准一维碳、氧化铅和氢氧化铅纳米材料制备与结构及物理特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米结构材料,因其特殊的纳米结构而具有许多与块体材料不同的特性,使其在物理学、电子学、化学、生物学等领域有许多潜在应用,因而引起了人们的广泛关注。然而要使纳米结构材料真正地走向实际应用,发展成本低、工艺简单、重复性好的制备工艺至关重要。基于此,本论文重点研究和开发制备相关纳米结构材料的简单、成本低、重复性好的工艺,具体的研究内容和相关结论如下:
     1.研究了乙醇浮动催化化学气相沉积法制备碳纳米结构材料,包括碳纳米纤维,多壁碳纳米管及阵列,单壁碳纳米管,铁填充碳纳米管及阵列。通过研究发现,由催化剂先体二茂铁热解后形成的大小不同的铁催化剂颗粒,在重力和载气粘性阻力的作用下,会发生按尺寸分离的现象,根据这一现象,可实现碳纳米纤维、多壁碳纳米管及阵列(或铁填充碳纳米管及阵列)、以及单壁碳纳米管的同时制备。此外,利用这一工艺制备的单壁碳纳米管是沉积在温度低于400℃的区域,因此可将单壁碳纳米管沉积在不能承受高温的基底上,如ITO玻璃。这一工艺可以较简单的制备单壁碳纳米管薄膜电极,作为染料或量子点敏化太阳能电池的碳对电极。通过增加催化剂先体二茂铁的用量,可制备出铁填充碳纳米管及其阵列,利用振动样品磁强计表征了其磁特性。通过分析得到的磁滞回线,获得了铁填充碳纳米管的矫顽力约为257.05G,铁填充碳纳米管的矫顽力约为589.97G,比多晶铁材料和纳米晶铁材料高很多。
     2.讨论了多分支型碳纳米纤维的可能形貌,对于Y形碳纳米纤维,有四种基本的可能形貌,对于多方向生长碳纳米纤维可能具有任意整数个分支,在实验中四种Y形碳纳米纤维的基本形貌都观察到了,实验中观察到的多方向生长碳纳米纤维的分支个数有2,3,4,5。这些分支型碳纳米纤维的形成可能与扩散火焰的不稳定有关。为了改善火焰的稳定性,本论文提出了限域稳定扩散火焰法制备碳纳米结构,这种方法是将火焰限定在一定的区域内燃烧,在燃烧区域之外没有火焰,这种火焰具有高稳定性,为碳纳米管的生长提供了稳定的环境。利用这种方法,采用噻吩/乙醇作为燃料,可制备出碳纳米管及阵列和单壁碳纳米管,而且重复性好。
     3.研究了利用直流电化学沉积法在ITO基底上制备氧化铅纳米棒。与先前利用直流电化学沉积法在不锈钢片上制备氧化铅纳米棒相比,在ITO基底上氧化铅纳米棒的产量明显提高。利用UV-vis吸收光谱表征了氧化铅纳米棒薄膜的光吸收特性,得到氧化铅纳米棒的带隙约为2.85eV。利用沉积在ITO基底上的氧化铅纳米棒薄膜作为染料敏化太阳能电池的光阳极是有效的,基于氧化铅纳米棒薄膜的染料敏化太阳能电池的开路电压约为0.5V。讨论了氧化铅纳米棒的生长机理,利用无水乙醇洗涤初级沉积物的方法,获得了氧化铅纳米棒生成不同阶段的形貌图,基于实验观察,提出了氧化铅纳米棒生长的一个可能的模型。
     4.提出了利用液相反应法制备氢氧化铅纳米棒。这种方法是基于氢氧化铅不同晶面对无机氯离子吸附能力的不同,使氢氧化铅纳米棒在生长过程中形成择优生长方向,从而快速形成纳米棒。因此在这种方法中,添加氯离子是制备氢氧化铅纳米棒最关键的因素,本论文比较深入的研究了氯离子浓度对产物的影响,并提出了氢氧化铅纳米棒可能的生长模型。利用矢量网络分析仪,对制备的氢氧化铅纳米棒的微波介电特性进行了表征,结果表明氢氧化铅纳米棒对微波吸收很弱,因此氢氧化铅纳米棒可作为多层吸波材料的过度层。
     最后对全文进行了总结,并对下一步工作方向作了简要讨论。
Nanostructured materials have aroused much attention due to their remarkable properties different from bulk materials. They have many potential applications in physical, electronic, chemical and biological field. However, to achieve the pratical application of nanostructured materials, it is important to develop simple, cost-effective and good-reproducibility method to sythesis nanomaterials. Therefore, in this thesis, we emphasize to investigate and develop simple, cost-effective and good reproducibility route to prepare nanoscale materials. The detailed contents, results and conclusions of this thesis are listed as follows:
     1. The synthesis of carbon nanostructures, such as carbon nanofibers, multi-walled carbon nanotubes and their arrays, iron-filled carbon nanotubes and their arrays, and single-walled carbon nanotubes, by employing ethanol floating catalyst chemical vapor deposition (EFCCVD). Our results show that the formed nanoscale iron particles with different sizes could be seperated and deposited on different position in a furnace tube under gravity and viscous resistance of carrier gas. Utilizing this phenomenon, we can achieve the synthesis of carbon nanofibers, multi-walled carbon nanotubes and arrays (or iron-filled carbon nanotubes and arrays), single-walled carbon nanotubes at the same time. More important, the single-walled carbon nanotubes can be deposited in the low-temperature (<400℃) area at the growth temperature of 900℃in this process. This gives opportunity to deposit the single-walled carbon nanotubes on the substrates that can not suffer from the high growth temperature, such as ITO glass. So, single-walled carbon nanotube film electrodes on ITO glass, which can apply to dye or quantum-dot sensitized solar cell as a carbon counter-electrode, can be easy to obtain by this simple process. Iron-filled carbon nanotubes and their arrays can be synthesis by EFCCVD with a great excess of ferrocene and their magnetic properties are characterized by vibrating sample magnetometer. The obtained iron-filled carbon nanotubes and arrays have an average coercivity of about 257.05 and 589.97G, respectively, which are higher than that for the bulk polycrystalline iron and nanocrystalline iron.
     2. The possible morphologies of multi-branched carbon nanofibes have been discussed. For Y-shaped carbon nanofibers, there are four basic possible morphologies; for multi-direction carbon nanofibers, the possible number of branch fibers is a positive integer. Interestingly, we have observed these multi-branched carbon nanofibers in our experiments. The number of branch fibers of multi-direction carbon nanofibers is 2,3,4,5 observed in our experiments. The formation of these multi-branched carbon nanofibers may be related to the unstability of diffusion flames. To improve the stability of flames, we develop a new simple method of stably confined diffusion flames (SCDF) to synthesis carbon nanostructures. In this mehod, the flames only burn in a confined space and no flames exists out of this confined space. This confined flame has high stability that can offer a steady condition to grow carbon nanotubes. By employing thiophene/ethanol as fuel for SCDF, carbon nanotubes and their arrays, single-walled carbon nanotubes can be synthesized with good reproducibility.
     3. The synthesis of PbO nanorods on an ITO substrate by DC electrochemical deposition has been investigated. Compared with previous report on the electrochemical deposition of PbO nanorods on stainless steel substrates, massive PbO nanorods were obtained with good reproducibility. The optical property of the PbO nanorod film is characterized by UV-vis absorption spectrum and the bandgap of PbO nanorods can be inferred to be 2.85eV according to UV-vis absorption spectrum. The PbO nanorod films on ITO glass can be applied to fabricate dye-sensitized solar cell as a light electrode. The open-curcuit voltage of a dye-sensitized solar cell based on PbO nanorod films can reach 0.5V. The growth mechanism of PbO nanorods prepared by DC electrochemical deposition has been discussed. The intermediate state during the formation of PbO nanorods is obtained by a simple washing of primary deposits with absolute ethanol. According to the obsvervation on the intermediate state, we have proposal a possible model to describe the growth of the PbO nanorods.
     4. A new simple method to synthesize lead hydroxide nanorods by solution-phase reaction has been developed. The growth of lead hydroxide nanorods is due to the adsorption of chloride ions on the certain crystal planes. So, to obtain lead hydroxide nanorods by solution-phase reaction of lead nitrate with alkali, chloride ions is need to be added into lead nitrate solution. The concentration of chloride ions has a dramatic effect on the morphology and microstructure of the precipitates obtained from the lead nitrate and alkali solution, and this effect has been intensively disscussed. Futher more, a possible growth model has been proposed according to our experimental results. The microwave dielectric property of lead hydroxide nanorods is measured by vector network analyzer. The results indicate that lead hydroxide nanorods have a low dielectric loss tangent and they can be applied to fabricate multi-layer microwave absorption materials as transition layers.
     In the finality, the problems requiring further studies are discussed.
引文
[1]Iijima S. Helical microtubules of graphitic carbon. Nature,1991,354:56-58.
    [2]张立德.纳米材料.北京:化学工业出版社,2002.
    [3]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001.
    [4]Rossetti R, Nakahara S, Brus L E. Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution. J. Chem. Phys.,1983, Vol. 79 (2):1086-1088.
    [5]倪星元,沈军,张志华.纳米材料的理化特性与应用.北京:化学工业出版社,2006.
    [6]Ball P, Garwin L. Science at the Atomic Scale. Nature,1992,355:761-766.
    [7]Halperin W P. Quantum Size Effects in Metal Particles. Rev. Mod. Phys.,1986, Vol.58 (3): 533-606.
    [8]韦进全,张先锋,王昆林.碳纳米管宏观体.北京:清华大学出版社,2006.
    [9]Dresselhaus M S, Dresselhaus G, Eklund P C. Science of fullerenes and carbon nanotubes. San Diego:Academic Press,1996.
    [10]Hata K, Futaba D N, Mizuno K, et al.. Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes. Science,2004,306:1362-1364.
    [11]Baughman R H, Zakhidov A A, de Heer W A. Carbon Nantubes—the Route Toward Applications. Science,2002,297:787-792.
    [12]Cheng J, Zou X P, Li F, et al. Effects of concentration of catalyst precursors on carbon nanostructures. Solid State Phenomena,2007,124-126:1245-1248.
    [13]Cheng J, Zou X P, Li F, et al. Effects of catalyst precursors on carbon nanowires by using ethanol catalytic combustion technique. Transactions of Nonferrous Metals Society of China,2006,16: S385-S387.
    [14]Li F, Zou X P, Cheng J, et al. Synthesis of Y-junction carbon nanofibres by ethanol catalytic combustion technique. Transactions of Nonferrous Metals Society of China,2006,16: S431-S434.
    [15]Li F, Zou X P, Wang M F, et al. Multi-directionally grown ribbon-like carbon fibers.20082nd IEEE International Nanoelectronics Conference,2008,1-3:300-302
    [16]程进,乙醇作为碳源制备准一维碳纳米结构材料.[硕士学位论文].北京:北京机械工业学院,2007.
    [17]Lu J P. Elastic Properties of Carbon Nanotubes and Nanorobes. Phys. Rev. Lett.,1997, 79:1297-1300.
    [18]Yakobson B I, Brabec C J, Bernholc J. Nanomechanics of Carbon Tubes:Instabilities beyond Linear Response. Phys. Rev. Lett.,1996,76:2511-2514.
    [19]Zhou X, Zhou J J, Ouyang Z C. Strain energy and Young's modulus of single-wall carbon nanotubes calculated from electronic energy-band theory. Phys Rev B,2000,62:13692-13696.
    [20]Hernandez E, Goze C, Bernier P, et al. Elastic properties of C and BxCyNz composite nanotubes. Phys Rev Lett,1998,80(20):4502-4505.
    [21]Treacy M M J, Ebbeson T W, Gibson J M. Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature,1996,381:678-680.
    [22]Wong E W, Sheehan P E, Lieber C M. Nanobeam Mechanics:Elasticity, Strength, and Toughness of Nanorods and Nanotubes. Science,1997,277:1971-1975.
    [23]Salvetat J P, Briggs A D, Bonard J M, et al. Elastic and shear moduli of single-walled carbon nanotube ropes. Phys Rev Lett,1999,82(5):944-947.
    [24]Zhu H W,XuCL Wu D H, et al. Direct synthesis of long single-walled carbon nanotube strands. Science,2002,296:884-886.
    [25]Endo M, Kim Y A, Hayashi T, et al.. Vapor-grown carbon fibers (VGCFs):Basic properties and their battery applications. Carbon,2001,39:1287-1297.
    [26]Wildoer J W G, Venema L C, Rinzler A G, et al. Electronic structure of atomically resolved carbon nanotubes. Nature,1998,391:59-62.
    [27]Frank S, Poncharal P, Wang Z L, et al. Carbon Nanotube Quantum Resistors. Science,1998, 280:1744-1746.
    [28]Tans S J, Verschueren A R M, Dekker C. Room-temperature transistor based on a single carbon nanotube. Nature,1998,393:49-52.
    [29]Bachtold A, Strunk C, Salvetat J-P, et al. AharonovA-Bohm oscillations in carbon nanotubes. Nature,1999,397:673-675.
    [30]Zou X P, Abe H, Shimizu T, et al. Simple thermal chemical vapor deposition synthesis and electrical property of multi-walled carbon nanotubes. Physica E,2004,24:14-18.
    [31]朱宏伟.单壁碳纳米管宏观体的合成及其性能研究:[博士学位论文].北京:清华大学,2003
    [32]de Heer W A, Chatelain A, Ugarte D. A Carbon Nanotube Field-Emission Electron Source. Science,1995,270:1179-1180.
    [33]Fan S S, Chapline M G, Franklin N R, et al. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science,1999,283:512-514.
    [34]Pan L J, Hayashida T, Zhang M, et al. Field Emission Properties of Carbon Tubule Nanocoils. Jpn. J. Appl. Phys.,2001,40:235-237.
    [35]Che J W, Cagin T, Goddard III W A. Thermal conductivity of carbon nanotubes. Nanotechnology, 2000,11:65-69.
    [36]Collins P G, Arnold M S, Avouris P. Engineering Carbon Nanotubes and Nanotube Circuits Using Electrical Breakdown. Science,2001,292:706-709.
    [37]Ajayan P M, Terrones M, de la Guardia A, et al. Nanotubes in a flash-ignition and reconstruction. Science,2002,296:705-707.
    [38]Dillin A C, Jones K M, Bekkedahl T A, et al. Storage of hydrogen in single-walled carbon nanotubes, Nature,1997,386:377-379.
    [39]成会明.纳米碳管:制备、结构、物性及应用.北京:化学工业出版社,2002.
    [40]Ebbessen T W, Ajayan P M. Large-scale synthesis of carbon nanotubes. Nature,1992, 358:220-222.
    [41]Ishigami M, Cumings J, Zettl A, et al. A simple method for the continuous production of carbon nanotubes. Chem. Phys. Lett.,2000,319:457-459.
    [42]郭俊杰,王晓敏,李天保等.水下电弧放电法制备洋葱状富勒烯.新型炭材料,2006,21:171-175
    [43]Sun L F, Xie S S, Liu W, et al. Materials:Creating the narrowest carbon nanotubes. Nature,2000, 403:384-384.
    [44]Qin L C, Zhao X L, Hirahara K, et al. Materials science:The smallest carbon nanotube. Nature, 2000,408:50-50.
    [45]Guo T, Nikolaev P, Rinzler A G, et al.. Self-Assembly of Tubular Fullerenes. J. Phys. Chem., 1995,99:10694-10697.
    [46]Thess A, Lee R, Nikolaev P, et al. Crystalline Ropes of Metallic Carbon Nanotubes. Science, 1996,273:483-487.
    [47]Yudasaka M, Komastu T, Ichihashi T, et al. Single-wall carbon nanotube formation by laser ablation using double-targets of carbon and metal. Chem. Phys. Lett.,1997,278:102-106.
    [48]Zou X P, Abe H, Shimizu T, et al. Growth of straight carbon nanotubes by simple thermal chemical vapor deposition. Trans. Nonferrous Met. Soc. China,2006,16:s689-s691.
    [49]Liu Q F, Ren W C, Chen Z G, et al. Diameter-selective growth of single-walled carbon nanotubes with high quality by floating catalyst method. Acs Nano,2008,2:1722-1728.
    [50]Kondo D, Sato S, Kawabata A, et al. Selective growth of vertically aligned double-and single-walled carbon nanotubes on a substrate at 590 degrees C. Nanotechnology,2008,19: 435601(1)-435601 (4).
    [51]Lee D H, Kim S O, Lee W J. Growth Kinetics of Wall-Number Controlled Carbon Nanotube Arrays. J. Phys. Chem. C,2010,114:3454-3458.
    [52]McNicholas T P, Ding L, Yuan D N, et al. Density Enhancement of Aligned Single-Walled Carbon Nanotube Thin Films on Quartz Substrates by Sulfur-Assisted Synthesis. Nano Lett.2009, 9:3646-3650.
    [53]Ren Z F, Huang Z P, Xu J W, et al. Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science,1998,282:1105-1107.
    [54]Mckee G S B, Deck C P, Vecchio K S. Dimensional control of multi-walled carbon nanotubes in floating-catalyst CVD synthesis. Carbon,2009,47:2085-2094.
    [55]Wang Y, Serrano S, Santiago-Aviles J J. Raman characterization of carbon nanofibers prepared using electrospinning. Synthetic Metals,2330,138:423-427.
    [56]Park S H, Kim C, Choi Y 0, et al. Preparations of pitch-based CF/ACF webs by electrospinning. Carbon,2003,41:2655-2657.
    [57]Martin-Gullon I, Vera J, Conesa J A, et al. Differences between carbon nanofibers produced using Fe and Ni catalysts in a floating catalyst reactor. Carbon,2006,44:1572-1580.
    [58]Li F, Zou X P, Cheng J, et al. Raman spectroscopic characterization of carbon nanofibers obtained by using metal chloride as catalyst precursor. Materials Science Forum,2007, 561-565:1387-1390.
    [59]Ren P F, Zou X P, Cheng J, et al. Synthesis of carbon nanofibers by ethanol catalytic combustion technique. Advanced Materials Research,2007,24-25:731-734.
    [60]Cheng J, Zou X P, Li F, et al. Y-shaped carbon nanowires obtained from ethanol flames and their growth mechanism. Advanced Materials Research,2007,24-25:711-714.
    [61]Boskovic B O, Stolojan V, Khan R U A, et al. Large-area synthesis of carbon nanofibers at room temperature. Nature Mater.,2002,1:165-168.
    [62]Chen T T, Liu Y M, Sung Y, et al. Experimental investigation on carbon nanotube grown by thermal chemical vapor deposition using non-isothermal deposited catalysts. Materials Chemistry and Physics,2006,97:511-516.
    [63]Ouyang Y, Li D Y, Cao W R, et al. A temperature window for the synthesis of single-walled carbon nanotubes by catalytic chemical vapor deposition of CH4 over Mo 2-Fe10/MgO catalyst. Nanoscale Research Letters,2009,4:574-577.
    [64]Jiang J, Feng T, Cheng X H, et al. Synthesis and growth mechanism of Fe-catalyzed carbon nanotubes by plasma-enhanced chemical vapor deposition. Nuclear Instruments and Methods in Physics Research, Section B,2006,244:327-332.
    [65]Lee Y D, Lee H J, Han J H, et al. Synthesis of double-walled carbon nanotubes by catalytic chemical vapor deposition and their field emission properties. Journal of Physical Chemistry B, 2006,110:5310-5314.
    [66]Choi K S, Cho Y S, Hong S Y, et al. Effects of ammonia on the alignment of carbon nanotubes in metal-assisted thermal chemical vapor deposition. Journal of the European Ceramic Society,2001, 21:2095-2098.
    [67]Maruyama S, Kojima R, Miyauchi Y S, et al. Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol. Chem. Phys. Lett.,2002,360:229-234.
    [68]Murakami Y, Chiashi S, Miyauchi Y, et al. Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy. Chemical Physics Letters,2004, 385:298-303.
    [69]Zheng L X, O'Connell M J, Doom S K, et al. Ultralong single-wall carbon nanotubes. Nature Materials,2004,3:673-676.
    [70]Zhou Z P, Ci L J, Chen X H, et al. Controllable growth of double wall carbon nanotubes in a floating catalytic system. Carbon,2003,41:337-342.
    [71]Lee C J, Lee T J, Park J. Carbon nanofibers grown on sodalime glass at 500℃ using thermal chemical vapor deposition. Chem. Phys. Lett.2001,340:413-418.
    [72]Geng F, Cong H. Fe-filled carbon nanotube array with high coercivity. Physica B,2006,382: 300-304.
    [73]Howard J B, Chowdhury K D, Sande J B V. Carbon Shells in Flames. Nature,1994,370:603-603.
    [74]Vander Wal R L., Ticich T M, Valerie E.Curtis. Diffusion flame synthesis of single-walled carbon nanotubes. Chem. Phys. Lett.,2000,323:217-223.
    [75]Vander Wal R L, Ticich T M. Flame and Furnace Synthesis of Single-walled and Multi-walled Carbon Nanotubes and Nanofibes. J. Phys. Chem. B,2001,105:10249-10256.
    [76]Vander Wal R L, Hall L J. Flame synthesis of Fe catalyzed single-walled carbon nanotubes and Ni catalyzed nanofibers:growth mechanisms and consequences. Chemical Physics Letter,2001, 349:178-184.
    [77]Yuan L M, Saito K, Pan C X, et al.. Nanotubes from methane flames. Chem. Phys. Lett.,2001, 340:237-241.
    [78]Yuan L M, Saito K, Hu W C, et al.. Ethylene flame synthesis of well aligned multi-walled carbon nanotubes. Chem. Phys. Lett.,2001,346:23-28.
    [79]Merchan-Merchan W, Saveliev A V, Kennedy L A. High-rate flame synthesis of vertically aligned carbon nanotubes using electric field control. Carbon,2004,42:599-608.
    [80]Pan C X, Xu X R. Synthesis of carbon nanotubes from ethanol flame. J. Mater. Sci. Lett.,2002, 21:1207-1209.
    [81]Pan C X, Bao Q L. Well-aligned carbon nanotubes from ethanol flame. J. Mater. Sci. Lett.,2002, 21:1927-1929.
    [82]Bao Q L, Pan C X. Electric field induced growth of well aligned carbon nanotubes from ethanol flames. Nanotechnology,2006,17:1016-1021.
    [83]Liu Y L, Fu Q, Pan C X. Synthesis of carbon nanotubes on pulse plated Ni nanocrystalline substrate in ethanol flames. Carbon,2005,43:2264-2271.
    [84]Pan C X, Liu Y L, Cao F. Novel solid-cored carbon nanofiber grown on steels substrates in ethanol flames. J. Mater. Sci.,2005,40:1293-1295.
    [85]曹峰.火焰法大量制备碳纳米管方法研究:[硕士学位论文].武汉:武汉大学,2005
    [86]张晓峰,杨小勇,齐炜炜等.燃烧法合成碳纳米管的实验方案设计.工程热物理学报,2006, 27(2):357-359.
    [87].孙保民,赵惠富.V型或圆锥形热解火焰合成碳纳米管燃烧器及合成方法.发明专利.专利号:200610076791.1,2008年8月20日.
    [88]邹爱红,孙保民.V型火焰燃烧法合成碳纳米管的数值模拟.现代电力,2008,25(3):47-51.
    [89]王绵远.燃烧法合成碳纳米管火焰形态选择的数值模拟.[硕士学位论文].北京:华北电力大学,2007.
    [90]Cheng J, Zou X P, Li F, et al, Growth of Y-shaped carbon nanofibers from ethanol flames. Nanoscale Research Letters,2008,3 (8):295-298.
    [91]Zhang H D, Zou X P, Cheng J, et al., Co-growth of Strait and Coiled Nanofibers by Ethanol Catalytic Combustion Technique. Synthesis and Reactivity in Inorganic, Metal-organic, and Nano-metal Chemistry,2008,38 (3):238-241.
    [92]Cheng J, Zou X P, Li F, et al., Synthesis of bamboo-like carbon nanotubes by ECC technique. Transactions of Nonferrous Metals Society of China,2006,16:s435-s437.
    [93]http://ev.cctv.com/20090814/107571.shtml
    [94]Veluchamy P, Minoura H. Simple electrochemical method for the preparation of a highly oriented and highly photoactive a-PbO film. Appl. Phys. Lett.,1994,65:2431-2433.
    [95]李娟,龚良玉,夏熙a-PbO纳米粉体的固相合成及其对Mn02电极材料的改性作用.应用化学.2001,18(4):264-265.
    [96]舒友琴,袁道强,李清文.纳米氧化铅型固体pH电极的研制及其应用.应用化学.2000,17(3):316-318.
    [97]李子彬.中国化工产品大全.北京:化学工业出版社,1992.
    [98]马凤国,自强,宋缪毅.纳米级氧化铅粉体的合成.合成化学.2001,9(5):449-451.
    [99]杜江燕,李人宇,朱晓雷.铅(Ⅱ)化合物与NaOH室温条件下的固相化学反应研究.无机化学学报.1999,15(3):383-387.
    [100]马凤国,自强,宋缪毅.纳米级氧化铅粉体的合成.合成化学.2001,9(5):449-451.
    [101]Linuma K, Seki T, Wada M. Optical absorption coefficients of lead monoxide single crystal of the yellow modification. Mater. Res. Bull.,1967,2:527-532.
    [102]Samoilenkov S V. MOCVD of epitaxial PbO films below 400℃ using water vapor. Chem. Vap. Deposition,2006,12:206-208.
    [103]Laudise R A, Ballman A A. Hydrothermal Synthesis of Zinc Oxide and Zinc Sulfide. J. Phys. Chem.,1960,64:688-691.
    [104]李娟,龚良玉,夏熙a-PbO纳米粉体的固相合成及其对Mn02电极材料的改性作用.应用化学.2001,18(4):264-265.
    [105]Jia B P, Gao L. Synthesis and characterization of single crystalline PbO nanorods via a facile hydrothermal method. Material Chemical and Physics,2006,100:351-354.
    [106]Cao Y L, Liu L, Jia D Z, et al. Rapid synthesis of zinc oxide and lead oxide nanorods by one-step solid-state reaction methods at ambient conditions. Material Science Forum,2005, 475-479:3579-3582.
    [107]张月.卤离子对固相法制纳米ZnO、PbO粒子形貌的影响:[硕士学位论文].太原:中北大学,2006.
    [108]Zhitomirsky I, Gal-Or L, Kohn A. Electrochemical preparation of PbO films. J. Mater. Sci. Lett.1995,14:807-810.
    [109]Sawatani S, Ogawa S, Yoshida T, et al. Formation of highly crystallized β-PbO thin films by cathodic electrodeposition of Pb and its rapid oxidation in air. Adv Funct Mater,2005,15: 297-302.
    [110]Ren P F, Zou X P, Cheng J, et al. Lead Oxide Nanorods Synthesizing by Electrochemical Reduction. Journal of Nanoscience and Nanotechnology,2009,9:1487-1490.
    [111]Ren P F, Zou X P, Cheng J, et al. Growth of Lead Oxide Nanorods by Electrochemical Reduction Method.材料科学与工程学报,2007,25(6):902-905.
    [112]任鹏飞等.β-PbO纳米棒的电化学还原法制备,功能材料,2007,38(Suppl.):2273-2274.
    [113]任鹏飞等.电化学还原法制备氧化铅纳米棒,微纳电子技术,2007,44(7/8):120-122.
    [114]Feldman D G. A method of staining thin sections with lead hydroxide for precipitate-free sections. J Cell Biol.,1962,15:592-595.
    [115]Normann T C. Staining thin sections with lead hydroxide without contamination by precipitated lead carbonate. Stain Technol.,1964,39:50-52.
    [116]Roach W A. Lead hydroxide as a selective absorbent for certain organic constituents of plants. Annals of Botany,1958,22:127-129.
    [117]Yurkinshii V P, Firsova E G, Petrova N V. Complexation of lead(Ⅱ) ions with hydroxide ions in nitrate-chloride solutions. Russian J. Appl. Chem.,2005,78:1370-1372.
    [118]Perera W N, Hefter G, Sipos P M. An investigation of the lead(Ⅱ)-hydroxide system. Inorg. Chem.,2001,40:3974-3978.
    [119]Todd G, Parry E. Crystallography character of lead hydroxide and basic lead carbonate. Nature,1964,202:386-387.
    [120]Fordham S, Tyson J T. The structure of semipermeable membrance of inorganic salts. J. Chem. Soc.,1937,483-487.
    [121]Sole M J, Yoffe A D. Decomposition of single crystals of lead hydroxide in the electron microscope. Nature,1963,198:1262-1264.
    [1]漆安慎,杜婵英.力学.高等教育出版社:北京,1997.
    [2]Pan C X, Liu Y L, Cao F. Novel solid-cored carbon nanofiber grown on steels substrates in ethanol flames. J. Mater. Sci.,2005,40:1293-1295.
    [3]Zhang H D, Zou X P, Cheng J, et al. Co-growth of Strait and Coiled Nanofibers by Ethanol Catalytic Combustion Technique. Synthesis and Reactivity in Inorganic, Metal-organic, and Nano-metal Chemistry,2008,38 (3):238-241.
    [4]Jasek O, Elias M, Zajickova L, et al. Carbon nanotubes synthesis in microwave plasma torch at atmospheric pressure. Mater. Sci. Eng. C,2006,26:1189-1193.
    [5]于晓丽,杨小勇,叶萍等.乙炔/空气预混火焰法合成多壁碳纳米管的实验研究.工程热物理学报,2009,30:165-168.
    [6]Liu S W, Yue J, Wehmschulte R J. Large thick flattened carbon nanotubes. Nano Lett.,2002,12: 1439-1443.
    [7]Xiao J, Liu B, Huang Y, et al. Collapse and stability of single-and multi-wall carbon nanotubes. Nanotechnology,2007,18:395703(1)-395703 (7).
    [8]Chopra N G, Benedict L X, Crespl V H, et al. Fully collapsed carbon nanotubes. Nature,1995,377: 135-138.
    [9]Crespi V H, Chopra N G, Cohen M L, et al. Site-selective radiation damage of collapsed carbon nanotubes. Appl. Phys. Lett.,1998,73:2435-2437
    [10]Hsu C M, Lin C H, Lai H J, et al. Root growth of multi-wall carbon nanotubes by MPCVD. Thin Solid Films,2005,471:140-144.
    [11]Fan S S, Chapline M G, Franklin N R, et al. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science,1999,283:512-514.
    [12]Li W Z, Yan X, Kempa K, et al. Structure of flattened carbon nanotubes. Carbon,2007,45: 2938-2945.
    [13]Zhu H W, Xu C L, Wu D H, et al. Direct synthesis of long single-walled carbon nanotube strands. Science,2002,296:884-886.
    [14]Murakami Y, Chiashi S, Miyauchi Y, et al. Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy. Chem. Phys. Lett.,2004, 385:298-303.
    [15]Tuinstra F, Koenig J L. Raman Spectrum of Graphite. J. Chem. Phys.,1970,53:1126-1130.
    [16]Rao A M, Chen J, Richter E, et al. Effect of van der Waals Interactions on the Raman Modes in Single Walled Carbon Nanotubes. Phys. Rev. Lett.,2001,86:3895-3898.
    [17]Xiang R, Luo G H, Yang Z, et al. Temperature effect on the substrate selectivity of carbon nanotube growth in floating chemical vapor deposition. Nanotechnology,2007,18:415703(1)-415703 (4).
    [18]Sengupta J, Jacob C. Growth temperature dependence of partially Fe filled MWCNT using chemical vapor deposition. J. Cryst. Growth,2009,311:4692-4697.
    [19]Kunadian I, Andrews R, Menguc M P, et al. Multiwalled carbon nanotube deposition profiles within a CVD reactor:An experimental study. Chem. Eng. Sci.,2008,64:1503-1510.
    [20]Zhou Z P, Ci L J, Song L, et al. Producing cleaner double-walled carbon nanotubes in a floating catalyst system. Carbon,2003,41:2607-2611.
    [21]Zou X P, Abe H, Shimizu T, et al. Simple thermal chemical vapor deposition synthesis and electrical property of multi-walled carbon nanotubes. Physica E,2004,24:14-18.
    [22]Terrones M, Grobert N, Olivares J, et al. Controlled Production of Aligned-nanotube bundles. Nature,1997,388:52-55.
    [23]Yuan L M, Saito K, Pan C X, et al. Nanotubes from methane flames. Chem. Phys. Lett.,2001, 340:237-241.
    [24]Geng F, Cong H. Fe-filled carbon nanotube array with high coercivity. Physica B,2006, 382:300-304.
    [25]Muller C, Hampel S, Elefant D, et al. Iron filled carbon nanotubes grown on substrates with thin metal layers and their magnetic properties. Carbon,2006,44:1746-1753.
    [26]Leonhardt A, Ritschel M, Elefant D, et al. Enhanced magnetism in Fe-filled carbon nanotubes produced by pyrolysis of ferrocene. J. Appl. Phys.,2005,98:074315(1)-074315(5).
    [27]Jain D, Wilhelm R. An easy way to produce a-iron filled multiwalled carbon nanotubes. Carbon, 2007,45:602-606.
    [28]Muller C, Golberg D, Leonhardt A, et al. Growth studies, TEM and XRD investigations of iron-filled carbon nanotubes. Phys. Stat. Sol. (a),2006,203:1064-1068.
    [29]Kim H, Sigmund W. Iron nanoparticles in carbon nanotubes at various temperatures. J. Cryst. Growth,2005,276:594-605.
    [30]Karmakar S, Sharma S M, Mukadam M D, et al. Magnetic behavior of iron filled multiwalled carbon nanotubes. J. Appl. Phys.,2005,97:054306(1)-054306(5).
    [1]程进.乙醇作为碳源制备准一维碳纳米结构材料的研究:[硕士学位论文].北京:北京机械工业学院,2007.
    [2]Zhang H D, Zou X P, Cheng J, et al. Co-growth of Strait and Coiled Nanofibers by Ethanol Catalytic Combustion Technique. Synthesis and Reactivity in Inorganic, Metal-organic, and Nano-metal Chemistry,2008,38 (3):238-241.
    [3]Pan C X, Liu Y L, Cao F. Novel solid-cored carbon nanofiber grown on steels substrates in ethanol flames. J. Mater. Sci.,2005,40:1293-1295.
    [4]Chen X Q, Motojima S. Morphologies of carbon micro-coils grown by chemical vapor deposition. J. Mater. Sci.,1999,34:5519-5524.
    [5]Yang S M, Cheng X Q, Takeuchi K, et al. Various conformations of carbon nanocoils prepared by supported Ni-Fe/molecular sieve catalyst. J. Nanosci. Nanotechnol.,2006,6:141-145.
    [6]Li W Z, Wen J G, Ren Z F. Straight carbon nanotube Y junctions. Appl. Phys. Lett.,2005, 79:1879-1881.
    [7]Sharon M, Pradhan D. Y-junction multibranched carbon nanofibers. J. Nanosci. Nanotech.,2005, 5:1718-1720.
    [8]Su L F, Wang J N, Yu F, et al. Continuous Synthesis of Y-Junction Carbon Nanotubes by Catalytic CVD. Chem. Vap. Deposition,2005,11:351-354.
    [9]Zheng L X, O'Conell M J, Doom S K, et al. Ultralong single-wall carbon nanotubes. Naturematerials,2004,3:673-675.
    [10]Ding D Y, Wang J N, Yu F, et al. Influence of pyrolysis temperature on the growth of Y-junction carbon nanotubes. Appl. Phys. A,2005,81:805-808.
    [11]朱宏伟.单壁碳纳米管宏观体的合成及其性能研究:[博士学位论文].北京:清华大学,2003
    [12]Valles C, Perez-Mendoza M, Castell P, et al. Towards helical and Y-shaped carbon nanotubes:the role of sulfur in CVD processes. Nanotechnology,2006,17:4292-4299.
    [13]McNicholas T P, Ding L, Yuan D N, et al. Density enhancement of aligned single-walled carbon nanotube thin films on quartz substrates by sulfur-assisted synthesis. Nano Lett.,2009, 9:3646-4650.
    [14]王野,梁吉,吴建军.宏观超长定向碳纳米管阵列的制备.功能材料,2005,36(6):908-910.
    [15]Cao A Y, Veedu V P, Li X S, et al. Multifunctional brushes made from carbon nanotubes. Nature Mater.,2005,4:540-545.
    [16]Li F, Zou X P, Cheng J, et al. Preparation of carbon nanotubes by ethanol catalytic combustion technique using nickel salt as catalyst precursor. Trans. Nonferrous Met. Soc. China.2006,16: s381-s384.
    [17]Pan C X, Bao Q L. Well-aligned carbon nanotubes from ethanol flame. J. Mater. Sci. Lett.,2002, 21:1927-1929.
    [18]Bao Q L, Pan C X. Electric field induced growth of well aligned carbon nanotubes from ethanol flames. Nanotechnology,2006,17:1016-1021.
    [19]Merchan-Merchan W, Saveliev A V, Kennedy L A. High-rate flame synthesis of vertically aligned carbon nanotubes using electric field control. Carbon,2004,42:599-608.
    [20]Rao A M, Chen J, Richter E, et al. Effect of van der Waals Interactions on the Raman Modes in Single Walled Carbon Nanotubes. Phys. Rev. Lett.,2001,86:3895-3898.
    [1]任鹏飞,电化学还原法制备氧化铅纳米棒.[硕士学位论文].北京:北京信息科技大学,2008.
    [2]Ren P F, Zou X P, Cheng J, et al. Lead oxide nanorods synthesizing by electrochemical reduction. Journal of Nanoscience and Nanotechnology,2009,9(2):1487-1490.
    [3]Sawatani S, Ogawa S, Yoshida T, et al. Formation of highly crystallized β-PbO thin films by cathodic electrodeposition of Pb and its rapid oxidation in air. Adv Funct Mater,2005,15: 297-302.
    [4]Nikolaeva EV, Ozerin S A, Grigoriev A E, et al. Formation, structure and photoelectrical properties of poly-p-xylylene-PbS semiconductor nanocomposite films. Mater. Sci. Eng. C,1999, 8-9:217-223.
    [5]Tsunekawa S, Fukuda T, Kasuya A. Blue shift in ultraviolet absorption spectra of monodisperse CeO2-x nanoparticles. J. Appl. Phys.,2007,87:1318-1321.
    [6]Trinquier G, Hoffmann R. Lead monoxide, electronic structure and bonding. J. Phys. Chem.,1984, 88:6696-6711.
    [7]Schottmiller J C. Photoconductivity in Tetragonal and Orthorhombic Lead Monoxide Layers. J. Appl. Phys.,1966,37:3505-3510.
    [8]Zhitomirsky I, Gal-Or L, Kohn A. Electrochemical preparation of PbO films. J. Mater. Sci. Lett. 1995,14:807-810.
    [9]Veluchamy P, Minoura H. Simple electrochemical method for the preparation of a highly oriented and highly photoactive a-PbO film. Appl. Phys. Lett.,1994,65:2431-2433.
    [1]Ren P F, Zou X P, Cheng J, et al. Lead oxide nanorods synthesizing by electrochemical reduction. Journal of Nanoscience and Nanotechnology,2009,9(2):1487-1490.
    [2]任鹏飞,电化学还原法制备氧化铅纳米棒.[硕士学位论文].北京:北京信息科技大学,2008.
    [3]高艳阳,张月,王金霞.棒状纳米PbO的固相合成.中北大学学报(自然科学版),2007,28(1):57-59.
    [4]Cao Y L, Liu L, Jia D Z, et al. Rapid synthesis of zinc oxide and lead oxide nanorods by one-step solid-state reaction methods at ambient conditions. Mater. Sci. Forum,2005,475-479:3579-3582.
    [5]Cao M H, Hu C W, Peng G, et al. Selected-control synthesis of PbO2 and Pb3O4 single-crystalline nanorods. J. Am. Chem. Soc.,2003,125:4982-4983.
    [6]庄京,邓兆祥,梁家和,等.β-PbO2纳米棒及Pb3O4纳米晶的制备与表征.高等化学学报,2002,23(7):1223-1226.
    [7]Veluchamy P, Minoura H. A simple and new route for the preparation of high crystalline alpha-and beta-PbO powders. J. Mater. Sci. Lett.,1996,15:1705-1707.
    [8]Todd G, Parry E. Crystallography character of lead hydroxide and basic lead carbonate. Nature, 1964,202:386-387.
    [9]Feldman D G. A method of staining thin sections with lead hydroxide for precipitate-free sections. J Cell Biol.,1962,15:592-595.
    [10]Fordham S, Tyson J T. The structure of semipermeable membrance of inorganic salts. J. Chem. Soc.,1937,483-487.
    [11]Giefers H, Porsch F. Shear induced phase transition in PbO under high pressure. Physica B,2007, 400:53-58.
    [12]From Wikipedia, the free encyclopedia. http://en.wikipedia.org/wiki/Lead(Ⅱ)_oxide.
    [13]Dai Z R, Pan Z W, Wang Z L. Novel nanostructures of functional oxides synthesized by thermal evaporation. Adv. Funct. Mater.,2003,13:9-24.
    [14]Murakami Y, Chiashi S, Miyauchi Y, Hu M H, Ogura M, Okubo T, Maruyama S. Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy. Chem. Phys. Lett.,2004,385:298-303.
    [15]Geng F X, Cong H T. Fe-filled carbon nanotube array with high coercivity. Physica B,2006,382: 300-304.
    [16]Pan Z W, Dai Z R, Xu L, Lee S T, Wang Z L. Temperature-controlled growth of silicon-based nanostructures by thermal evaporation of SiO powders. J. Phys. Chem. B,2001,105:2507-2514.
    [17]Huang M H, Wu Y, Yang P D, et al. Catalytic growth of znic oxide nanowires by vapor transport. Adv. Mater.,2001,13(2):113-116.
    [18]Wang Z L, Kong X Y, Zuo J M. Induced growth of asymmetric nanocantilever arrays on polar surfaces. Phys. Rev. Lett.,2003,91(18):185502(1)-185502 (4).
    [19]Hofmann S, Ducati C, Neill R J, et al. Gold catalyzed growth of silicon nanowires by plasma enhanced chemical vapor deposition. J. Appl. Phys.,2003,94(9):6005-6013.
    [20]Zeng X B, Xu Y Y, Zhang S B, et al. Silicon nanowires grown on a pre-annealed Si substrate. J Cryst. Growth,2003,247:12-16.
    [21]Kenji Hata, Don N. Futaba, Kohei Mizuno, et al.. Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes. Science,2004,306:1362-1364.
    [22]Motoyama M, Fukunaka Y, Sakka T, et al. Electrochemical processing of Cu and Ni nanowire arrays. J. Electroanaly. Chem.,2005,584:84-91.
    [23]Pang Y T, Meng G W, Fang Q, et al. Copper nanowire arrays for infrared polarizer. Appl. Phys. A, 2003,76:533-536.
    [24]Walter E C, Zach M P, Favier F, et al. Metal nanowire arrays by electrodeposition. ChemPhysChem,2003,4:131-138.
    [25]Chen Z T, Gao L. A facile route to ZnO nanorod arrays using wet chemical method. J. Cryst. Growth,2006,293:522-527.
    [26]Liu J P, Huang X T, Li Y Y, et al. Large-scale and low-temperature synthesis of maize-shape ZnO micron flowers with excellent optical properties. Mater. Sci. Eng. B,2006,127:85-90.
    [27]Pradhan D, Leung K T. Controlled growth of two-dimensional and one-dimensional ZnO nanostructures on indium tin oxide coated glass by direct electrodeposition. Langmuir,2008,24:9707-9716.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700