno, Y.,Maehashi, K.,Yamashiro, Y.,Matsumoto, K., Electrolyte-Gated Graphene Field-Effect Transistors for Detecting pH Protein Adsorption. Nano Lett 2009,9 (9), 3318-3322.
    101. Mohanty, N.,Berry, V., Graphene-Based Single-Bacterium Resolution Biodevice and DNA Transistor:Interfacing Graphene Derivatives with Nanoscale and Microscale Biocomponents. Nano Lett 2008,8 (12),4469-4476.
    102. Tang, L. H.,Wang, Y.,Li, Y. M.,Feng, H. B.,Lu, J.,Li, J. H., Preparation, Structure, and Electrochemical Properties of Reduced Graphene Sheet Films. Advanced Functional Materials 2009,19 (17),2782-2789.
    103. Winter, M.,Besenhard, J. o.,Spahr, M. E,,Novak, P., Insertion electrode materials for rechargeable lithium batteries. Adv Mater 1998,10 (10),725-763.
    104. Yoo, E.,Kim, J.,Hosono, E.,Zhou, H.,Kudo, T.,Honma, I., Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett 2008,8 (8),2277-2282.
    105. Paek, S. M.,Yoo, E.,Honma, I., Enhanced Cyclic Performance and Lithium Storage Capacity of SnO2/Graphene Nanoporous Electrodes with Three-Dimensionally Delaminated Flexible Structure. Nano Lett 2009,9 (1),72-75.
    106. Wang, G. X.,Wang, B.,Wang, X. L.,Park, J.,Dou, S. X.,Ahn, H.,Kim, K., Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries. J Mater Chem 2009,19 (44),8378-8384.
    107. Simon, P.,Gogotsi, Y., Materials for electrochemical capacitors. Nat Mater 2008,7 (11), 845-854.
    108. Stoller, M. D.,Park, S. J.,Zhu, Y. W.,An, J. H.,Ruoff, R. S., Graphene-Based Ultracapacitors. Nano Lett 2008,8 (10),3498-3502.
    109. Chen, S.,Zhu, J. W.,Wu, X. D.,Han, Q. F.,Wang, X., Graphene Oxide-MnO2 Nanocomposites for Supercapacitors. Acs Nano 2010,4 (5),2822-2830.
    110. Yoo, J. J.,Balakrishnan, K.,Huang, J. S.,Meunier, V.,Sumpter, B. G.,Srivastava, A.,Conway, M.,Reddy, A. L. M.,Yu, J.,Vajtai, R.,Ajayan, P. M., Ultrathin Planar Graphene Supercapacitors. Nano Lett 2011,11 (4),1423-1427.
    111. Edwards, R. S.,Coleman, K. S., Graphene synthesis:relationship to applications. Nanoscale 2013,5(1),38-51.
    112. Fleischm.M,Hendra, P. J.,Mcquilla.Aj, Raman-Spectra of Pyridine Adsorbed at a Silver Electrode. Chemical Physics Letters 1974,26 (2),163-166.
    113. Jeanmaire, D. L.,Van Duyne, R. P., Surface raman spectroelectrochemistry:Part Ⅰ. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1977,84(1),1-20.
    114. Albrecht, M. G.,Creighton, J. A., Anomalously intense Raman spectra of pyridine at a silver electrode. Journal of the American Chemical Society 1977,99 (15),5215-5217.
    115. Nie, S. M..Emery, S. R., Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997,275 (5303),1102-1106.
    116. Xu, H. X.,Bjerneld, E. J.,Kall, M.,Borjesson, L., Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys Rev Lett 1999,83 (21),4357-4360.
    117. Xu, H. X.,Aizpurua, J.,Kall, M.,Apell, P., Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys Rev E 2000,62 (3),4318-4324.
    118. Moskovits, M., Surface-enhanced spectroscopy. Reviews of Modern Physics 1985,57(3), 783-826.
    119. Gersten, J.,Nitzan, A., Electromagnetic Theory of Enhanced Raman-Scattering by Molecules Adsorbed on Rough Surfaces. JChem Phys 1980,73 (7),3023-3037.
    120. Moskovits, M., Surface-enhanced Raman spectroscopy:a brief retrospective. J Raman Spectrosc 2005,36 (6-7),485-496.
    121. Billmann, J.,Otto, A., Electronic Surface-State Contribution to Surface Enhanced Raman-Scattering. Solid State Commun 1982,44 (2),105-107.
    122. Stockle, R. M.,Suh, Y. D.,Deckert, V.,Zenobi, R., Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chemical Physics Letters 2000,318 (1-3),131-136.
    123. Bailo, E.,Deckert, V., Tip-enhanced Raman scattering. Chemical Society Reviews 2008,37 (5),921-930.
    124. Ling, X.,Zhang, J., First-Layer Effect in Graphene-Enhanced Raman Scattering. Small 2010, 6(18),2020-2025.
    125. Xie, L. M.,Ling, X.,Fang, Y.,Zhang, J.,Liu, Z. F., Graphene as a Substrate To Suppress Fluorescence in Resonance Raman Spectroscopy. Journal of the American Chemical Society 2009,131 (29),9890-+.
    126. Ling, X.,Xie, L. M.,Fang, Y.,Xu, H.,Zhang, H. L.,Kong, J.,Dresselhaus, M. S.,Zhang, J.,Liu, Z. F., Can Graphene be used as a Substrate for Raman Enhancement? Nano Lett 2010,10 (2), 553-561.
    127. Xu, W. G.,Ling, X.,Xiao, J. Q.,Dresselhaus, M. S.,Kong, J.,Xu, H. X.,Liu, Z. F.,Zhang, J., Surface enhanced Raman spectroscopy on a flat graphene surface. P Natl Acad Sci USA 2012, 109 (24),9281-9286.
    128. Fang, X. S.,Xiong, S. L.,Zhai, T. Y.,Bando, Y.,Liao, M. Y.,Gautam, U. K.,Koide, Y.,Zhang, X.,Qian, Y. T.,Golberg, D., High-Performance Blue/Ultraviolet-Light-Sensitive ZnSe-Nanobelt Photodetectors. Adv Mater 2009,21 (48),5016-+.
    129. Konstantatos, G.,Howard, I.,Fischer, A.,Hoogland, S.,Clifford, J.,Klem, E.,Levina, L.,Sargent, E. H., Ultrasensitive solution-cast quantum dot photodetectors. Nature 2006,442 (7099), 180-183.
    130. Zhai, T. Y.,Fang, X. S.,Liao, M. Y.,Xu, X. J.,Li, L.,Liu, B. D.,Koide, Y.,Ma, Y.,Yao, J. N.,Bando, Y.,Golberg, D., Fabrication of High-Quality In2Se3 Nanowire Arrays toward High-Performance Visible-Light Photodetectors. Acs Nano 2010,4 (3),1596-1602.
    131. Mueller, T.,Xia, F. N. A.,Avouris, P., Graphene photodetectors for high-speed optical communications. Nat Photonics 2010,4 (5),297-301.
    132. Ghosh, S.,Sarker, B. K.,Chunder, A.,Zhai, L.,Khondaker, S. I., Position dependent photodetector from large area reduced graphene oxide thin films. Appl Phys Lett 2010,96 (16).
    133. Xia, F. N.,Mueller, T.,Lin, Y. M.,Valdes-Garcia, A.,Avouris, P., Ultrafast graphene photodetector.Nat Nanotechnol 2009,4 (12),839-843.
    134.Konstantatos, G.,Badioli, M.,Gaudreau, L.,Osmond, J.,Bernechea, M.,de Arquer, F. P. G.,Gatti, F.,Koppens, F. H. L., Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat Nanotechnol 2012,7 (6),363-368.
    1. Fleischm.M,Hendra, p. J.,Mcquilla.Aj, Raman-Spectra of Pyridine Adsorbed at a Silver Electrode. Chemical Physics Letters 1974,26 (2),163-166.
    2. Haran, G, Single-Molecule Raman Spectroscopy:A Probe of Surface Dynamics and Plasmonic Fields. Accounts Chem Res 2010,43 (8),1135-1143.
    3. Moskovits, M., Surface-enhanced Raman spectroscopy:a brief retrospective. J Raman Spectrosc 2005,36 (6-7),485-496.
    4. Jones, M. R.,Osberg, K. D.,Macfarlane, R. J.,Langille, M. R.,Mirkin, C. A., Templated Techniques for the Synthesis and Assembly of Plasmonic Nanostructures. Chem Rev 2011, 111 (6),3736-3827.
    5. Kovacs, G. J.,Loutfy, R. O.,Vincett, P. S.,Jennings, C.,Aroca, R., Distance Dependence of Sers Enhancement Factor from Langmuir-Blodgett Monolayers on Metal Island Films-Evidence for the Electromagnetic Mechanism. Langmuir 1986,2 (6),689-694.
    6. Lund, P. A.,Tevault, D. E.,Smardzewski, R. R., Surface-Enhanced Raman-Spectroscopy of Benzene Adsorbed on Vapor-Deposited Sodium -Chemical Contribution to the Enhancement Mechanism. J Phys Chem-Us 1984,88 (9),1731-1735.
    7. Dilella, D. P.,Zhou, P., Surface-Enhanced Raman-Scattering from Molecules Adsorbed on Gallium Surfaces. Chemical Physics Letters 1990,166 (3),240-245.
    8. Gao, Y.,Lopezrios, T., Raman-Scattering of Pyridine Coadsorbed with Al on Quenched Ag Films-Evidence of Raman Enhancement in the Pores. Surf Sci 1988,198 (3),509-523.
    9. Brolo, A. G.,Odziemkowski, M.,Irish, D. E., An in situ Raman spectroscopic study of electrochemical processes in mercury-solution interphases. J Raman Spectrosc 1998,29 (8), 713-719.
    10. Moskovits, M., Surface-enhanced spectroscopy. Reviews of Modern Physics 1985,57 (3), 783-826.
    11. Tian, Z. Q.,Ren, B.,Wu, D. Y., Surface-enhanced Raman scattering:From noble to transition metals and from rough surfaces to ordered nanostructures. J Phys Chem B 2002, 106 (37),9463-9483.
    12. Ren, B.,Liu, G. K.,Lian, X. B.,Yang, Z. L.,Tian, Z. Q., Raman spectroscopy on transition metals. Analytical and Bioanalytical Chemistry 2007,388 (1),29-45.
    13. Hayashi, S.,Koh, R.,Ichiyama, Y.,Yamamoto, K., Evidence for Surface-Enhanced Raman-Scattering on Nonmetallic Surfaces-Copper Phthalocyanine Molecules on Gap Small Particles. Phys Rev Lett 1988,60 (11),1085-1088.
    14. Loo, B. H., Observation of the Surface Enhanced Raman-Scattering Effect from the Semiconductor-Electrolyte Interface. J Electroanal Chem 1982,136 (1),209-213.
    15. Yamada, H.,Yamamoto, Y., Surface Enhanced Raman-Scattering (Sers) of Chemisorbed Species on Various Kinds of Metals and Semiconductors. Surf Sci 1983,134 (1),71-90.
    16. Mou, C. B.,He, T. J.,Wang, X. Y.,Liu, F. C.,Jiang, J. S.,Chen, L. W., Surface Enhanced Raman Scattering (SERS) from H(2)TSPP and Ag(II)TSPP Adsorbed on Uniform Fe(3)O(4) Colloids. Acta Phys-Chim Sin 1996,12 (9),841-844.
    17. Wang, X.,Wen, H.,He, T. J.,Zuo, J.,Xu, C. Y.,Liu, F. C., Enhancement mechanism of SERS from cyanine dyes adsorbed on Ag2O colloids. Spectrochim Acta A 1997,53 (14), 2495-2504.
    18. Wang, Y.,Sun, Z.,Wang, Y.,Hu, H.,Zhao, B.,Xu, W.,Lombardi, J. R., Surface-enhanced Raman scattering on mercaptopyridine-capped CdS microclusters. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy 2007,66 (4-5),1199-1203.
    19. Wang, Y. F.,Hu, H. L.,Jing, S. Y.,Wang, Y. X.,Sun, Z. H.,Zhao, B.,Zhao, C.,Lombardi, J. R., Enhanced Raman scattering as a probe for 4-mercaptopyridine surface-modified copper oxide nanocrystals. Analytical Sciences 2007,23 (7),787-791.
    20. Wang, Y. F.,Sun, Z. H.,Hu, H. L.,Jing, S. Y.,Zhao, B.,Xu, W. Q.,Zhao, C.,Lombardi, J. R., Raman scattering study of molecules adsorbed on ZnS nanocrystals. J Raman Spectrosc 2007,38 (1),34-38.
    21. Wang, Y. F.,Ruan, W. D.,Zhang, J. H.,Yang, B.,Xu, W. Q.,Zhao, B.,Lombardi, J. R., Direct observation of surface-enhanced Raman scattering in ZnO nanocrystals. J Raman Spectrosc 2009,40 (8),1072-1077.
    22. Wang, X. T.,Shi, W. S.,She, G. W.,Mu, L. X., Surface-Enhanced Raman Scattering (SERS) on transition metal and semiconductor nanostructures. Physical Chemistry Chemical Physics 2012,14 (17),5891-5901.
    23. McMahon, J. M.,Henry, A. I.,Wustholz, K. L.,Natan, M. J.,Freeman, R. G.,Van Duyne, R. P.,Schatz, G. C., Gold nanoparticle dimer plasmonics:finite element method calculations of the electromagnetic enhancement to surface-enhanced Raman spectroscopy. Analytical and Bioanalytical Chemistry 2009,394 (7),1819-1825.
    24. Kleinman, S. L.,Ringe, E.,Valley, N.,Wustholz, K. L.,Phillips, E.,Scheidt, K. A.,Schatz, G. C.,Van Duyne, R. P., Single-Molecule Surface-Enhanced Raman Spectroscopy of Crystal Violet Isotopologues:Theory and Experiment. Journal of the American Chemical Society 2011,133 (11),4115-4122.
    25. Xu, H. X., Theoretical study of coated spherical metallic nanoparticles for single-molecule surface-enhanced spectroscopy. Appl Phys Lett 2004,85 (24),5980-5982.
    26. Xu, H. X.,Aizpurua, J.,Kall, M.,Apell, P., Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys Rev E 2000,62 (3),4318-4324.
    27. Zuloaga, J.,Prodan, E.,Nordlander, P., Quantum Description of the Plasmon Resonances of a Nanoparticle Dimer. Nano Lett 2009,9 (2),887-891.
    28. Le Ru, E. C.,Etchegoin, P. G, Single-Molecule Surface-Enhanced Raman Spectroscopy. Annu Rev Phys Chem 2012,63,65-87.
    29. Mulvihill, M.,Tao, A.,Benjauthrit, K.,Arnold, J.,Yang, P., Surface-enhanced Raman spectroscopy for trace arsenic detection in contaminated water. Angew Chem Int Edit 2008, 47 (34),6456-6460.
    30. Hu, M.,Ou, F. S.,Wu, W.,Naumov, I.,Li, X. M.,Bratkovsky, A. M.,Williams, R. S.,Li, Z. Y., Gold Nanofingers for Molecule Trapping and Detection. Journal of the American Chemical Society 2010,132(37),12820-12822.
    31. Ou, F. S.,Hu, M.,Naumov, I.,Kim, A.,Wu, W.,Bratkovsky, A. M.,Li, X. M.,Williams, R. S.,Li, Z. Y., Hot-Spot Engineering in Polygonal Nanofinger Assemblies for Surface Enhanced Raman Spectroscopy. Nano Lett 2011,11 (6),2538-2542.
    32. Qin, L. D.,Zou, S. L.,Xue, C.,Atkinson, A.,Schatz, G. C.,Mirkin, C. A., Designing, fabricating, and imaging Raman hot spots. P Natl Acad Sci USA 2006,103 (36), 13300-13303.
    33. Qin, L. D.,Park, S.,Huang, L.,Mirkin, C. A., On-wire lithography. Science 2005,309 (5731), 113-115.
    34. Liusman, C.,Li, S. Z.,Chen, X. D.,Wei, W.,Zhang, H.,Schatz, G. C.,Boey, F.,Mirkin, C. A., Free-Standing Bimetallic Nanorings and Nanoring Arrays Made by On-Wire Lithography. Acs Nano 2010,4 (12),7676-7682.
    35. Moskovits, M., IMAGING Spot the hotspot. Nature 2011,469 (7330),307-308.
    36. Pettinger, B.,Ren, B.,Picardi, G.,Schuster, R.,Ertl, G, Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy. Phys Rev Lett 2004,92 (9).
    37. Bailo, E.,Deckert, V., Tip-enhanced Raman scattering. Chemical Society Reviews 2008,37 (5),921-930.
    38. Steidtner, J.,Pettinger, B., Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution. Phys Rev Lett 2008,100 (23).
    39. Li, J. F.,Huang, Y. F.,Ding, Y.,Yang, Z. L.,Li, S. B.,Zhou, X. S.,Fan, F. R.,Zhang, W.,Zhou, Z. Y.,Wu, D. Y.,Ren, B.,Wang, Z. L.,Tian, Z. Q., Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 2010,464 (7287),392-395.
    40. Xie, L. M.,Ling, X.,Fang, Y.,Zhang, J.,Liu, Z. F., Graphene as a Substrate To Suppress Fluorescence in Resonance Raman Spectroscopy. Journal of the American Chemical Society 2009,131 (29),9890-+.
    41. Ling, X.,Xie, L. M.,Fang, Y.,Xu, H.,Zhang, H. L.,Kong, J.,Dresselhaus, M. S.,Zhang, J.,Liu, Z. F., Can Graphene be used as a Substrate for Raman Enhancement? Nano Lett 2010,10 (2),553-561.
    42. Xu, W. G.,Ling, X.,Xiao, J. Q.,Dresselhaus, M. S.,Kong, J.,Xu, H. X.,Liu, Z. F.,Zhang, J., Surface enhanced Raman spectroscopy on a flat graphene surface. P Natl Acad Sci USA 2012,109 (24),9281-9286.
    43. Hildebrandt, P.,Stockburger, M., Surface-Enhanced Resonance Raman-Spectroscopy of Rhodamine-6g Adsorbed on Colloidal Silver. J Phys Chem-Us 1984,88 (24),5935-5944.
    44. Zhang, J. T.,Li, X. L.,Sun, X. M.,Li, Y. D., Surface enhanced Raman scattering effects of silver colloids with different shapes. J Phys Chem B 2005,109 (25),12544-12548.
    45. Liu, J. Y.,Cai, H. B.,Yu, X. X.,Zhang, K.,Li, X. J.,Li, J. W.,Pan, N.,Shi, Q. W.,Luo, Y.,Wang, X. P., Fabrication of Graphene Nanomesh and Improved Chemical Enhancement for Raman Spectroscopy. J Phys Chem C 2012,116 (29),15741-15746.
    1. Le Ru, E. C.,Etchegoin, p. G., Single-Molecule Surface-Enhanced Raman Spectroscopy. Annu Rev Phys Chem 2012,63,65-87.
    2. Camden, J. P.,Dieringer, J. A.,Wang, Y. M.,Masiello, D. J.,Marks, L. D.,Schatz, G C.,Van Duyne, R. P., Probing the structure of single-molecule surface-enhanced Raman scattering hot spots. Journal of the American Chemical Society 2008,130 (38),12616-+.
    3. Kneipp, K.,Wang, Y.,Kneipp, H.,Perelman, L. T.,Itzkan, I.,Dasari, R.,Feld, M. S., Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 1997, 78 (9),1667-1670.
    4. Schatz, G. C.,Young, M. A.,Van Duyne, R. P., Electromagnetic mechanism of SERS. Top Appl Phys 2006,103,19-45.
    5. Persson, B. N. J.,Zhao, K.,Zhang, Z. Y, Chemical contribution to surface-enhanced Raman scattering. Phys Rev Lett 2006,96 (20).
    6. Otto, A., The'chemical'(electronic) contribution to surface-enhanced Raman scattering. J Raman Spectrosc 2005,36 (6-7),497-509.
    7. Otto, A.,Mrozek, I.,Grabhorn, H.,Akemann, W., Surface-enhanced Raman scattering. Journal of Physics:Condensed Matter 1992,4 (5),1143.
    8. Guinea, F.,Horovitz, B.,Le Doussal, P., Gauge fields, ripples and wrinkles in graphene layers. Solid State Commun 2009,149 (27-28),1140-1143.
    9. Ishigami, M.,Chen, J. H.,Cullen, W. G.,Fuhrer, M. S.,Williams, E. D., Atomic structure of graphene on SiO2. Nano Lett 2007,7(6),1643-1648.
    10. Bruna, M.,Borini, S., Optical constants of graphene layers in the visible range. Appl Phys Lett 2009,94 (3).
    11. Nair, R. R.,Blake, P.,Grigorenko, A. N.,Novoselov, K. S.,Booth, T. J.,Stauber, T.,Peres, N. M. R.,Geim, A. K., Fine structure constant defines visual transparency of graphene. Science 2008,320(5881),1308-1308.
    12. Rana, F., Graphene terahertz plasmon oscillators. Ieee TNanotechnol 2008,7 (1),91-99.
    13. Xie, L. M.,Ling, X.,Fang, Y.,Zhang, J.,Liu, Z. F., Graphene as a Substrate To Suppress Fluorescence in Resonance Raman Spectroscopy. Journal of the American Chemical Society 2009,131 (29),9890-+.
    14. Ling, X.,Xie, L. M.,Fang, Y.,Xu, H.,Zhang, H. L.,Kong, J.,Dresselhaus, M. S.,Zhang, J.,Liu, Z. F., Can Graphene be used as a Substrate for Raman Enhancement? Nano Lett 2010,10 (2),553-561.
    15. Ling, X.,Zhang, J., First-Layer Effect in Graphene-Enhanced Raman Scattering. Small 2010, 6(18),2020-2025.
    16. Yu, X. X.,Cai, H. B.,Zhang, W. H.,Li, X. J.,Pan, N.,Luo, Y,Wang, X. P.,Hou, J. G, Tuning Chemical Enhancement of SERS by Controlling the Chemical Reduction of Graphene Oxide Nanosheets. Acs Nano 2011,5 (2),952-958.
    17. Usachov, D.,Vilkov, O.,Grueneis, A.,Haberer, D.,Fedorov, A.,Adamchuk, V. K.,Preobrajenski, A. B.,Dudin, P.,Barinov, A.,Oehzelt, M.,Laubschat, C.,Vyalikh, D. V., Nitrogen-Doped Graphene:Efficient Growth, Structure, and Electronic Properties. Nano Lett 2011,11(12),5401-5407.
    18. Wu, J.,Xie, L.,Li, Y.,Wang, H.,Ouyang, Y.,Guo, J.,Dai, H., Controlled chlorine plasma reaction for noninvasive graphene doping. Journal of the American Chemical Society 2011, 133(49),19668-71.
    19. Medina, H.,Lin, Y.-C.,Obergfell, D.,Chiu, P.-W., Tuning of Charge Densities in Graphene by Molecule Doping. Advanced Functional Materials 2011,21 (14),2687-2692.
    20. Zhang, W.,Lin, C.-T.,Liu, K.-K.,Tite, T.,Su, C.-Y.,Chang, C.-H.,Lee, Y.-H.,Chu, C.-W.,Wei, K.-H.,Kuo, J.-L.,Li, L.-J., Opening an Electrical Band Gap of Bilayer Graphene with Molecular Doping. ACS Nano 2011,5 (9),7517-7524.
    21. Kosynkin, D. V.,Higginbotham, A. L.,Sinitskii, A.,Lomeda, J. R.,Dimiev, A.,Price, B. K.,Tour, J. M., Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 2009,458 (7240),872-U5.
    22. Han, M. Y.,Ozyilmaz, B.,Zhang, Y. B.,Kim, P., Energy band-gap engineering of graphene nanoribbons. Phys Rev Lett 2007,98 (20).
    23. Liao, L.,Bai, J. W.,Cheng, R.,Lin, Y. C.,Jiang, S.,Huang, Y.,Duan, X. F., Top-Gated Graphene Nanoribbon Transistors with Ultrathin High-k Dielectrics. Nano Lett 2010,10 (5), 1917-1921.
    24. Li, X. L.,Wang, X. R.,Zhang, L.,Lee, S. W.,Dai, H. J., Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 2008,319 (5867),1229-1232.
    25. Bai, J. W.,Zhong, X.,Jiang, S.,Huang, Y.,Duan, X. F., Graphene nanomesh. Nat Nanotechnol 2010,5 (3),190-194.
    26. Wimmer, M.,Akhmerov, A. R.,Guinea, F., Robustness of edge states in graphene quantum dots. Phys Rev B 2010,82 (4).
    27. Heydrich, S.,Hirmer, M.,Preis, C.,Korn, T.,Eroms, J.,Weiss, D.,Schuller, C., Scanning Raman spectroscopy of graphene antidot lattices:Evidence for systematic p-type doping. Appl Phys Lett 2010,97 (4).
    28. Begliarbekov, M.,Sul,O.,Santanello, J.,Ai, N.,Zhang, X.,Yang, E. H.,Strauf, S., Localized States and Resultant Band Bending in Graphene Antidot Superlattices. Nano Lett 2011,11 (3),1254-1258.
    29. Bai, J.,Zhong, X.,Jiang, S.,Huang, Y.,Duan, X., Graphene nanomesh. Nat Nanotechnol 2010,5(3),190-194.
    30. Zeng, Z. Y.,Huang, X.,Yin, Z. Y.,Li, H.,Chen, Y.,Li, H.,Zhang, Q.,Ma, J.,Boey, F.,Zhang, H., Fabrication of Graphene Nanomesh by Using an Anodic Aluminum Oxide Membrane as a Template. Adv Mater 2012,24 (30),4138-4142.
    31. Liang, X.,Jung, Y.-S.,Wu, S.,Ismach, A.,Olynick, D. L.,Cabrini, S.,Bokor, J., Formation of Bandgap and Subbands in Graphene Nanomeshes with Sub-10 nm Ribbon Width Fabricated via Nanoimprint Lithography. Nano Lett 2010,10 (7),2454-2460.
    32. Akhavan, O., Graphene Nanomesh by ZnO Nanorod Photocatalysts. ACS Nano 2010,4 (7), 4174-4180.
    33. Kim, K. S.,Zhao, Y.Jang, H.,Lee, S. Y.,Kim, J. M.,Kim, K. S.,Ahn, J. H.,Kim, P.,Choi, J. Y.,Hong, B. H., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009,457 (7230),706-710.
    34. Li, X. S.,Cai, W. W., An, J. H.,Kim, S.,Nah, J.,Yang, D. X.,Piner, R.,Velamakanni, A.,Jung, I.,Tutuc, E.,Banerjee, S. K.,Colombo, L.,Ruoff, R. S., Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 2009,324 (5932), 1312-1314.
    35. Grandthyll, S.,Gsell, S.,Weinl, M.,Schreck, M.,Hufner, S.,Muller, F., Epitaxial growth of graphene on transition metal surfaces:chemical vapor deposition versus liquid phase deposition. J Phys-Condens Mat 2012,24 (31).
    36. Oznuluer, T.,Pince, E.,Polat, E. O.,Balci, O.,Salihoglu, O.,Kocabas, C., Synthesis of graphene on gold. Appl Phys Lett 2011,98 (18).
    37. Yan, Z.,Lin, J.,Peng, Z. W.,Sun, Z. Z.,Zhu, Y.,Li, L.,Xiang, C. S.,Samuel, E. L.,Kittrell, C.,Tour, J. M., Toward the Synthesis of Wafer-Scale Single-Crystal Graphene on Copper Foils. Acs Nano 2012,6 (10),9110-9117.
    38. Zhang, Y.,Li, Z.,Kim, P.,Zhang, L.,Zhou, C., Anisotropic hydrogen etching of chemical vapor deposited graphene. ACS Nano 2012,6 (1),126-32.
    39. Datta, S. S.,Strachan, D. R.,Khamis, S. M.,Johnson, A. T. C., Crystallographic etching of few-layer graphene. Nano Lett 2008,8 (7),1912-1915.
    40. Campos, L. C.,Manfrinato5 V. R.,Sanchez-Yamagishi, J. D.,Kong, J.,Jarillo-Herrero, P., Anisotropic Etching and Nanoribbon Formation in Single-Layer Graphene. Nano Lett 2009, 9 (7),2600-2604.
    41. Bruna, M.,Borini, S., Observation of Raman G-band splitting in top-doped few-layer graphene. Phys Rev B 2010,81 (12),-
    42. Graf, D.,Molitor, F.,Ensslin, K.,Stampfer, C.,Jungen, A.,Hierold, C.,Wirtz, L., Spatially resolved raman spectroscopy of single- and few-layer graphene. Nano Lett 2007,7 (2), 238-242.
    43. Zhou, H. Q.,Qiu, C. Y.,Liu, Z.,Yang, H. C.,Hu, L. J.,Liu, J.,Yang, H. F.,Gu, C. Z.,Sun, L. F., Thickness-Dependent Morphologies of Gold on N-Layer Graphenes. Journal of the American Chemical Society 2010,132 (3),944-+.
    44. Luo, Z. T.,Somers, L. A.,Dan, Y. P.,Ly, T.,Kybert, N. J.,Mele, E. J.,Johnson, A. T. C., Size-Selective Nanoparticle Growth on Few-Layer Graphene Films. Nano Lett 2010,10 (3), 777-781.
    45. Sun, Z.,Yan, Z.,Yao, J.,Beitler, E.,Zhu, Y.,Tour, J. M., Growth of graphene from solid carbon sources. Nature 2010,468 (7323),549-552.
    46. Xu, H.,Xie, L.,Zhang, H.,Zhang, J., Effect of Graphene Fermi Level on the Raman Scattering Intensity of Molecules on Graphene. ACS Nano 2011,5 (7),5338-5344.
    47. Huh, S.,Park, J.,Kim, Y. S.,Kim, K. S.,Hong, B. H.,Nam, J. M., UV/Ozone-Oxidized Large-Scale Graphene Platform with Large Chemical Enhancement in Surface-Enhanced Raman Scattering. Acs Nano 2011,5 (12),9799-9806.
    48. Hildebrandt, P.,Stockburger, M., Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver. The Journal of Physical Chemistry 1984,88 (24),5935-5944.
    49. Zhang, J. T.,Li, X. L.,Sun, X. M.,Li, Y. D., Surface enhanced Raman scattering effects of silver colloids with different shapes. JPhys Chem B 2005,109 (25),12544-12548.
    1. Novoselov, K. S.,Geim, A. K.,Morozov, S. V.,Jiang, D.,Zhang, Y.,Dubonos, S. V.,Grigorieva, I. V.,Firsov, A. A., Electric field effect in atomically thin carbon films. Science 2004,306 (5696),666-669.
    2. Novoselov, K. S.,Geim, A. K.,Morozov, S. V.,Jiang, D.,Katsnelson, M. I.,Grigorieva, I. V.,Dubonos, S. V.,Firsov, A. A., Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005,438 (7065),197-200.
    3. Zhang, Y. B.,Tan, Y. W.,Stormer, H. L.,Kim, P., Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 2005,438 (7065),201-204.
    4. Avouris, P.,Chen, Z. H.,Perebeinos, V., Carbon-based electronics. Nat Nanotechnol 2007,2 (-10),605-615.
    5. Geim, A. K.,Novoselov, K. S., The rise of graphene. Nat Mater 2007,6 (3),183-191.
    6. Rao, C. N. R.,Biswas, K.,Subrahmanyam, K. S.,Govindaraj, A., Graphene, the new nanocarbon. JMater Chem 2009,19 (17),2457-2469.
    7. Rao, C. N. R.,Sood, A. K.,Subrahmanyam, K. S.,Govindaraj, A., Graphene:The New Two-Dimensional Nanomaterial. Angew Chem Int Edit 2009,48 (42),7752-7777.
    8. Bonaccorso, F.,Sun, Z.,Hasan, T.,Ferrari, A. C., Graphene photonics and optoelectronics. Nat Photonics 2010,4 (9),611-622.
    9. Nair, R. R.,Blake, P.,Grigorenko, A. N.,Novoselov, K. S.,Booth, T. J.,Stauber, T.,Peres, N. M. R.,Geim, A. K., Fine structure constant defines visual transparency of graphene. Science 2008,320 (5881),1308-1308.
    10. Mak, K. F.,Ju, L.,Wang, F.,Heinz, T. F., Optical spectroscopy of graphene:From the far infrared to the ultraviolet. Solid State Commun 2012,152 (15),1341-1349.
    11. Mueller, T.,Xia, F. N. A.,Avouris, P., Graphene photodetectors for high-speed optical communications. Nat Photonics 2010,4 (5),297-301.
    12. Chitara, B.,Krupanidhi, S. B.,Rao, C. N. R., Solution processed reduced graphene oxide ultraviolet detector. Appl Phys Lett 2011,99(11).
    13. Urich, A.,Unterrainer, K.,Mueller, T., Intrinsic Response Time of Graphene Photodetectors. Nano Lett 2011,11 (7),2804-2808.
    14. Lee, E. J. H.,Balasubramanian, K.,Weitz, R. T.,Burghard, M.,Kern, K., Contact and edge effects in graphene devices. Nat Nanotechnol 2008,3 (8),486-490.
    15. Park, J.,Ahn, Y. H.,Ruiz-Vargas, C., Imaging of Photocurrent Generation and Collection in Single-Layer Graphene. Nano Lett 2009,9 (5),1742-1746.
    16. Xia, F. N.,Mueller, T.,Lin, Y. M.,Valdes-Garcia, A.,Avouris, P., Ultrafast graphene photodetector. Nat Nanotechnol 2009,4 (12),839-843.
    17. Ghosh, S.,Sarker, B. K.,Chunder, A.,Zhai, L.,Khondaker, S. I., Position dependent photodetector from large area reduced graphene oxide thin films. Appl Phys Lett 2010,96 (16).
    18. Trindade, T.,O'Brien, P.,Pickett, N. L., Nanocrystalline semiconductors:Synthesis, properties, and perspectives. Chemistry of Materials 2001,13 (11),3843-3858.
    19. Wang, F.,Han, M. Y.,Mya, K. Y.,Wang, Y. B.,Lai, Y. H., Aggregation-driven growth of size-tunable organic nanoparticles using electronically altered conjugated polymers. Journal of the American Chemical Society 2005,127(29),10350-10355.
    20. Ethiraj, A. S.,Hebalkar, N.,Kulkarni, S. K.,Pasricha, R.,Urban, J.,Dem, C.,Schmitt, M.,Kiefer, W.,Weinhardt, L.,Joshi, S.,Fink, R.,Heske, C.,Kumpf, C.,Umbach, E., Enhancement of photoluminescence in manganese-doped ZnS nanoparticles due to a silica shell. J Chem Phys 2003,118 (19),8945-8953.
    21. Okumu, J.,Dahmen, C.,Sprafke, A. N.,Luysberg, M.,von Plessen, G.,Wuttig, M., Photochromic silver nanoparticles fabricated by sputter deposition. JAppl Phys 2005,97 (9).
    22. Cattaruzza, E.,Battaglin, G.,Gonella, F.,Polloni, R.,Mattei, G.,Maurizio, C.,Mazzoldi, P.,Sada, C.,Montagna, M.,Tosello, C.,Ferrari, M., On the optical absorption and nonlinearity of silica films containing metal nanoparticles. Philos Mag B 2002,82 (6), 735-744.
    23. Konstantatos, G.,Howard, I.,Fischer, A.,Hoogland, S.,Clifford, J.,Klem, E.,Levina, L.,Sargent, E. H., Ultrasensitive solution-cast quantum dot photodetectors. Nature 2006, 442(7099),180-183.
    24. Jun, J. H.,Seong, H.,Cho, K.,Moon, B. M.,Kim, S., Ultraviolet photodetectors based on ZnO nanoparticles. Ceram Int 2009,35 (7),2797-2801.
    25. Konstantatos, G.,Levina, L.,Tang, J.,Sargent, E. H., Sensitive Solution-Processed Bi2S3 Nanocrystalline Photodetectors. Nano Lett 2008,8 (11),4002-4006.
    26. Geng, X. M.,Niu, L.,Xing, Z. Y.,Song, R. S.,Liu, G. T.,Sun, M. T.,Cheng, G. S.,Zhong, H. J.,Liu, Z. H.,Zhang, Z. J.,Sun, L. F.,Xu, H. X.,Lu, L.,Liu, L. W., Aqueous-Processable Noncovalent Chemically Converted Graphene-Quantum Dot Composites for Flexible and Transparent Optoelectronic Films. Adv Mater 2010,22 (5),638-+.
    27. Cao, A. N.,Liu, Z.,Chu, S. S.,Wu, M. H.,Ye, Z. M.,Cai, Z. W.,Chang, Y. L.,Wang, S. F.,Gong, Q. H.,Liu, Y. F., A Facile One-step Method to Produce Graphene-CdS Quantum Dot Nanocomposites as Promising Optoelectronic Materials. Adv Mater 2010,22 (1),103
    28. Chang, H. X.,Lv, X. J.,Zhang, H.,Li, J. H., Quantum dots sensitized graphene:In situ growth and application in photoelectrochemical cells. Electrochem Commun 2010,12 (3), 483-487.
    29. Williams, G,Seger, B.,Kamat, P. V., TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. Acs Nano 2008,2 (7),1487-1491.
    30. Wang, D. H.,Choi, D. W.,Li, J.,Yang, Z. G.,Nie, Z. M.,Kou, R.,Hu, D. H.,Wang, C. M.,Saraf, L. V.,Zhang, J. G,Aksay, I. A.,Liu, J., Self-Assembled TiO2-Graphene Hybrid Nanostructures for Enhanced Li-Ion Insertion. Acs Nano 2009,3 (4),907-914.
    31. Lu, Z. S.,Guo, C. X.,Yang, H. B.,Qiao, Y.,Guo, J.,Li, C. M., One-step aqueous synthesis of graphene-CdTe quantum dot-composed nanosheet and its enhanced photoresponses. J Colloid Interf Sci 2011,353 (2),588-592.
    32. Lin, Y.,Zhang, K.,Chen, W. F.,Liu, Y. D.,Geng, Z. G.,Zeng, J.,Pan, N.,Yan, L. F.,Wang, X. P.,Hou, J. G, Dramatically Enhanced Photoresponse of Reduced Graphene Oxide with Linker-Free Anchored CdSe Nanoparticles. Acs Nano 2010,4 (6),3033-3038.
    33. Zhang, D. Y.,Gan, L.,Cao, Y.,Wang, Q.,Qi, L. M.,Guo, X. F., Understanding Charge Transfer at PbS-Decorated Graphene Surfaces toward a Tunable Photosensor. Adv Mater 2012,24 (20),2715-2720.
    34. Konstantatos, G.,Badioli, M.,Gaudreau, L.,Osmond, J.,Bernechea, M.,de Arquer, F. P. G.Gatti, F.,Koppens, F. H. L., Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat Nanotechnol 2012,7 (6),363-368.
    35. Tian, J. Q.,Liu, S.,Li, H. Y.,Wang, L.,Zhang, Y. W.,Luo, Y. L.,Asiri, A. M.,Al-Youbi, A. O.,Sun, X. P., One-step preparation of ZnO nanoparticle-decorated reduced graphene oxide composites and their application to photocurrent generation. Rsc Adv 2012,2 (4), 1318-1321.
    36. Wang, Z. X.,Zhan, X. Y.,Wang, Y. J.,Muhammad, S.,Huang, Y.,He, J., A flexible UV nanosensor based on reduced graphene oxide decorated ZnO nanostructures. Nanoscale 2012,4 (8),2678-2684.
    37. Chang, H. X.,Sun, Z. H.,Ho, K. Y. F.,Tao, X. M.,Yan, F.,Kwok, W. M.,Zheng, Z. J., A highly sensitive ultraviolet sensor based on a facile in situ solution-grown ZnO nanorod/graphene heterostructure. Nanoscale 2011,3 (1),258-264.
    38. Fu, X. W.,Liao, Z. M.,Zhou, Y. B.,Wu, H. C.,Bie, Y. Q.,Xu, J.,Yu, D. P., Graphene/ZnO nanowire/graphene vertical structure based fast-response ultraviolet photodetector. Appl Phys Lett 2012,100 (22).
    39. Li, D.,Muller, M. B.,Gilje, S.,Kaner, R. B.,Wallace, G. G., Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 2008,3 (2),101-105.
    40. Zhu, Y.,James, D. K.,Tour, J. M., New Routes to Graphene, Graphene Oxide and Their Related Applications. Adv Mater 2012,24 (36),4924-4955.
    41. Paredes, J. I.,Villar-Rodil, S.,Martinez-Alonso, A.,Tascon, J. M. D., Graphene oxide dispersions in organic solvents. Langmuir 2008,24 (19),10560-10564.
    42. Schniepp, H. C.,Li, J. L.,McAllister, M. J.,Sai, H.,Herrera-Alonso, M.,Adamson, D. H.,Prud'homme, R. K.,Car, R.,Saville, D. A.,Aksay, I. A., Functionalized single graphene sheets derived from splitting graphite oxide. JPhys Chem B 2006,110 (17),8535-8539.
    43. Stankovich, S.,Piner, R. D.,Nguyen, S. T.,Ruoff, R. S., Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 2006,44 (15),3342-3347.
    44. Bian, J.,Xiao, M.,Wang, S. J.,Lu, Y. X.,Meng, Y. Z., Graphite oxide as a novel host material of catalytically active Cu-Ni bimetallic nanoparticles. Catal Commun 2009,10 (11), 1529-1533.
    45. Szabo, T.,Berkesi, O.,Forgo, P.Josepovits, K.,Sanakis, Y.,Petridis, D.,Dekany, I., Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chemistry of Materials 2006,18(11),2740-2749.
    46. Si, Y.,Samulski, E. T., Synthesis of water soluble graphene. Nano Lett 2008,8 (6), 1679-1682.
    47. Lee, D. W.,De Los Santos, L. V.,Seo, J. W.,Felix, L. L.,Bustamante D, A.,Cole, J. M.,Barnes, C. H. W., The Structure of Graphite Oxide:Investigation of Its Surface Chemical Groups. JPhys Chem B 2010,114 (17),5723-5728.
    48. Fan, X. B.,Peng, W. C.,Li, Y.,Li, X. Y.,Wang, S. L.,Zhang, G. L.,Zhang, F. B., Deoxygenation of Exfoliated Graphite Oxide under Alkaline Conditions:A Green Route to Graphene Preparation. Adv Mater 2008,20 (23),4490-4493.
    49. Liu, Y.,Gorla, C. R.,Liang, S.,Emanetoglu, N.,Lu, Y.,Shen, H., Ultraviolet detectors based on epitaxial ZnO films grown by MOCVD. J Electron Mater 2000,29 (1),69-74.
    50. Cheng, J. P.,Zhang, Y. J.,Guo, R. Y, ZnO microtube ultraviolet detectors. JCryst Growth 2008,310(1),57-61.
    51. Park, J. Y.,Yun, Y. S.,Hong, Y. S.,Oh, H.,Kim, J. J.,Kim, S. S., Synthesis, electrical and photoresponse properties of vertically well-aligned and epitaxial ZnO nanorods on GaN-buffered sapphire substrates. Appl Phys Lett 2005,87 (12).
    52. Lin, C. C.,Lin, W. H.,Li, Y. Y, Synthesis of ZnO Nanowires and Their Applications as an Ultraviolet Photodetector. JNanosci Nanotechno 2009,9 (5),2813-2819.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700