用户名: 密码: 验证码:
典型富氢化合物及其相关体系的高压行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氢是元素周期表中第一位的元素,在所有元素中具有最简单的原子结构。对于氢的相关研究不仅具有学术方面的意义,更有重要的应用价值。一方面,氢气作为一种可替代性的未来的清洁能源,用于汽车等的燃料,但是在氢能源推广的进程中,汽车装载能源的储氢问题是一大难题,因此对于含氢量较高的化合物的研究是热点问题。以往理论和实验研究发现,这类化合物的高压相可能具有更高的含氢量,从而具有更好的储氢性能,因此研究高压下的富氢化合物具有重大的意义。近年来,关于富氢化合物在高压下的相变次序、高压结构以及相变机制的研究,还有在金属化转变及提高超导温度等方面的探索均受到人们的极大重视。本论文中,我们选取了富氢化合物中的三元氢化物(碱金属氮氢化物)及二元氢化物(ZrH_2)作为主要研究对象。另一方面,氢被认为在高压下变为金属氢,金属氢是二十一世纪最为重要的十大物理问题之一,是潜在的室温超导体,但是一直没有在实验中获得,其中高压下氢分子的解离过程与机制是关键,因此我们选择相关的分子体系SnBr4,对其在高压下的行为进行研究,以便获得有助于氢高压研究的物理图像与规律。本文主要采用原位高压实验测量技术,辅助第一性原理计算的结果,对这些富氢化合物及分子体系进行了研究,获得了如下创新性成果:
     (1)高压下碱金属氮氢化物的结构变化。在碱金属氮氢化物这个体系中,着重研究了LiNH_2和NaNH_2这两种储氢材料。为了使这类体系中的氢气更容易释放出来,目前主要是通过加入催化剂,或者球磨的方法。高压作为一种发现新型材料的有效方法,对碱金属氮氢化物进行高压下的研究以期获得具有更优异性能的储氢材料,早期的研究者对其进行了高压拉曼光谱的测量,由于Raman光谱不能完全确定物质的晶体结构,所以无法给出新相的结构。我们通过同步辐射XRD的实验测量及第一性原理计算研究了高压下LiNH_2的结构稳定性,最高压力为28.0GPa。发现其在压力为10.3–15.0GPa的范围内,发生了从四方相(空间群为I-4)到单斜相(空间群为P21)的结构转变。在这个相变过程中,伴随着大约11%的体积坍塌,而且这个体积压缩率比许多其他的复杂氢化物的要大一些。另外,通过对这两相态密度的计算,揭示了相变过程中伴随较大体积坍塌的原因。对于NaNH_2的实验研究表明常压相α-NaNH_2(正交晶系,空间群为Fddd)在1.12GPa转变为β-NaNH_2相,在1.93GPa又转变为γ-NaNH_2,从而解决了前人对于其相变顺序的争议,新相β-NaNH_2和γ-NaNH_2所属晶系分别为单斜晶系和正交晶系。
     (2)不同静水压条件对ZrH_2高压行为的影响。为了极大的提高储氢材料的性能,对ZrH_2在高压下的行为进行研究也是必不可少的。另外,高压也是研究金属和氢之间相互作用的一种有效的手段。到目前为止,对于二元过渡金属氢化物的高压研究相对较少,大多都集中在对其常压下的结构及性质的研究。我们通过对ZrH_2在不同静水压条件下的角散同步辐射XRD的研究,发现其晶胞参数及其体积呈现不
     II同的变化规律。我们主要研究了非静水压及静水压这两种情况,对于非静水压条件即样品腔中未加任何传压介质;静水压条件是用Ne作传压介质。对晶胞参数及其体积与压力关系的曲线进行拟合,发现非静水压条件下,样品的晶胞参数、键长随着压力是线性变化的,但是静水压条件下,晶胞参数及键长在压力大约为22.0GPa发生了明显的反常变化。并且在压力高于22.0GPa时,静水压条件下的晶胞体积大于非静水压条件下的晶胞体积,呈现反常变化,我们认为静水压条件下的样品发生了等结构相变。
     (3)高压下分子晶体SnBr4的结构变化及电学性质的研究。作为重要的分子晶体,第四主族的卤化物在晶体结构变化及压致非晶化等方面已引起了极大的关注。尽管现有的理论及实验研究对于非晶化的机制提出了模型,但是仍存在很大争议。前人对于SnBr4的研究还仅仅局限在光谱测量及较低的压力范围内,因此,我们通过原位X射线光谱,拉曼光谱测量,光学吸收测量方法,以及理论计算的方法很全面地研究了SnBr4在高压下的行为。通过高压下XRD谱的测量发现在10.8GPa时,样品开始发生了晶体-晶体的结构转变,在21.5GPa时相变的完成。结合拉曼光谱的实验结果及理论计算的方法,我们认为这个结构变化是由SnBr4分子的二聚化引起的结构变化,理论计算的结果表明新相的空间群为P-1。在压力高于34.7GPa时,样品经历了向非晶态转变的过程,XRD谱的实验结果表明一直到43.8GPa样品还没有完全变成非晶相。实验和理论计算的结果都说明压致非晶化的过程是伴随分子解离的过程,即由分子相变为非分子相。通过高压下光学吸收光谱的测量发现,样品的带隙随着压力的增加在不断减小,当压力增加至21.0GPa时,带隙由常压下的3.4eV减小至1.5eV。更高压力下的透射光谱表明在大约40.3GPa时样品由绝缘体转变为金属。
Hydrogen is the first element in the periodic table of elements, whichalso has the simplest atomic structure in all elements. The research ofhydrogen not only has academic significance, but also is crucial inapplication. On one hand, the hydrogen gas is considered as one kind ofalternative clean energy in the future, especially used in automobile as fuel,but in the process of hydrogen energy promotion, the hydrogen storage inautomobile is still unsolved. So the hydrogen-rich compounds havebecome a hot issue. The previous theoretical and experimental studieshave found that the new high pressure phases with higher hydrogencontent probably exhibited better hydrogen storage properties, so theresearch on hydrogen-rich compounds under high pressure is of greatsignificance. In recent years, the research of hydrogen-rich compoundsunder high pressure have attracted much attention, including thetransformation sequence, high pressure structures and phase transitionmechanism, the insulator-metal transition and improving the superconductor temperature. We have selected alkli metal nitrogenhydride in the ternary hydrides and ZrH_2in the binary hydrides as themain objects of this study. On the other hand, hydrogen will become metalhydrogen under high pressure, and metal hydrogen is one of the mostimportant physical problems. As a potential room-temperaturesuperconductor, metal hydrogen has not been obtained in experiment.However, the dissociation process and mechanism of hydrogen under highpressure is critical, so we choose the related molecular system (SnBr4) tostudy its behavior under high pressure for obtaining the useful physicalpatterns and laws. In this article, we are going to study hydrogen-richcompounds and molecular system by in situ experimental measurementsand first principle calculations. And the obtained results are as follows:
     (1) Study of alkali metal nitrogen hydride under high pressure. Inthe alkali metal nitrogen hydride system, we focus on LiNH_2and NaNH_2.In this system, some methods are being used in order to make it easier forthe hydrogen released, including adding catalyst or ball milling method.High pressure is one kind of effective method to find new materials, soalkali metal nitrogen hydrides have been investigated under high pressurefor obtaining more hydrogen storage materials with excellentperformances. The previous high pressure studies have explored thehydrides using the Raman spetra measurements. However, Raman spectracan not determine the crystal structure of the new phases. In this work, wehave studied the structural stability of LiNH_2under high pressure bymeans of synchrotron radiation XRD and first-principles calculation, andthe maximum pressure is28.0GPa. It is found that the sample changesfrom a tetragonal phase (space group I-4) to the monoclinic phase (spacegroup P21) in the range of10.3–15.0GPa. In this transformation process,the volume collapse is about11%, which is larger than many othercomplex hydride ones. In addition, through the calculation of the density of state of the two phases, we have revealed the reasons of the largevolume collapse. By in situ Raman spectrum measurement andsynchrotron radiation XRD study of NaNH_2, two structural changes werefound at about1.12GPa and1.93GPa, respectively, and it is proposedthat that the two crystal structures of the two new phases belong tomonoclinic and orthorhombic system, respectively.
     (2) Effect of hydrostatic conditions on high-pressure behavior ofZrH_2. In order to improve the performance of hydrogen storage, a fullunderstanding of its behaviors under pressure is considered as essential.Moreover, the application of high pressure is an effective way to explorethe hydrogen-metal interactions which are of great relevance to specialproperties as well as hydrogen storage applications. As for the transitionmetal dihydrides, although many literatures have reported their groundstate properties and electronic properties by theoretical calculations,high-pressure experiments have not been intensively carried out. As one ofthe most important hydrogen storage material, the ZrH_2sample has beenmeasured by in situ synchrotron XRD under hydrostatic andnonhydrostatic compressions, respectively. By comparing the latticeconstants as a function of pressure under these two compressions, twodistinct compression regimes can be identified around22.0GPa in thehydrostatic compression while the lattice constants are linearly dependenton high pressure. So we have observed that ZrH_2has unusual compressionbehaviors under hydrostatic pressure, but the tetragonal structure of ZrH_2is stable up to43.8GPa under nonhydrostatic compression. Further, thevolume reduction under hydrostatic pressure is nearly equal with that ofnonhydrostatic compression below22.0GPa, above which the volumereduction starts to lower than that of nonhydrostatic pressure. Weexplained the remarkable phenomena that the sample underwent anisostructural phase transition under hydrostatic pressure.
     (3) Structural and electronic changes of SnBr4under highpressure. As important molecular crystals, group IV halides have recentlybeen investigated for understanding structural changes and amorphousmechanism. Although several models have been proposed, the mechanismof pressure-induced amorphization observed in group IV halides is stillunder debate. As one of the group IV halides, previous high pressurestudies are only limited to low pressure and Spectral measurement. In thispaper, we have explored the pressure induced amorphization of SnBr4bysynchrotron X-ray diffraction, Raman spectra measurements, opticalabsorption/transmission measurements and ab initio calculations. Ourresult shows that there is a crystal-crystal transition induced by themolecular dimerization at about10.8GPa, which completes at about21.5GPa. Combining the Raman spectroscopy results with theoreticalcalculations, it is found that the crystal-crystal transition happens due tothe molecular dimerization. And the crystal structure of the dimeric phaseis obtained by the theoretical calculations with space group P-1. Thegradual amorphization is found to transform into non-molecularamorphous phase above34.7GPa, and the amorphization process does notcomplete until43.8GPa. The joint of experimental and theoretical resultsshows that the SnBr4molecular crystal becomes the non-molecular phaseupon compression. The band gap of the sample deceases with increasingpressure (from3.4eV at ambient pressure to1.5eV at21.0GPa). Ourexperimentally optical transmission spectra indicate a possibleinsulator-metal transition at about40.3GPa.
引文
[1] E. Wigner, and H. B. Huntington. On the Possibility of a Metallic Modification ofHydrogen. J. Chem. Phys.(1935)3,764.
    [2] P. Loubeyre, F. Occelli,R. LeToullec. Optical studies of solid hydrogen to320GPaand evidence for black hydrogen. Nature (2002),416,613.
    [3] C. Narayana, H. Luo, J. Orloff, and A. L. Ruoff. Solid hydrogen at342GPa: noevidence for an alkali metal. Nature (1998),393,46.
    [4] N. W. Ashcroft. Hydrogen Dominant Metallic Alloys: High TemperatureSuperconductors?,Phys. Rev. Lett.(2004),92,187002.
    [5] J. Feng, W. Grochala, T. Jaroń, R. Hoffmann, A. Bergara, and N. W. Ashcroft,Structures and Potential Superconductivity in SiH4at High Pressure: En Route to“Metallic Hydrogen”, Phys. Rev. Lett.(2006),96,017006.
    [6] M. Martinez-Canales, A. R. Oganov, Y. Ma, A. O. Lyakhov and A. Bergara, NovelStructures and Superconductivity of Silane under Pressure. Phys. Rev. Lett.(2009),102,087005.
    [7] J. S. Tse, Y. Yao, K. Tanaka, Novel Superconductivity in Metallic SnH4under HighPressure, Phys. Rev. Lett.(2007),98,117004.
    [8] I. Goncharenko, M. I. Eremets, M. Hanfland, J. S. Tse, M. Amboage, Y. Yao, and I.A. Trojan, Pressure-Induced Hydrogen-Dominant Metallic State in AluminumHydride, Phys. Rev. Lett.(2008),100,045504.
    [9] C. J. Winter, and J. Nitsch, Hydrogen as an energy carrier (1988).
    [10] C. J. Winter, Hydrogen energy–Abundant, efficient, clean: A debate over theenergy-system-of-change, International Journal of Hydrogen Energy (2009),34,S1.
    [11] M. Momirlan, and T. Veziroglu, Current status of hydrogen energy, Renewableand Sustainable Energy Reviews (2002),6,141.
    [12] L. Schlapbach, A. Züttel. Hydrogen-storage materials for mobile applications.Nature (2001),414,353-358.
    [13] C. Liu, F. Li, L. P. Ma, H. M. Cheng. Advanced Materials for Energy Storage. Adv.Mater.(2010),22, E28-E62.
    [14] F. Schüth, B. Bogdanovi, M. Felderhoff. Light metal hydrides and complexhydrides for hydrogen storage. Chem.Commun.(2004),2249-2258
    [15] J. K. Kang, J. Y. Lee, R. P. Muller, W. A. Goddard III. Hydrogen storage inLiAlH4: Predictions of the crystal structuresand reaction mechanisms ofintermediate phases from quantum mechanics. J. Chem. Phys.(2004),121,10625.
    [16] N. W. Ashcroft. Condensed Matter at Higher Densities in High PressurePhenomena. IOS Press,(2002),1.
    [17] A. L. Ruoff, H. Luo, and Y. K. Vohra. The closing diamond anvil optical windowin multimegabar research. J. Appl. Phys.(1991),69,6413.
    [18] W. R. Panero, L. R. Benedetti and R. Jeanloz. Equation of state of stishovite andinterpretation of SiO2shock-compression data. J. Geophys. Res.(2003),108,1-7.
    [19] S. H. Shim, T. S. Duffy, G. Shen. The equation of state of CaSiO3perovskite to108GPa at300K. Physics of the Earth and Planetary Interiors (2000),120327–338.
    [20] M. I. Eremets, A. G. Gavriliuk, I. A. Trojan, D. A. Dzivenko, R. Boehler.Single-bonded cubic form of nitrogen. Nature Materials (2004),3,558–563.
    [21] X. Wang, Y. Wang, M. Miao, X. Zhong, J. Lv, T. Cui, J. Li, L. Chen, C. J. Pickard,and Y. Ma. Cagelike Diamondoid Nitrogen at High Pressures. Phys. Rev. Lett(2012),109,175502.
    [22] Minseob Kim, Mathew Debessai and Choong-Shik Yoo. Two-andthree-dimensional extended solids and metallization of compressed XeF2. NatureChemistry (2010),2,784-788.
    [23] P. Vajeeston, P. Ravindran, R. Vidya, H. Fjellv g, A. Kjekshus.Huge-pressure-induced volume collapse in LiAlH4and its implications tohydrogen storage. Phys. Rev. B (2003),68,212101.
    [24] Y. Filinchuk, R. ern, H. Hagemann. Insight into Mg(BH4)2with synchrotronX-ray diffraction: structure revision, crystal chemistry, and anomalous thermalexpansion. Chem. Mater.(2009),21,925-933.
    [25] B. C. Wood, N. Marzari. Dynamics and Thermodynamics of a Novel Phase ofNaAlH4. Phys. Rev. Lett.(2009),103,185901.
    [26] C. H. Hu, A. R. Oganov, Y. M. Wang, H. Y. Zhou, A. Lyakhov, J. Hafner. Crystalstructure prediction of LiBeH3using ab initio total-energycalculations andevolutionary simulations. J. Chem. Phys.(2008),129,234105.
    [27] V. Dmitriev, Y. Filinchuk, D. Chernyshov, A. V. Talyzin, A. Dzwilewski, O.Andersson, B. Sundqvist. Pressure-temperature phase diagram of LiBH4:Synchrotron x-ray diffraction experiments andtheoretical analysis. Phys. Rev. B(2008),77,174112.
    [28] L. George, V. Drozd, S. K. S. E. Gil Bardaji, M. Fichtner. Structural phasetransitions of Mg(BH4)2under pressure. J. Phys. Chem. C (2009),113,486-492.
    [29] Z. odziana, TejsVegge. Structural Stability of Complex Hydrides: LiBH4Revisited. Phys. Rev. Lett.(2004),93,145501.
    [30] R. S. Kumar, A. L. Cornelius. Structural transitions in NaBH4under pressure.Appl. Phys. Lett.(2005),87,261916.
    [31] Y. Filinchuk, D. Chernyshov, A. Nevidomskyy, V. Dmitriev. High-PressurePolymorphism as a Step towards Destabilization of LiBH4. Angew. Chem. Int. Ed.(2008),47,529-532.
    [32] P. W. Bridgman. The Physics of High Pressure Dover. New York (1970) Reprintof1930.
    [33] P. W. Bridgman. Water, in the Liquid and Five Solid Forms, under Pressure.Proceedings of the American Academy of Arts and Sciences (1912),47,441.
    [34] P. W. Bridgman. The Compressibility of Thirty Metals as a Function of Pressureand Temperature. Proceedings of the American Academy of Arts and Sciences(1923),58,165.
    [35] R. J. Hemley, Effects of high pressure on molecules, Annual review of physicalchemistry (2000)51,763.
    [37] W. Bassett. Diamond anvil cell,50th birthday. International Journal of HighPressure Research (2009)29,163.
    [38] J. C. Jamieson, A. Lawson, and N. Nachtrieb. New Device for Obtaining X-RayDiffraction Patterns from Substances Exposed to High Pressure. Review ofScientific Instruments (1959),30,1016.
    [39] E. A. Tanis, H. Giefers, and M. F. Nicol. Novel rhenium gasket design for nuclearresonant inelastic x-ray scattering at high pressure. Review of ScientificInstruments (2008)79,023903.
    [40] I. Kantor, V. Prakapenka, A. Kantor, P. Dera, A. Kurnosov, S. Sinogeikin, N.Dubrovinskaia, and L. Dubrovinsky. BX90: A new diamond anvil cell design forX-ray diffraction and optical measurements. Review of Scientific Instruments(2012)83,125102.
    [41] P. Briddon, and R. Jones. Theory of impurities in diamond. Physica B: CondensedMatter (1993)185,179.
    [42] J. E. Field. The properties of diamond. Academic Press: London (1979)
    [43] P. Wong, and D. Klug. Reevaluation of type I diamonds for infrared and Ramanspectroscopy in high-pressure diamond anvil cells. Applied spectroscopy (1983)37,284.
    [44] A. T. Collins. Intrinsic and extrinsic absorption and luminescence in diamond.Physica B: Condensed Matter (1993)185,284.
    [45] D. Adams, S. Payne, and K. Martin. The fluorescence of diamond and Ramanspectroscopy at high pressures using a new design of diamond anvil cell. Appliedspectroscopy (1973)27,377.
    [46] R. J. Hemley, H. Mao, G. Shen, J. Badro, P. Gillet, M. Hanfland, and D.H usermann. X-ray imaging of stress and strain of diamond, iron, and tungsten atmegabar pressures. Science (1997)276,1242.
    [47] G. Zou, Y. Ma, H. Mao, R. J. Hemley, and S. A. Gramsch. A diamond gasket forthe laser-heated diamond anvil cell. Review of Scientific Instruments (2001)72,1298.
    [48] R. Boehler, M. Ross, and D. B. Boercker. Melting of LiF and NaCl to1Mbar:Systematics of ionic solids at extreme conditions. Physical Review Letters (1997)78,4589.
    [49] J. Schouten, N. Trappeniers, and L. Van den Bergh. Diamond–anvil system for theinvestigation of phase equilibria in mixtures at high pressures. Review ofScientific Instruments (1983)54,1209.
    [50] K. Asaumi, and A. Ruoff. Nature of the state of stress produced by xenon andsome alkali iodides when used as pressure media. Physical Review B (1986)33,5633.
    [51] R. Mills, D. Liebenberg, J. Bronson, and L. Schmidt. Procedure for loadingdiamond cells with high–pressure gas. Review of Scientific Instruments (1980)51,891.
    [52] J. Chervin, B. Canny, and M. Mancinelli. Ruby-spheres as pressure gauge foroptically transparent high pressure cells. International Journal of High PressureResearch (2001)21,305.
    [53] J. H. Eggert, K. A. Goettel, and I. F. Silvera. Ruby at high pressure. I. Optical lineshifts to156GPa. Physical Review B (1989)40,5724.
    [54] Z. Min-Guang, X. Ji-An, B. Gui-Ru, and X. Huong-Sen. d-orbital theory andhigh-pressure effects upon the EPR spectrum of ruby. Physical Review B (1983)27,1516.
    [55] H. Mao, P. Bell, J. W. Shaner, and D. Steinberg. Specific volume measurementsof Cu, Mo, Pd, and Ag and calibration of the ruby R1fluorescence pressure gaugefrom0.06to1Mbar. Journal of Applied Physics (1978)49,3276.
    [56] Q. Bi, J. Brown, and Y. Sato–Sorensen, Calibration of Sm: YAG as an alternatehigh–pressure scale, Journal of Applied Physics (1990)68,5357.
    [57] I. V. Aleksandrov, A. F. Goncharov, A. F. Zisman, and S. M. Stishov, Diamond athigh pressures-Raman scattering of light, equation of state, and a high pressurescale. Zhurnal Eksperimental noi i Teoreticheskoi Fiziki (1987)93,680.
    [58] J. Xu, H. Mao, and P. Bell. High-pressure ruby and diamond fluorescence:observations at0.21to0.55terapascal. Science (1986)232,1404.
    [59] A. F. Goncharov, J. C. Crowhurst, J. K. Dewhurst, S. Sharma, C. Sanloup, E.Gregoryanz, N. Guignot, and M. Mezouar. Thermal equation of state of cubicboron nitride: Implications for a high-temperature pressure scale. Physical ReviewB (2007)75,224114.
    [60] O. L. Anderson, D. G. Isaak, and S. Yamamoto. Anharmonicity and the equationof state for gold. Journal of Applied Physics (1989)65,1534.
    [61] C. S. Zha, K. Mibe, W. A. Bassett, O. Tschauner, H. K. Mao, and R. J. Hemley.P-V-T equation of state of platinum to80GPa and1900K from internal resistiveheating/x-ray diffraction measurements. Journal of Applied Physics103,054908(2008).
    [62] J. Brasch, A. Melveger, and E. Lippincott. Laser excited Raman spectra ofsamples under very high pressures. Chemical Physics Letters (1968)2,99.
    [63] G. Turrell. Raman microscopy: developments and applications Academic Pr(1996).
    [64] B. Buras, J. S. Olsen, L. Gerward, G. Will, and E. Hinze. X-ray energy-dispersivediffractometry using synchrotron radiation. Journal of Applied Crystallography(1977)10,431.
    [65] I. L. Spain, and D. R. Black. Energy dispersive x‐ray diffraction in the diamondanvil, high‐pressure apparatus: Comparison of synchrotron and conventional x‐ray sources. Review of Scientific Instruments (1985)56,1461.
    [66] P. Loubeyre, R. LeToullec, D. Hausermann, M. Hanfland, R. J. Hemley, H. K.Mao and L. W. Finger. X-ray diffraction and equation of state of hydrogen atmegabar pressures. Nature (1996)383,702–704.
    [67] H. Rietveld. Line profiles of neutron powder-diffraction peaks for structurerefinement. Acta Crystallographica (1967)22,151.
    [68] H. M. Rietveld. A profile refinement method for nuclear and magnetic structures.Journal of Applied Crystallography (1969)2,65.
    [69] R. Young, P. E. Mackie, and R. Von Dreele, Application of the pattern-fittingstructure-refinement method of X-ray powder diffractometer patterns, Journal ofApplied Crystallography (1977)10,262.
    [70] A. C. Larson, and R. B. Von Dreele, GSAS: general structure analysis system,Report lAUR (1994),86.
    [71] B. H. Toby, EXPGUI, a graphical user interface for GSAS, Journal of AppliedCrystallography (2001)34,210.
    [72]张跃,计算机科学基础,北京航空航天大学出版社(2009)
    [73]吴兴惠和项金钟,现代材料计算与设计教程,电子工业出版社(2002)
    [74] M. D. Segall, Philip. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J.Clark, M. C. Payne. First-principles simulations: ideas, illustrations and CASTEPcode, J. Phys: Cond. Matt.(2002),14,2717-2744.
    [75] Chen, P.; Xiong, Z.; Luo, J.; Lin, J.; Tan, K. L. Interaction of hydrogen with metalnitrides and imides. Nature2002,420,302-304.
    [76] Song, Y.; Guo, Z. X. Electronic structure, stability and bonding of the Li-N-Hhydrogen storage system. Phys. Rev. B (2006),74,195120.
    [77] E. Hazrati, G. Brocks, B. Buurman, R. A. de Grootac, G. A. de Wijs. Intrinsicdefects and dopants in LiNH2: a first-principles study. Phys. Chem. Chem. Phys.(2011),13,6043-6052.
    [78] C. Zhang, A. Alavi. A First-Principles Investigation of LiNH2as aHydrogen-Storage Material: Effects of Substitutions of K and Mg for Li. J.Phys. Chem. B (2006),110,7139-7143.
    [79] J. B. Yang, X. D. Zhou, Q. Cai, W. J. James, W. B. Yelon. Crystal and electronicstructures of LiNH2. Appl. Phys. Lett.(2006),88,41914.
    [80] T. Tsumuraya, T. Shishidou, T. Oguchi. Ab initio study on the electronic structureand vibration modes of alkali and alkaline-earth amides and alanates. J. Phys.:Condens. Matter (2009),21,185501.
    [81] Chellappa, R. S.; Chandra, D.; Somayazulu, M.; Gramsch, S. A.; Hemley, R. J. J.Phys. Chem. B2007,111,10785-10789.
    [82] H. K. Mao, J. Xu, P. M. Bell. Calibration of the ruby pressure gauge to800kbarunder quasi-hydrostatic conditions. J. Geophys. Res.(1986),91,4673-4676.
    [83] Hammersley, A. P.; Svensson, S. O.; Hanfland, M.; Fitch, A. N.; Hausermann, D.Two-dimensional detector software: From real detector to idealised image ortwo-theta scan. High Pressure Res.(1996),14,235-248.
    [84] N. Troullier, J. L. Martins. Efficient pseudopotentials for plane-wave calculations.Phys. Rev. B (1991),43,1993-2006.
    [85] B. G. Pfrommer, M. C té, S. G. Louie, M. L. Cohen. Relaxation of Crystals withthe Quasi-Newton Method. J. Comput. Phys.(1997),131,233-240.
    [86] D. M. Ceperley, B. J. Alder. Ground State of the Electron Gas by a StochasticMethod. Phys. Rev. Lett.(1980),45,566-569.
    [87] J. P. Perdew, A. Zunger. Self-interaction correction to density-functionalapproximations for many-electron systems. Phys. Rev. B (1981),23,5048-5079.
    [88] H. J. Monkhorst, D. P. James. Special points for Brillouin-zone integrations. Phys.Rev. B (1976),13,5188-5192.
    [89] R. S. Kumar, A. L. Cornelius. Structural phase transitions in RbBH4undercompression. J. Alloys.Compd.(2009),476,5-8.
    [90] A. C. Moysés, R. Ahuja, A. V. Talyzin, B. Sundqvist. Pressure-induced structuralphase transition in NaBH4. Phys. Rev. B (2005),72,054125.
    [91] R. S. Kumar, E. Kim, A. L. Cornelius. Structural Phase Transitions in the PotentialHydrogen Storage Compound KBH4under Compression. J. Phys. Chem. C(2008),112,8452-8457.
    [92] F. Birch, The Effect of Pressure upon the Elastic Parameters of Isotropic Solids,according to Murnaghan's Theory of Finite Strain. J. Appl. Phys.(1938),9,279-288.
    [93] Oganov, A. R.; Glass, C. W. Crystal Structure Prediction using Ab InitioEvolutionary Techniques: Principles and Applications. J. Chem. Phys.2006,124,244704.
    [94] C. W. Glass, A. R. Oganov, N. Hansen. USPEX–evolutionary crystal structureprediction. Comput. Phys. Commun.(2006),175,713-720.
    [95] A. O. Lyakhov, A. R. Oganov, M. Valle. How to predict very large and complexcrystal structures. Comput. Phys. Commun.(2010),181,1623-1632.
    [96] Z. Wu, E. Zhao,1,2Hong-ping Xiang,1,2Xian-feng Hao,1,2Xiao-juan Liu,1andJian Meng. Crystal structures and elastic properties of superhard IrN2and IrN3from first principles. PHYSICAL REVIEW B (2007),76,054115.
    [97] D. A. Sheppard, M. Paskevicius, C. E. Buckley. Hydrogen Desorption from theNaNH2MgH2System. J. Phys. Chem. C (2011),115,840784413.
    [98] Y. Zhang, Q. Tian, The reactions in LiBH4–NaNH2hydrogen storage system.Int. J. Hydrogen Energy (2011),36,97339742.
    [99] R. Juza, H. H. Weber, K. Z. Opp, Anorg. Allg. Chem.(1956),284,7382.
    [100] M. Nagib, H. Kistrup, H. Jacobs. Atomkernenergie (1975),26,8790.
    [101] T. Tsumuraya, T. Shishidou, T. Oguchi. Ab initio study on the electronic structureand vibration modes of alkali and alkaline-earth amides and alanates. J. Phys:Condens. Matter (2009),21,185501.
    [102] A. Liu, Y. Song. In Situ High-Pressure Study of Sodium Amide by Raman andInfrared Spectroscopies. J. Phys. Chem. B (2011),115,713.
    [103] Y. Zhong, H. Y. Zhou, C. H. Hu, D. H. Wang, A. R. Oganov. TheoreticalStudies of High-Pressure Phases, Electronic Structure, and VibrationalProperties of NaNH2. J. Phys. Chem. C (2012),116,8387–8393.
    [104] P. T. Cunningham, V. A. Maroni. Laser Raman Spectra of Solid and MoltenNaNH2: Evidence for Hindered Rotation of the NH21Ion. J. Chem. Phys.(1972),57,1415.
    [105] Y. Fukai, Metal Hydrogen System. Basics Bulk Properties (Springer, Berlin,2005).
    [106] J. í iguez, T. Yildirim, T. J. Udovic, M. Sulic, and C. M. Jensen. Structure andhydrogen dynamics of pure and Ti-doped sodium alanate. Phys. Rev. B (2004),70,060101(R).
    [107] G. Sandrock, K. Gross, and G. Thomas. Effect of Ti-catalyst content on thereversible hydrogen storage properties of the sodium alanates. J. Alloys Compd.(2002),339,299.
    [108] P. Wang, X. D. Kang, and H. M. Cheng. Exploration of the Nature of Active TiSpecies in Metallic Ti-Doped NaAlH4. J. Phys. Chem. B (2005),109,20131.
    [109] T. Yildirim and S. Ciraci. Titanium-Decorated Carbon Nanotubes as a PotentialHigh-Capacity Hydrogen Storage Medium. Phys. Rev. Lett.(2005),94,175501.
    [110] J. N. Huiberts, R. Griessen, J. H. Rector, R. J. Wijngaarden, J. P. Dekker, D. G.deGroot, and N. J. Koeman, Nature (London)(1996),380,231.
    [111] P. Vajda, in Handbook on the Physics and Chemistry of Rare Earths, edited by K.A. GschneiderJr. and L.Eyring (NorthHolland, Amsterdam)(1995),20,207.
    [112] A. Machida, T. Watanuki, D. Kawana, and K. Aoki. Phase separation oflanthanum hydride under high pressure. Phys. Rev. B (2011),83,054103.
    [113] P. E. Kalita, S. V. Sinogeikin, K. Lipinska-Kalita, T. Hartmann, X. Ke, C. Chen,and A. Cornelius. Equation of state of TiH2up to90GPa: A synchrotron x-raydiffraction study and ab initio calculations. J. Appl. Phys.(2010),108,043511.
    [114] W. Zhu, R. Wang, G. Shu, P. Wu, and H. Xiao. First-Principles Study ofDifferent Polymorphs of Crystalline Zirconium Hydride. J. Phys. Chem. C(2010),114,22361.
    [115] T. Kenichi. Bulk modulus of osmium: High-pressure powder x-ray diffractionexperiments under quasihydrostatic conditions. Phys. Rev. B (2004),70,012101.
    [116] D. Duan, X. Jin, Y. Ma, T. Cui, B. Liu, and G. Zou. Effect of nonhydrostaticpressure on superconductivity of monatomic iodine: An ab initio study. Phys.Rev. B (2009),79,064518.
    [117] K. E. Lipinska-Kalita, P. E. Kalita, O. A. Hemmers, and T. Hartmann. Equationof state of gallium oxide to70GPa: Comparison of quasihydrostatic andnonhydrostatic compression. Phys. Rev. B (2008),77,094123.
    [118] M. B. Weinberger, S. H. Tolbert, and A. Kavner. Osmium Metal Studied underHigh Pressure and Nonhydrostatic Stress. Phys. Rev. Lett.(2008),100,045506.
    [119] R. E. Rundle, C. G. Shull, E. O. Wollan. The crystal structure of thorium andzirconium dihydrides by X-ray and neutron diffraction. Acta Crystallogr.(1952),5,22.
    [120] Y. Ma, J. Liu, C. Gao, W. N. Mei, A. D. White and J. Rasty. High-pressure x-raydiffraction study of the giant dielectric constant material CaCu3Ti4O12: Evidenceof stiff grain surface. Appl. Phys. Lett.(2006),88,191903.
    [121] H. T. Hall, L. Merrill, J. D. Barnett. High Pressure Polymorphism in Cesium.Science (1964),146,1297.
    [122] M. B. Maple, D. Wohlleben. Nonmagnetic4f Shell in the High-Pressure Phase ofSmS. Phys Rev. Lett (1971),27,511.
    [123] K. Takemura. Structural study of Zn and Cd to ultrahigh pressures. Phys. Rev. B(1997),56,5170.
    [124] D. L. Novikov, M. I. Katsnelson, A. V. Trefilov, A. J. Freeman, N. E. Christensen,A. Svane, and C. O. Rodriguez. Anisotropy of thermal expansion and electronictopological transitions in Zn and Cd under pressure. Phys. Rev. B (1999),59,4557.
    [125] S. L. Qiu, F. Apostol, and P. M. Marcus. Structural anomalies in hcp metalsunder pressure: Zn and Cd. J. Phys.: Condens. Matter (2004),16,6405.
    [126] F. Occelli, D. L. Farber, J. Badro, C. M. Aracne, D. M. Teter, M. Hanfland, B.Canny, and B. Couzinet. Experimental Evidence for a High-PressureIsostructural Phase Transition in Osmium. Phys. Rev. Lett.(2004),93,095502.
    [127] H. Rosner, D. Koudela, U. Schwarz, A. Handstein, M. Hanfland, I. Opahle, K.Koepernik, M. D. Kuz’min, K.-H. Müller, J. A. Mydosh, and M. Richter.Magneto-elastic lattice collapse in YCo5. Nat. Phys.(2006),2,469.
    [128] Mishima, O.; Calvert, L. D.; Whalley, E. An Apparently First-Order Transitionbetween Two Amorphous Phases of Ice Induced by Pressure. Nature (1985),314,76–78.
    [129] Goncharov, A. F.; Gregoryanz, E.; Mao, H. k.; Liu, Z.; Hemley, R. J. ElectricalConductivity of Xenon at Megabar Pressures. Phys. Rev. Lett.(2000),85,1262–1265.
    [130] Santoro, M.; Gorelli1, F. A.; Bini1, R.; Ruocco, G.; Scandolo, S.; Crichton, W. A.Amorphous Silica-Like Carbon Dioxide. Nature (2006),441,857–860.
    [131] Liu, D.; Yao, M.; Wang, L.; Li, Q.; Cui, W.; Liu, B.; Liu, R.; Zou, B.; Cui, T.;Liu, B. et al. Pressure-Induced Phase Transitions of C70Nanotubes. J. Phys.Chem. C (2011),115,8918–8922.
    [132] Sun, Z.; Zhou, J.; Pan, Y.; Song, Z.; Mao, H. k.; Ahuja, R. Pressure-InducedReversible Amorphization and an Amorphous-Amorphous Transition inGe2Sb2Te5Phase-Change Memory Material. Proc. Natl. Acad. Sci. U.S.A.(2011),108,10410–10414.
    [133] Li, Q.; Liu, B.; Wang, L; Li, D.; Liu, R.; Zou, B.; Cui, T.; Zou, G.; Meng, Y.;Mao, H. K. et al. Pressure-Induced Amorphization and Polyamorphism inOne-Dimensional Single-Crystal TiO2Nanomaterials. J. Phys. Chem. Lett.(2010),1,309–314.
    [134] Hu, Y. H.; Zhang, L. Amorphization of Metal-Organic Framework MOF-5atUnusually Low Applied Pressure. Phys. Rev. B (2010),81,174103.
    [135] Zeng, Q.; Sheng, H.; Ding, Y.; Wang, L.; Yang, W.; Jiang, J. Z.; Mao, W. L.; Mao,H. K. Long-Range Topological Order in Metallic Glass. Science (2011),332,1404–1406.
    [136] Sanloup, C.; Gregoryanz, E.; Degtyareva, O.; Hanfland, M. Structural Transitionin Compressed Amorphous Sulfur. Phys. Rev. Lett.(2008),100,075701.
    [137] Zhang, J.; Zhao, Y.; Xu, H.; Zelinskas, M. V.; Wang, L.; Wang, Y.; Uchida, T.Pressure-Induced Amorphization and Phase Transformations in β-LiAlSiO4.Chem. Mater.(2005),17,2817–2824.
    [138] Hern ndez, I.; Gillin, W. P. Influence of High Hydrostatic Pressure on Alq3,Gaq3, and Inq3(q=8-Hydroxyquinoline). J. Phys. Chem. B (2009),113,14079–14086.
    [139] Haines, J.; Cambon, O.; Levelut, C.; Santoro, M.; Gorelli, F.; Garbarino, G.Deactivation of Pressure-Induced Amorphization in Silicalite SiO2by Insertionof Guest Species. J. Am. Chem. Soc.(2010),132,8860–8861.
    [140] Yoshimura, Y.; Stewart, S. T.; Somayazulu, M.; Mao, H. K.; Hemley, R. J.Convergent Raman Features in High Density Amorphous Ice, Ice VII, and IceVIII under Pressure. J. Phys. Chem. B (2011),115,3756–3760.
    [141] Peral, I.; í iguez, J. Amorphization Induced by Pressure: Results for Zeolites andGeneral Implications. Phys. Rev. Lett.(2006),97,225502.
    [142] Kruger, M. B.; Jeanloz, R.; Pasternak, M. P.; Taylor, R. D.; Snyder, B. S.;Stacy, A. M.; Bohlen, S. R. Antiferromagnetism in Pressure-AmorphizedFe2SiO4. Science (1992),255,703–705.
    [143] Gillet, P.; Badro, J.; Varreland B.; McMillan, P. F. High-Pressure Behavior inα-AlPO4: Amorphization and the Memory-Glass Effect. Phys. Rev. B (1995),51,11262–11269.
    [144] Bustingorry, S.; Jagla, E. A. Pressure-Induced Amorphization, Crystal-CrystalTransformations, and the Memory Glass Effect in Interacting Particles in TwoDimensions. Phys. Rev. B (2005),71,224119.
    [145] Jin, X.; Meng, X.; He, Z.; Ma, Y.; Liu, B.; Cui, T.; Zou, G.; Mao, H. K.Superconducting High-Pressure Phases of Disilane. Proc. Natl. Acad. Sci. U.S.A.(2010),107,9969–9973.
    [146] Zeng, Q.; He, Z.; San, X.; Ma, Y.; Tian, F.; Cui, T.; Liu, B.; Zou, G.; Mao, H. K.A New Phase of Solid Iodine with Different Molecular Covalent Bonds. Proc.Natl. Acad. Sci. U.S.A.(2008),105,4999–5001.
    [147] Duan, D.; Tian, F.; He, Z.; Meng, X.; Wang, L.; Chen, C.; Zhao, X.; Liu, B.; Cui,T. Hydrogen Bond Symmetrization and Superconducting Phase of HBr andHCl under High Pressure: An Ab Initio Study. J. Chem. Phys.(2010),133,074509.
    [148] Hamaya, N.; Sato, K.; Usui-Watanabe, K.; Fuchizaki, K.; Fujii, Y.; Ohishi, Y.Amorphization and Molecular Dissociation of SnI4at High Pressure. Phys. Rev.Lett.(1997),79,4597–4600.
    [149] Ohmura, A.; Sato, K.; Hamaya, N.; Isshiki, M.; Ohishi, Y. Structure ofPressure-Induced Amorphous Form of SnI4at High Pressure. Phys. Rev. B(2009),80,054201.
    [150] Pasternak, M. P.; Taylor, R. D.; Kruger, M. B.; Jeanloz, R.; Itie, J. P.; Polian, A.Pressure Induced Amorphization of GeI4Molecular Crystals. Phys. Rev. Lett.(1994),72,2733–2736.
    [151] Pasternak, M.; Taylor, R. D. Structural and Valence Properties of theAmorphous-Metallic High-Pressure Phase of SnI4. Phys. Rev. B (1988),37,8130–8137.
    [152] Sugai, S. The Pressure-Induced Metallic Amorphous State of SnI4: II. LatticeVibrations at the Crystal-to-Amorphous Phase Transition Studied by RamanScattering. J. Phys. C: Solid State Phys.(1985),18,799–809.
    [153] Williamson III, W.; Lee, S. A. Tin Tetrabromide at High Pressures: ReversibleCrystalline-to-Amorphous and Electronic Transitions. Phys. Rev. B (1991),44,9853–9858.
    [154] Hearne, G. R.; Pasternak, M. P.; Taylor, R. D. M ssbauer Studies ofPressure-Induced Amorphization in the Molecular Crystal SnBr4. Phys. Rev. B(1995),52,9209–9213.
    [155] Chen, A. L.; Yu, P. Y.; Pasternak, M. P. Metallization and Amorphization of theMolecular Crystals SnI4and GeI4under Pressure. Phys. Rev. B (1991),44,2883–2886.
    [156] Pereira, A. S.; Perottoni, C. A.; da Jornada, J. A. H. Raman Spectroscopy as aProbe for In Situ Studies of Pressure-Induced Amorphization: Some IllustrativeExamples. J. Raman Spectrosc.(2003),34,578–586.
    [157] Paraguassu, W.; Maczka, M.; Souza Filho, A. G.; Freire, P. T. C.; Mendes Filho,J.; Hanuza, J. Phonon Properties, Polymorphism, and Amorphization ofDy2Mo4O15under High Hydrostatic Pressure. Phys. Rev. B (2010),82,174110.
    [158] Sun, B.; Dreger, Z. A.; Gupta, Y. M. High-Pressure Effects in Pyrene Crystals:Vibrational Spectroscopy. J. Phys. Chem. A (2008),112,10546–10551.
    [159] Elliott, R. J. Theory of Excitons I. In Polarons and Excitons; Kuper, C. G.;Whitfield, G. D., Ed., Oliver and Boyd: Edinburgh,(1963).
    [160] Harbeke, G. In Optical Properties of Solids; Abelès, F., Ed., North-Holland:Amsterdam (1972), Chap.2.
    [161] Zou, G.; Ma, Y; Mao, H. K.; Hemley, R. J; Gramsch, S. A. A Diamond Gasketfor the Laser-Heated Diamond Anvil Cell. Rev. Sci. Instrum.(2001),72,1298–1301.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700