β钛合金微结构的透射电子显微术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用透射电子显微术研究了两种钛合金: TNTZO合金(Ti-23Nb-0.7Ta-2Zr-1.2O at.%)和Ti-Mo合金的微结构,并结合理论计算对TNTZO合金的塑性变形机制进行了分析验证,最后采用电子能量损失谱研究了Ti-Mo合金中各相的模量。具体工作分为以下两个部分:
     一、TNTZO合金的形变微结构及塑性变形机制的研究
     本文首先通过理论计算证明,TNTZO合金中位错的可动性很高,易于在合金中开动和滑移。EBSD和TEM分析表明冷旋锻TNTZO合金具有沿旋锻轴向的<110>丝织构,因此冷旋锻TNTZO合金中所观察到的由细小纤维状组织交织而成的大理石纹状组织产生于体心立方金属在张应力主导的外加应力下沿<111>{110}, {112} or {123}位错的双滑移或多滑移导致的晶粒面应变方式的变形。[100]和[111]晶带轴方向的高分辨电子显微分析表明冷旋锻TNTZO合金中存在着柏氏矢量为1/2<111>的位错;不同变形量压缩变形的TNTZO合金的衍衬分析也表明合金塑性变形缺陷主要是1/2<111>位错。退火TNTZO合金中很容易观察到位错阵列和亚晶的存在,可以推测这些位错来源于塑性变形过程。
     用高分辨透射电镜在塑性变形后的TNTZO合金中进一步观察到<111>{112}机械孪生和应力诱导ω相变,ω相和β基体的位向关系是, ,惯习面是,这不同于热诱导ω相的惯习面。机械孪生和应力诱导的ω相变都是由{112}面上<111>方向的剪切应力诱发的。<111>{112}机械孪生和应力诱导的ω相变的形成可以用位错机制来解释。最后采用第一性原理对不同Nb含量钛合金的不稳定层错能分别进行了理论计算,验证了当电子浓度趋于4.2时,单位位错可以分解产生为1/12<111>或1/6<111>分位错,易于形成孪晶和ω相。
     二、Ti-Mo合金的相组成、结构和弹性模量的测定
     本文首先利用透射电镜研究了Mo含量分别为6~9%的Ti-Mo合金在固溶处理后的相组成和微结构:Ti-9%Mo中的相组成为β、α"和ω相,Ti-8%Mo中的相组成为β、α"相,Ti-7%Mo和Ti-6%Mo中的相组成均为α′、α"相;α"相的点阵常数与合金成分有关;α"相和β基体的位向关系为:[100]_β// [100]_(α"), ;α"相内存在{111}_(α")型孪晶;非热ω相和β基体之间的位向关系为:。
     其次用电子能量损失谱测量了同一Ti-8%Mo合金中β和α"两种不同相的模量,结果显示α"相的弹性模量比β相高19%;还测量了Mo含量分别为8~20%的Ti-Mo合金中β相的模量,结果显示不同Mo含量的合金中β相的模量随Mo含量的增加呈升高趋势。最后利用电子能量损失谱测量了Ti-8~20%Mo合金中β相的Ti L_(2,3)边的强度。结果显示随着Mo含量的增加,Ti元素L_(2,3)电离峰的强度逐渐降低,这说明Ti原子3d轨道中空穴数减少,电子数增多, Ti、Mo原子间结合力增强,合金稳定性升高,因此β相的模量也随之增加。这为低模量Ti-Mo合金的设计提供了一种思路:尽可能选择低Mo含量,并在避免α"相的生成时获得单相β相。
In this dissertation, the microstructure of TNTZO (Ti-23Nb-0.7Ta-2Zr-1.2O at. %) alloy and Ti-Mo alloy was investigated by Transmission Electron Microscopy (TEM). Then integrated with calculation, the mechanism of plastic deformation in TNTZO alloy was theoretically analyzed. Additionally a new method to measure modulus of materials by means of Electron Energy Loss Spectrum (EELS) was discussed with Ti-Mo alloy as sample. Specific study mainly included two parts as follows:
     Ⅰ. Study on the microstructure and mechanism of plastic deformation in TNTZO alloy
     The elastic property and structure of dislocation in Gum Metal are investigated by anisotropic elastic theory and high-resolution transmission electron microscopy (HRTEM). The results show that the elastic energy coefficients for the 1/2<111> perfect dislocations nearly equal to zero as the shear modulus along <111>{110}, {112}, {123} when the valence electron number e/a reaches 4.2, which implies a low intrinsic critical resolved shear stress for dislocation glide. HRTEM observations further revealed 70.53°dislocations in Gum Metal after severe cold working. The substantial plastic deformation is considered to originate from the conventional dislocation mechanism, rather than from the dislocation-free mechanism in Gum Metals.
     {112}<111> mechanical twinning and stress-induced omega transition were further observed by high-resolution transmission electron microscope in TNTZO after deformation. The orientation relationships between theωphase andβparent matrix are and , and the habit plane of for the stress-inducedωtransition is different from that of often observed for the thermalωtransition. Both mechanical twinning andωtransition arise from the shear along <111>{112}. A dislocation mechanism for mechanical twinning and stress-inducedωtransition was discussed additionally.
     Ⅱ. Study on the phase composition、microstructure and measurement of elastic modulus in Ti-Mo alloy
     The phase composition and microstructure of Ti-Mo alloy (with Mo content about 6~9% respectively) after solution treatment was firstly investigated: The lattice constants ofα" phase varied linearly with Mo content; orientation relationships betweenα" andβparent matrix are [100]_β// [100]_(α") and ;α" type twinning exits inα" phase; orientation relationships between nonthemalωphase andβparent matrix are , and .
     Sequentially a new method to measure micro modulus was discussed. The modulus of differentα" and in Ti-8%Mo alloy was measured and a change law about modulus ofβphase with Mo content in three alloys (Ti-8~20%Mo)was expected to obtain. The results show the elastic modulus ofα" phase is higher than that ofβphase by 19% in same alloy and modulus ofβphase of different alloys increased with higher Mo content. Finally Ti L2,3 edge intensity ofβphase in Ti-8~20%Mo alloy was measured using EELS. The results show the ionization peak intensity of Ti L2,3 decreased gradually due to hybrid between d-orbits of Ti and surrounding Mo atoms.
引文
[1] Nag S., Banerjee R., Fraser H. L., Microstructural evolution and strengthening mechanisms in Ti-Nb-Zr-Ta, Ti-Mo-Zr-Fe and Ti-15Mo biocompatible alloys. Materials science & engineering C 2005, 25(3):357-362.
    [2] Song Y., Xu D. S., Yang R., et al. Theoretical study of the effects of alloying elements on the strength and modulus of beta-type bio-titanium alloys. Materials science and engineering A 1999, 260(1-2):269-274.
    [3] Niinomi M., Mechanical properties of biomedical titanium alloys. Materials science and engineering A 1998, 243(1-2):231-236.
    [4] Cheal E., Spector M., Hayes W., Role of loads and prosthesis material properties on the mechanics of the proximal femur after total hip arthroplasty. Journal of orthopaedic research 1992, 10(3):405-422.
    [5] Huiskes R., Weinans H., Vanrietbergen B., The relationship between stress shielding and bone-resorption around total hip stems and the effects of flexible materials. Clinical orthopaedics and related research 1992, 274:124-134.
    [6] Sumner D. R., Galante J. O., Determinants of stress shielding - design versus materials versus interface. Clinical orthopaedics and related research 1992, 274:202-212.
    [7] Okazaki Y., Rao S., Tateishi T., et al. Cytocompatibility of various metal and development of new titanium alloys for medical implants. Materials science and engineering A 1998, 243(1-2):250-256.
    [8] Rao S., Ushida T., Tateishi T., Okazaki Y., Asao S., Effect of Ti, Al, and V ions on the relative growth rate of fibroblasts (L929) and osteoblasts (MC3T3-E1) cells. Bio-medical materials and engineering 1996, 6(2):79-86.
    [9] Okazaki Y., Ito Y., Kyo K., Tateisi T., Corrosion resistance and corrosion fatigue strength of new titanium alloys for medical implants without V and Al. Materials science and engineering A 1996, 213(1-2):138-147.
    [10] Saito, Furuta T., Hwang J., Kuramoto S., Nishino K., Suzuki N., Chen R., Yamada A., Ito K., Seno Y., Nonaka T., Ikehata H., Nagasako N., Iwamoto C., Ikuhara Y., Sakuma T., Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism, Science 2003,300(5618): 464-67.
    [11] Nishino K., Super Multifunctional Alloy "GUM METAL", in 3rd SunBeam Seminar. 2003: Toyota Central R&D Labs., Inc.
    [12] Kuramoto S., Furuta T., Hwang J., Nishino K., Saito T., Elastic properties of Gum Metal, Materials Science and Engineering A 442 (2006) 454–457.
    [13] Gutkin M. Y. , Ishizaki T., Kuramoto S. , Ovid’ko I. A., Nanodisturbances in deformed Gum Metal, Acta Materialia 2006, 54: 2489–2499.
    [14] Ikehata H, Nagasako N, Furuta T, Fukumoto A, Miwa K, Saito T., First-principles calculations for development of low elastic modulus Ti alloy. Phys. Rev. B, 2004, 70(17): 174113-1–174113-8.
    [15] Li T., Morris J.W., Nagasako N., Kuramoto S. Chrzan D. C.,‘‘Ideal’’Engineering Alloys, Physical review letters 2007, 98: 105503.
    [16] Gutkin M.Y., Ishizaki T., Kuramoto S., Ovid’ko I.A., Skiba N.V., Giant faults in deformed Gum Metal, International Journal of Plasticity 2008, 24: 1333–1359
    [17] Kuramoto S., Furuta T., Hwang J., Nishino K., Saito T., Plastic deformation behavior of multi-functional Ti-Nb-Ta-Zr-O alloys,Mater. Trans., JIM 2005, 46(12):3001.
    [18] Li S. J., Yang R., Niinomi M., Hao Y. L., Cui Y. Y., Guo Z. X., Phase transformation during aging and resulting mechanical properties of two Ti–Nb–Ta–Zr alloys, Materials Science and Technology 2005, 21: 6.
    [19] Qazia J.I., Marquardt B., Allardc L.F., Rackd H.J., Phase transformations in Ti–35Nb–7Zr–5Ta–(0.06–0.68)O alloys, Materials Science and Engineering C 2005, 25: 389– 397.
    [20] Sakaguchia N., Niinomib M., Akahorib T., Takedab J., Toda H., Effect of Ta content on mechanical properties of Ti–30Nb–XTa–5Zr, Materials Science and Engineering C 2005, 25: 370– 376
    [21] Mythi R. , Vijayalakshm M., Study of mechanical behavior and deformation mechanism in anα–βTi–4.4Ta–1.9Nb alloy, Materials Science and Engineering A 2007, 454: 43–51.
    [22] Tang X., Ahmed T., Rack H. J., Phase transformations in Ti-Nb-Ta and Ti-Nb-Ta-Zr alloys, Journal of materials science 2000, 35: 1805– 1811.
    [23] Kuramoto S., Furuta T., Hwang J. H., Nishino K.; Saito T., Plastic Deformation in a Multifunctional Ti-Nb-Ta-Zr-O Alloy, Metallurgical and Materials Transactions 2006, 37A(3): 657.
    [24] Sakaguchia N., Niinomib M., Akahorib T., Takedab J., Todab H., Relationships between tensile deformation behavior and microstructure in Ti–Nb–Ta–Zr system alloys, Materials Science and Engineering C 2005, 25: 363– 369
    [25] Hao Y. L., Li S. J., Sun B. B., Sui M. L., Yang R., Ductile Titanium Alloy with Low Poisson’s Ratio, Physical review letters 2007, 98: 216405.
    [26] Niinomi M., Akahori T., Katsura S., Yamauchi K., Mechanical characteristics and microstructure of drawn wire of Ti–29Nb–13Ta–4.6Zr for biomedical applications, Materials Science and Engineering C 2007, 27: 154–161.
    [27] Qazia J.I., Marquardtb B., Allardc L.F., Rack H.J., Phase transformations in Ti–35Nb–7Zr–5Ta–(0.06–0.68)O alloys, Materials Science and Engineering C 2005, 25: 389– 397
    [28] Elias L.M., Schneider S.G., Schneider S., Silva H.M., Malvisi F., Microstructural andmechanical characterization of biomedical Ti–Nb–Zr(–Ta) alloys, Materials Science and Engineering A 2006, 432: 108–112.
    [29] Fernández A.I., Uranga P., López B., Rodriguez-Ibabe J.M., Dynamic recrystallization behavior covering a wide austenite grain size range in Nb and Nb–Ti microalloyed steels, Materials Science and Engineering A 2003, 361: 367–376.
    [30] Xu W., Kim K.B., Das J., Calin M., Eckert J., Phase stability and its effect on the deformation behavior of Ti–Nb–Ta–In/Crβalloys, Scripta Materialia 2006, 54: 1943–1948
    [31] Ping D.H., Mitarai Y., Yin F.X., Microstructure and shape memory behavior of a Ti–30Nb–3Pd alloy, Scripta Materialia 2005, 52: 1287–1291.
    [32] Naga S., Banerjeeb R., Frasera H.L., Microstructural evolution and strengthening mechanisms in Ti–Nb–Zr–Ta, Ti–Mo–Zr–Fe and Ti–15Mo biocompatible alloys, Materials Science and Engineering C 2005, 25: 357– 362.
    [33] Zhoua Y. L., Niinomi M., Microstructures and mechanical properties of Ti–50 mass% Ta alloy for biomedical applications, Journal of Alloys and Compounds 2008.
    [34] Banerjee R., Nag S., Stechschulte J., Fraser H. L., Strengthening mechanisms in Ti–Nb–Zr–Ta and Ti–Mo–Zr–Fe orthopaedic alloys, Biomaterials 2004, 25 3413–3419.
    [35] Mythili R., Saroja S., Vijayalakshmi M., Study of mechanical behavior and deformation mechanism in an Ti–4.4Ta–1.9Nb alloy, Materials Science and Engineering A 2007, 454: 43–51.
    [36] Mantani Y., Tajima M., Phase transformation of quenched martensite by aging in Ti–Nb alloys, Materials Science and Engineering A 2006,438: 315–319.
    [37] Ping D.H., Cui C.Y., Yin F.X., Yamabe-Mitarai Y., TEM investigations on martensite in a Ti–Nb-based shape memory alloy, Scripta Materialia 2006, 54: 1305–1310.
    [38] Hanada S., Ozeki M., Izumi O. Deformation Characteristics inβPhase Ti-Nb Alloys, Metallurgical Transactions A 1985, 16A: 789.
    [39] Hanada S., Izumi O, Transmission Electron Microscopic Observations of Mechanical Twinning in Metastable Beta Titanium Alloys, Metallurgical Transactions A 1986, 17A: 1409.
    [40] Chai Y.W., Kim H.Y., Hosoda H., Miyazaki S., Interfacial defects in Ti–Nb shape memory alloys, Acta Materialia 2008, 56: 3088–3097.
    [41] Inamura T., Kimz J. I., Kimx H. Y., Hoso H., Composition dependent crystallography of a00-martensite in Ti–Nb-basedβ-titanium alloy, Philosophical Magazine, 2007, 87(23): 3325–3350.
    [42] Zhou Y. L., Niinomi M., Akahori T., Decomposition of martensiteα" during aging treatments and resulting mechanical properties of Ti?Ta alloys, Materials Science and Engineering A 2004, 384: 92–101.
    [43] Afonso C.R.M., Aleixo G.T., Ramirez A.J., Caram R., Influence of cooling rate on microstructure of Ti–Nb alloy for orthopedic implants, Materials Science and Engineering C 2007, 27: 908–913.
    [44] Wang Y.B., Zheng Y.F., The microstructure and shape memory effect of Ti–16 at.%Nb alloy Materials Letters 2008, 62: 269–272.
    [45] Zhou Y. L., Niinomi M., Akahori T., Decomposition of martensite during aging treatments and resulting mechanical properties of Ti?Ta alloys, Materials Science and Engineering A 2004, 384: 92–101.
    [46] Wang B.L., Zheng Y.F., Zhaoa L.C., Effects of Sn content on the microstructure, phase constitution and shape memory effect of Ti–Nb–Sn alloys, Materials Science and Engineering A 2008, 486: 146–151
    [47] Maziarz W., Lejkowska M., Michalski A., Transmission electron microscopy studies of microstructure of Ti–Nb and Ti–Ta alloys after ball milling and hot consolidation, Journal of Microscopy 2006, 224: 42–45.
    [48] Afonso C.R.M., Aleixo G.T., Ramirez A.J., Caram R., Influence of cooling rate on microstructure of Ti–Nb alloy for orthopedic implants, Materials Science and Engineering C 2007, 27: 908–913.
    [49] Gloriant T., Texier G., Prima F., LailléD., Gordin D. M., Thibon I. , Ansel D. , Synthesis and Phase Transformations of Beta Metastable Ti-Based Alloys Containing Biocompatible Ta, Mo and Fe Beta-Stabilizer Elements, Advanced Engineering Materials 2006, 10: 8.
    [50] Mythili R., Thomas Paul V., Saroja S., Vijayalakshmi M., Raghunathan V.S., Study of transformation behavior in a Ti–4.4Ta–1.9Nb alloy, Materials Science and Engineering A 2005, 390: 299–312
    [51] Mythili R., Saroja S., Vijayalakshmi M., Study of mechanical behavior and deformation mechanism in an Ti–4.4Ta–1.9Nb alloy,Materials Science and Engineering A 2007, 454: 43–51.
    [52] Xu W., Kim K.B., Das J., Calin M., Eckert J., Phase stability and its effect on the deformation behavior of Ti–Nb–Ta–In/Crβalloys, Scripta Materialia 2006, 54: 1943–1948.
    [53] Ping D.H., Cui C.Y., Yin F.X., Yamabe M.Y., TEM investigations on martensite in aTi–Nb-based shape memory alloy, Scripta Materialia 2006, 54: 1305–1310.
    [54] Ping D.H., Mitarai Y., Yin F.X., Microstructure and shape memory behavior of a Ti–30Nb–3Pd alloy, Scripta Materialia 2005, 52: 1287–1291.
    [55] Chai Y.W., Kim H.Y., Hosoda H. , Miyazaki S., Interfacial defects in Ti–Nb shape memory alloys, Acta Materialia 2008, 56: 3088–3097.
    [56] Sukedai E., Yukihiro T., Miyaji D., Matsumoto H., Nishizawa H., Hashimoto H., Aging behavior of Ti–Mo alloys heavily compressed in ultra-high strain rate mode, Materials Science and Engineering A 2004, 387: 249-253.
    [57] Ohmori Y., Ogo T., Nakai K., Kobayashi S., Effects ofω-phase precipitation onβ→α/α″transformations in a metastableβ-titanium alloy, Materials Science and Engineering A 2001, 312: 182–188.
    [58] Sukedai E., Yukihiro T., Miyaji D., Matsumoto H., Nishizawa H.z, Hashimoto H., Aging behavior of Ti–Mo alloys heavily compressed in ultra-high strain rate mode, Materials Science and Engineering A 2004, 387–389.
    [59] Lee W. S., Lin C. F., Chen T.H., Hwang H. H., The strain rate and temperature dependence of microstructural evolution of Ti–15Mo–5Zr–3Al alloy, J Mater Sci 2008, 43:1568–1575.
    [60] Kahana E., Talianker M. , Landau A., Formation of the monoclinicα" phase in quenched Ti-4.7 at.% W alloy, Journal of Nuclear Materials 1997, 246: 144-149.
    [61] Prima F., Vermaut P., Texier G., Ansel D., Gloriant T., Evidence ofα-nanophase heterogeneous nucleation fromωparticles in aβ-metastable Ti-based alloy by high-resolution electron microscopy, Scripta Materialia 2006, 54: 645–648.
    [62] Bowen A. W., Strength enhancement in a metastableβ-titanium alloy: Ti-15Mo, Journal of materials science 1977, 12: 1355-1360.
    [63] Guo H., Yamamoto A. , Enomoto M., Inverse tent-shaped surface relief ofα′plates in a Ti-Mo alloy, Scripta mater. 2000, 43: 899–903.
    [64] Carter G., Flower H. M., Pennock G. M., West D. R. F., The deformation characteristics of metastableβ-phase in a Ti-15 wt % Mo alloy, Journal Of Materials Science 1977, 12: 2149-2153.
    [65] Flower H. M., Henry S. D., West D. R. F., Theβ→αransformation in dilute Ti-Mo alloys, Journal of Materials Science 1974, 9: 57-64.
    [66] Sukedai E., Yoshimitsu D., Matsumoto H., Hashimoto H., Kiritani M.,βtoωphase transformation due to aging in a Ti-Mo alloy deformed in impact compression, MaterialsScience and Engineering A 2003, 350: 133-138.
    [67] Xu L.J., Chen Y.Y., Liu Z.G., Kong F.T., The microstructure and properties of Ti–Mo–Nb alloys for biomedical application, Journal of Alloys and Compounds 2008, 453: 320–324.
    [68] Guo H., Enomoto M., Surface relief effects ofαprecipitates in a Ti–Mo alloy, Acta Materialia 2002, 50: 929–941.
    [69] Guo H., Enomoto M., Surface reconstruction associated withαprecipitation in a Ti–Mo alloy, Scripta Materialia 2006, 54: 1409–1413.
    [70] Zhang L. C., Zhou T., Aindow M., Alpay S. P., Blackburn M. J., Nucleation of stress-induced martensites in a Ti-Mo-based alloy, Journal Of Materials Science 2005, 40: 2833-2836.
    [71] Zhou T., Aindow M., Alpay S.P., Blackburn M.J., Wu M.H., Pseudo-elastic deformation behavior in a Ti-Mo-based alloy, Scripta Materialia 2004, 50: 343–348.
    [72] Oliveira N. T.C., Aleixo G. , Caramb R., Guastaldi A. C., Development of Ti–Mo alloys for biomedical applications: Microstructure and electrochemical characterization, Materials Science and Engineering A 2007, 452: 727-731.
    [73] Hao Y. L., Li S. J., Sun S. Y., Zheng C. Y., Hu Q. M., Yanga R., Super-elastic titanium alloy with unstable plastic deformation, Applied physics letters 2005, 87: 091906.
    [74] Kuroda D., Niinomi M., Morinaga M., Kato Y., Yashiro T., Design and mechanical properties of newβtype titanium alloys for implant materials, Materials Science and Engineering A 1998, 243: 244–249.
    [75] Hao Y.L., Li S.J., Sun S.Y., Zheng C.Y., Yang R., Elastic deformation behaviour of Ti–24Nb–4Zr–7.9Sn for biomedical applications, Acta Biomaterialia 2007, 3: 277–286.
    [76] Kim H.Y., Ikehara Y., Kim J.I., Hosoda H., Miyazaki S., Martensitic transformation, shape memory effect and superelasticity of Ti–Nb binary alloys, Acta Materialia 2006, 54: 2419–2429.
    [77] Kim H. S., Kim W.Y., Lim S. H., Microstructure and elastic modulus of Ti–Nb–Si ternary alloys for biomedical applications, Scripta Materialia 2006, 54: 887–891.
    [78] Hao Y.L., Li S.J., Sun S.Y., Zheng C.Y., Yang R., Elastic deformation behaviour of Ti–24Nb–4Zr–7.9Sn for biomedical applications, Acta Biomaterialia 2007, 3: 277–286.
    [79] Maeshima T., Ushimaru S., Yamauchi K., Nishida M., Effect of heat treatment on shape memory effect and super elasticity in Ti–Mo–Sn alloys, Materials Science and Engineering A 2006, 438: 844–847.
    [80] Zhang L. C., Zhou T., Alpay S. P., Aindowa M., Origin of pseudoelastic behavior inTi–Mo-based alloys, Applied Physics Letters 2005, 87: 241909.
    [81] Ho W.F., Ju C.P., Chern L.J.H., Structure and properties of cast binary Ti-Mo alloys, Biomaterials 1999, 20: 2115-2122.
    [82] Yao Q., Sun J., Xing H., Guo W.Y. The influence of Nb and Mo contents on the phase stability and elastic property ofβ-type Ti-X alloys. Transactions of Nonferrous Metals Society of China, 2007,17 (6):1417-1421.
    [83]姚强,邢辉,孟丽君,孙坚. Ti-Mo合金β结构稳定性和弹性性质的第一性原理研究.金属学报, 2008,44(1):19-22.
    [84]姚强,邢辉,郭文渊,孙坚. Ti-25 at.%Nb合金β、α''和ω相结构稳定性和弹性性质理论计算.稀有金属材料与工程, 2008.
    [85]姚强,邢辉,郭文渊,孙坚. Ti-Nb合金β结构稳定性和弹性性质研究.中国有色金属学报, 2008,18(1):126-131.
    [86]姚强,邢辉,孟丽君,孙坚. TiB2和TiB弹性性质的理论计算.中国有色金属学报,2007,17(8):1297-1301.
    [87] Howe J. M., Oleshko V. P., Application of valence electron energy-loss spectroscopy and plasmon energy mapping for determining material properties at the nanoscale, Japanese Society of Microscopy Microscopy 2004, 53(4): 339–351.
    [1]李斗星,表面与界面的纳米尺度分析技术及其应用,96全国材料学会会议系列讲座讲义,中国材料学会,1996.
    [2] J. M. Cowley, "Diffraction Physics", Amsterdam: North-Holland Publishing Company, 1981.
    [3]郭可信,叶恒强主编,“高分辨电子显微学在固体科学中的应用”,北京:科学出版社,1985.
    [4] L. Reimer, "Transmission Electron Microscopy", 4th edition, Berlin: Springer,1997,80-91
    [5] Egerton R.F., Malac M., EELS in the TEM, Journal of Electron Spectroscopy and Related Phenomena 2005, 143: 43–50.
    [6] Sun J., Jiang B., Smith D. J., EELS near-edge structure in the Laves-phase compounds TiCr2 and TiCo2: Theoretical and experimental studies, Physical review B 2004, 69: 214107.
    [7] Zhu J., Gao S. P., Zhang A. H., Yuan J., Theoretical electron energy-loss spectroscopy and its application in materials research, Journal of Electron Microscopy 2005, 54 (3): 293–298.
    [8] Crescenzi M. D., Derrien J., Core-level electron-energy-loss spectroscopy as a local probe for the electronic structure of the Co/Si(111) interface, Physical Review B 1989, 39: 8.
    [9] Howe J. M., Oleshko V. P., Application of valence electron energy-loss spectroscopy andplasmon energy mapping for determining material properties at the nanoscale, Japanese Society of Microscopy Microscopy 2004, 53(4): 339–351.
    [10] Rez P., Alvarez J. R., Pickard C., Calculation of near edge structure Ultramicroscopy 1999, 78: 175-183.
    [11] Lie K., Holmestad R., Marthinsen K., Hoier R., Experimental and theoretical investigations of EELS near-edge fine structure in TiAl with and without ternary addition of V, Cr, or Mn, Physical review b volume 1998, 57(3).
    [12] Potapov P. L., Kulkova S. E., Schryvers D., Verbeeck J., Structural and chemical effects on EELS L3,2 ionization edges in Ni-based intermetallic compounds, Physical review B 2001, 64: 184110.
    [13] Botton G. A., Guo G. Y., Temmerman W. M., Humphreys C. J., Experimental and theoretical study of the electronic structure of Fe, Co, and Ni aluminides with the B2 structure, Physical review b volume 1996, 54: 3.
    [14] Muller D. A., Subramanian S., Batson P. E., Sass S. L., Silcox J., Near Atomic Scale Studies of Electronic Structure at Grain Boundaries in Ni3Al, Physical Review Letters 1995, 75: 26.
    [15] David A. Muller, David J. Singh, John Silcox, Connections between the electron-energy-loss spectra, the local electronic structure, and the physical properties of a material: A study of nickel aluminum alloys, Physical review B 1998, 57 (14).
    [16] Yang Z, Tirry W., Schryvers D., Analytical TEM investigations on concentration gradients surrounding Ni4Ti3 precipitates in Ni–Ti shape memory material, Scripta Materialia 2005, 52: 1129–1134.
    [17] Stoyanov E., Langenhorst F., Steinle-Neuman G., The effect of valence state and site geometry on Ti L3,2 and O K electron energy-loss spectra of TixOy phases, American Mineralogist, 2007, 92: 577–586.
    [18] Yang Z., Tirry W., Lamoen D., Kulkova S., Schryvers D., Electron energy-loss spectroscopy and first-principles calculation studies on a Ni–Ti shape memory alloy, Acta Materialia 2008, 56: 395–404.
    [19] Potapov P. L., Jorissen K., Schryvers D., Effect of charge transfer on EELS integrated cross sections in Mn and Ti oxides, Physical Review B 2004, 70: 045106.
    [20] Kihn Y., Mirguet C., Calmels L., EELS studies of Ti-bearing materials and ab initio calculations, Journal of Electron Spectroscopy and Related Phenomena 2005, 143: 117–127.
    [21]熊家炯.材料设计.天津:天津大学出版社, 2000:2-31
    [22] Hamann D. R., Schlüter M., Chiang C., Norm-Conserving Pseudopotentials, Phys. Rev. Lett. 1979, 43: 1494 [23 ] Bachelet G. B., Schlüter M., Chiang C., Pseudopotentials that work: From H to Pu, Phys. Rev. B 1982, 26: 4199
    [24] Vanderbilt D., Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B 1990, 41:7892
    [25] Bl?chl P. E., Projector augmented-wave method, Phys. Rev. B 1994, 50: 17953
    [26] Kresse G., Joubert J., From ultrasoft pseudopotentials to the projector augmented wave method, Phys. Rev. B 1999, 59: 1758
    [27] Kresse G., Furthmüller J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 1996, 54: 11169
    [1] Saito T., Furuta T., Hwang J., Kuramoto S., Nishino K., Suzuki N., Chen R., Yamada A., Ito K., Seno Y., Nonaka T., Ikehata H., Nagasako N., Iwamoto C., Ikuhara Y., Sakuma T., Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism Science 2003, 300: 464.
    [2] Saito T., Furuta T., Hwang J., Kuramoto S., Nishino K., Suzuki N., Chen R., Yamada A., Ito K., Seno Y., Nonaka T., Ikehata H., Nagasako N., Iwamoto C., Ikuhara Y., Sakuma T., Multi functional titanium alloy "Gum Metal", Mater. Sci. Forum 2003, 426: 681.
    [3] Kuramoto S., Furuta T., Hwang J., Nishino K., Saito T., Metall. Mater. Trans. A Plastic deformation in a multifunctional Ti-Nb-Ta-Zr-O alloy 2006, 37: 657.
    [4] Furuta T., Kuramoto S., Hwang J., Nishino K., Saito T., Elastic deformation behavior of multi-functional Ti-Nb-Ta-Zr-O alloys Mater. Trans. 2005, 46: 3001.
    [5]潘金生,全健民,田民波.材料科学基础,北京:清华大学出版社,1999
    [6]束德林.金属力学性能,北京:机械工业出版社,1987
    [7]石德珂.材料科学基础,北京:机械工业出版社,2000
    [8] Ikehata H., Nagasako N., Furuta T., Fukumoto A., Miwa K., Saito T., First-principles calculations for development of low elastic modulus Ti alloys Phys. Rev. B 2004, 70: 174113.
    [9] Li T., W J.. Morris, Jr., Nagasako N., Kuramoto S., Chrzan D. C., "Ideal" engineeringalloys Phys. Rev. Lett. 2007, 98: 105503.
    [10] Stroh A. N., Force on a Moving dislocation Philos. Mag. 1958; 3: 625.
    [11] Head A. K., Phys. Abnormal damping by unstable dislocations in anisotropic crystals Status Solidi 1964, 6: 461.
    [12] Hirth J. P., Lothe J., Theory of Dislocations, 2nd ed. Wiley, New York, 1982: 464–465.
    [13] Guo W. Y., Sun J., Xing H., Li X. L., Wu J. S., Chen R., Evolution of microstructure and texture during recrystallization of the cold-swaged Ti-Nb-Ta-Zr-O alloy Metall. Mater. Trans. A 2008, 39: 672.
    [14] Hosford W., Plane-strain compression of aluminum crystals Trans. Metall. Soc. AIME 1964, 230: 12.
    [15] Hosford W., The Mechanics of Crystals and Textured Polycrystals _Oxford University Press, New York, 1993: 115–18.
    [16] Hupalo M., Padilha A., Sandim H., Kliauga A., Cold swaging, recovery and recrystallization of oligocrystalline INCOLOY MA 956 - Part II: Annealed state ISIJ Int. 2004, 44: 1894.
    [17] Gutkin M., Ishizaki T., Kuramoto S., Ovid’ko I., Nanodisturbances in deformed Gum Metal Acta Mater. 2006, 54: 2489.
    [18] Gorelik S., Translated by Afanasyev V. Recrystallization in metals and alloys, MIR Publishers, Moscow. 1981:1-5.
    [19] Hosford W., in The Mechanics of Crystals and Textured Polycrystals, (Oxford University Press, 1993), pp. 115-18.
    [20] Aris S., Pyzalla A., Reimers W., Simulation of the development of deformation textures and residual stresses using the Taylor-Bishop-Hill theory. Computational Materials Science, 1999, 16(1-4): 76-80
    [1] Wang Y. M., Hodge A. M., Biener J., Hamza A. V., Barnes D. E., Liu K., Nieh T. G., Deformation twinning during nanoindentation of nanocrystalline Ta, Applied physics letters 2005, 86: 101915.
    [2] Murr L. E., Esquive E. V., Observations of common microstructural issues associated with dynamic deformation phenomena: Twins, microbands, grain size effects, shear bands, and dynamic recrystallization, Journal of materials science 2004, 39: 1153-1168.
    [3] Farkas D., Twinning and recrystallisation as crack tip deformation mechanisms during fracture, Philosophical Magazine, 2005, 85(2–3): 387–397.
    [4] Sakaguchia N., Niinomib M., Akahorib T., Takeda J.b, Toda H., Relationships between tensile deformation behavior and microstructure in Ti–Nb–Ta–Zr system alloys, Materials Science and Engineering C 2005, 25: 363-369.
    [5] Xua W., Kim K. B., Calin M., Rellinghaus B., Eckert J., Deformation-induced nanostructuring in a Ti–Nb–Ta–In alloy, Applied physics letters 2006, 89: 031906.
    [6] Tang Q. H., Wang T. C., Deformation twinning and its effect on crack extension, Acta mater. 1998, 46(15): 5313-5321.
    [7] Lin D.J., Chern J.H., Ju C.P., Effect of omega phase on deformation behavior of Ti–7.5Mo–xFe alloys, Materials Chemistry and Physics 2002, 76: 191–197.
    [8] Nishida M., Hara T., Morizono Y., Ikeya A., Kijima H., Chiba A., Transmission electron microscopy of twins in martensite in ti-pd shape memory alloy, Acra mafer. 1997, 45(11): 4847-4853.
    [9] Nishida M., Hara T., Morizono Y., Ikeya A., Kijima H., Chiba A., Transmission Electron Microscopy Of Twins In Martensite In Ti-Pd Shape Memory Alloy, Acra mafer. 1997, 45(11): 4847-4853.
    [10] Hanada S., Izumi O., Transmission Electron Microscopic Observations of MechanicalTwinning in Metastable Beta Titanium Alloys. Metallurgical transactions. A, Physical metallurgy and materials science. 1986,17 A (8), 1409-1420.
    [11] Xu W., Kim K. B., Das J., Calin M., Rellinghaus B, Eckert J. Deformation-induced nanostructuring in a Ti–Nb–Ta–Inβalloy. Appl. Phys. Lett., 2006, 89, 031906 .
    [12] Zhoua Y.L., Niinomi M., Microstructures and mechanical properties of Ti–50mass%Ta alloy for biomedical applications, Journal of Alloys and Compounds 2008.
    [13] Ye F., Zhang W. Z., Dislocation structure of non-habit plane of a precipitates in a Ti–7.26 wt.% Cr alloy, Acta Materialia 2006, 54: 871–879.
    [14] Ramsteiner I. B., Sch?ps A., Phillipp F.,. Kelsch M, Reichert H., Dosch H., High-energy x-ray and transmission electron microscopy study of structural transformations in Ti-V, Physical review B 2006, 73: 024204.
    [15] Kim H.Y., Ikehara Y., Kim J.I., Hosoda H., Miyazaki S., Martensitic transformation, shape memory effect and superelasticity of Ti–Nb binary alloys, Acta Materialia 2006, 54: 2419-2429
    [16] Wang Y. B., Zhen g Y. F., The microstructure and shape memory effect of Ti–16 at.%Nb alloy, Materials Letters 2008, 62: 269–272.
    [17] Mantani Y., Tajima M., Phase transformation of quenchedα" martensite by aging in Ti–Nb alloys, Materials Science and Engineering A 2006, 438: 315–319.
    [18] Ping D.H., Cui C.Y., Yin F.X., Mitarai Y. Y., TEM investigations on martensite in a Ti–Nb-based shape memory alloy, Scripta Materialia 54 (2006) 1305–1310.
    [19] Tang X., ahmed T., Rack H. J., Phase transformations in Ti-Nb-Ta and Ti-Nb-Ta-Zr alloys, Journal of materials science 2000, 35: 1805-1811.
    [20] Qazia J.I., Marquardtb T. B., Allardc L.F,. Rackd H.J., Phase transformations in Ti–35Nb–7Zr–5Ta–(0.06–0.68)O alloys, Materials Science and Engineering C 2005, 25: 389 .
    [21] Hsiung L. L., On the micromechanisms of shock-induced martensitic transformation in tantalum, Shock Compression of Condensed Matter 2005: 845.
    [22] Li S. J., Yang R., Niinomi M., Hao Y. L., Cui Y. Y., Guo Z. X., Phase transformation during aging and resulting mechanical properties of two Ti–Nb–Ta–Zr alloys, Materials Science and Technology 2005, 21(6).
    [23] Prima F., Vermaut P., Texier G., Ansel D., Gloriant T., Evidence ofα-nanophase heterogeneous nucleation fromωparticles in aβ-metastable Ti-based alloy by high-resolution electron microscopy, Scripta Materialia 2006, 54: 645–648.
    [24] Sukedai E., Yoshimitsu D., Matsumoto H., Hashimoto H., Kiritani M.,βtoωphase transformation due to aging in a Ti/Mo alloy deformed in impact compression Materials Science and Engineering A 2003, 350: 33-138.
    [25] Ohmori Y., Ogo T., Nakai K., Kobayashi S., Effects ofω-phase precipitation onβ→αtransformations in a metastableβtitanium alloy, Materials Science and Engineering A 2001, 312: 182.
    [26] Hanada S., Izumi O., Transmission Electron Microscopic Observations of Mechanical Twinning in Metastable Beta Titanium Alloys, Metallurgical transactions A 1986, 17A: 1409.
    [27] Yang Y., Li G.P., Cheng G.M., Wang H., Zhang M., Xu F., Yang K., Stress-introducedα"martensite and twinning in a multifunctional titanium alloy, Scripta Materialia 2008, 58: 9.
    [28] Dey G.K., Tewari R., Banerjee S., Jyoti G, Gupta S.C., Joshi K.D., Sikka S.K., Formation of a shock deformation induced x phase in Zr 20 Nb alloy, Acta Materialia 2004, 52: 5243-5254.
    [29] Hsiung L.M., Lassila D.H., Shock-induced omega phase in tantalum, Scripta Materialia, 1998, 38(9): 1371–1376.
    [30] Hsiung L. M., Lassila D. H., Shock-induced deformation twinning and omega transformation in tantalum and tantalum–tungsten alloys, Acta mater. 2000, 48: 4851-4865.
    [31] Vitek V. Insrinsic stacking faults in body-centered cubic crystals, Philos. Mag. 1968, 18: 773
    [32] Rice Jame R., Dislocation nucleation from a crack tip: an analysis based on the Peierls concept, J. Mech. Phys. Solids 1992, 40: 239
    [33] Kresse G., Furthmüller J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 1996, 54: 11169
    [34] Bl?chl P. E., Projector augmented-wave method, Phys. Rev. B 1994, 50: 17953
    [35] Kresse G., Joubert J., From ultrasoft pseudopotentials to the projector augmented wave method, Phys. Rev. B 1999, 59: 1758
    [36] Perdew J.P., Burke K., Ernzerhof M., Generalized gradient approximation made simple [J]. Physical Review Letters. 1996, 77: 3865-3868.
    [37] Methfessel M., Paxton A. T., High-precision sampling for Brillouin-zone integration in metals, Phys. Rev. B 1989, 40: 3616.
    [38] Cai J., Lu C. Yap P.H., Wang Y.Y., How to affect stacking fault energy and structure by atom relaxation, Appl. Phys. Lett. 2002, 81: 3543
    [39] Shigenobu O., Li J., Sidney Y., Energy landscape of deformation twinning in bcc and fcc metals, Phys. Rev. B 2005, 71: 224102
    [1] Guo H., Yamamoto A., Enomoto M., Inverse tent-shaped surface relief ofα′plates in a Ti-Mo alloy, Scripta mater. 2000, 43: 899–903.
    [2] Ohmori Y., Ogo T., Nakai K., Kobayashi S., Effects ofω-phase precipitation onβ→α/α″transformations in a metastableβ-titanium alloy, Materials Science and Engineering A 2001, 312: 182–188.
    [3] Zhang L. C., Zhou T., Alpay S. P., Aindowa M., Origin of pseudoelastic behavior in Ti–Mo-based alloys, Applied Physics Letters 2005, 87: 241909.
    [4] Flower H. M., Henry S. D., West D. R. F., Theβ→αransformation in dilute Ti-Mo alloys, Journal of Materials Science 1974, 9: 57-64.
    [5] Sukedai E., Yoshimitsu D., Matsumoto H., Hashimoto H., Kiritani M.,βtoωphase transformation due to aging in a Ti-Mo alloy deformed in impact compression, Materials Science and Engineering A 2003, 350: 133-138.
    [6] Xu L.J., Chen Y.Y., Liu Z.G., Kong F.T., The microstructure and properties of Ti–Mo–Nb alloys for biomedical application, Journal of Alloys and Compounds 2008, 453: 320–324.
    [7] Guo H., Enomoto M., Surface relief effects ofαprecipitates in a Ti–Mo alloy, Acta Materialia 2002, 50: 929–941.
    [8] Guo H., Enomoto M., Surface reconstruction associated withαprecipitation in a Ti–Mo alloy, Scripta Materialia 2006, 54: 1409–1413.
    [9] Maeshima T., Ushimaru S., Yamauchi K., Nishida M., Effect of heat treatment on shape memory effect and superelasticity in Ti–Mo–Sn alloys, Materials Science and Engineering A 2006, 438: 844–847.
    [10] Zhang L. C., Zhou T., Aindow M., Alpay S. P., Blackburn M. J., Nucleation of stress-induced martensites in a Ti-Mo-based alloy, Journal Of Materials Science 2005, 40: 2833-2836.
    [11] Zhou T., Aindow M., Alpay S.P., Blackburn M.J., Wu M.H., Pseudo-elastic deformation behavior in a Ti-Mo-based alloy, Scripta Materialia 2004, 50: 343–348.
    [12] Oliveira N. T.C., Aleixo G. , Caramb R., Guastaldi A. C., Development of Ti–Mo alloys for biomedical applications: Microstructure and electrochemical characterization, Materials Science and Engineering A 2007, 452: 727-731.
    [13] Sukedai E., Yukihiro T., Miyaji D., Matsumoto H., Nishizawa H., Hashimoto H., Aging behavior of Ti–Mo alloys heavily compressed in ultra-high strain rate mode, Materials Science and Engineering A 2004, 387: 249-253.
    [14] Xu L.J., Chen Y.Y., Liu Z.G., Kong F.T., The microstructure and properties of Ti–Mo–Nb alloys for biomedical application, Journal of Alloys and Compounds 2008, 453: 320–324.
    [15] R. Banerjee, Nag S., Stechschulte J., Fraser H. L., Strengthening mechanisms in Ti–Nb–Zr–Ta and Ti–Mo–Zr–Fe orthopaedic alloys, Biomaterials 2004, 25: 3413–3419.
    [16] Naga S., Banerjeeb R., Fraser H.L., Microstructural evolution and strengthening mechanisms in Ti–Nb–Zr–Ta, Ti–Mo–Zr–Fe and Ti–15Mo biocompatible alloys, Materials Science and Engineering C 2005, 25: 357-362.
    [17] Eckert J., Dasa J., Hec G., Calin M., Kima K.B., Ti-base bulk nanostructure-dendrite composites: Microstructure and deformation, Materials Science and Engineering A 2007, 449: 24–29.
    [18] Carter G., Flower H. M., Pennock G. M., West D. R. F., The deformation characteristics of metastableβ-phase in a Ti-15 wt % Mo alloy, Journal Of Materials Science 1977, 12: 2149-2153.
    [19] Collings E. W., Physical Metallurgy of Titanium Alloys (Metals Park, OH: ASM), 1984.
    [20] Lee Y. T, Welsch G., Mater. Sci. Eng. A 1990, 128: 77.
    [21] Fan Z. Y., Scr. Metall. Mater. 1993, 29: 1427.
    [22] Ho W. F., Ju C. P., Lin J. H. C., Biomaterials, 1999, 20: 2115.
    [23] Hao Y. L., Niinomi M., Kuroda D., Fukunaga K., Zhou Y. L., Yang R., Suzuki A., Metall. Mater. Trans. A 2002, 33: 3137.
    [24] Matlakhova L. A., Matlakhova A. N., Monteiro S. N., Fedotov S. G. , Goncharenko B. A. Mater. Sci. Eng. A 2005, 393: 320.
    [25] Sun J., Yao Q., Xing H., Guo W. Y. Elastic properties ofβ,α″andωmetastable phases in Ti-Nb alloy from first-principles. Journal of Physics: Condensed Matter, 2007, 19: 486215.
    [26] Yao Q., Sun J., Xing H., Guo W.Y. The influence of Nb and Mo contents on the phase stability and elastic property ofβ-type Ti-X alloys. Transactions of Nonferrous Metals Society of China, 2007,17 (6):1417-1421.
    [27]姚强,邢辉,孟丽君,孙坚. Ti-Mo合金β结构稳定性和弹性性质的第一性原理研究.金属学报, 2008,44(1):19-22.
    [28]姚强,邢辉,郭文渊,孙坚. Ti-25 at.%Nb合金β、α''和ω相结构稳定性和弹性性质理论计算.稀有金属材料与工程, 2008.
    [29]姚强,邢辉,郭文渊,孙坚. Ti-Nb合金β结构稳定性和弹性性质研究.中国有色金属学报, 2008,18(1):126-131.
    [30]姚强,邢辉,孟丽君,孙坚. TiB2和TiB弹性性质的理论计算.中国有色金属学报,2007,17(8):1297-1301.
    [31] Ho W.F., Ju C.P., Chern L.J.H., Structure and properties of cast binary Ti-Mo alloys, Biomaterials 1999, 20: 2115-2122.
    [32] Inamura T., Kimz J. I., Kimx H. Y., Hosoday H., Composition dependent crystallography of a"-martensite in Ti–Nb-basedβ-titanium alloy, Philosophical Magazine, 2007, 87(23): 3325–3350.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700