Nb/Nb_5Si_3复合材料基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了不同的制备工艺和热处理制度对Nb-Si系金属间化合物显微组织和性能的影响,优选了合适的材料体系、制备工艺和热处理制度,分析了微合金化元素及其形成相的组织、结构、形态、存在形式等及其对材料高温抗氧化行为的影响,提出了材料高温抗氧化行为和室温断裂行为的微观机制,为研制Nb-Si系金属间化合物基高温结构材料奠定了一定的基础。
     运用电弧熔炼、粉末冶金热压烧结、粉末冶金冷等静压和光学悬浮单晶生长技术等方法制备了Nb-Si系金属间化合物,并对这四种方法制备的Nb-Si系金属间化合物进行了比较。结果表明,电弧熔炼方法制备得到的Nb-Si系金属间化合物比较致密,且制备工艺简单,经济实用,是一种合适的Nb-Si系金属间化合物制备方法;由于Nb、Si元素粉末的成型性很差,用粉末冶金方法(热压烧结和冷等静压)制备的Nb-Si系金属间化合物表面粗糙、致密度低,且成本较高,不宜用于制备Nb-Si系金属间化合物;首次用光学悬浮单晶生长技术制备的Nb-Si系金属间化合物复合材料致密度很高,尽管成本稍高,但由于性能最佳,也是一种合适的Nb-Si系金属间化合物制备方法。
     研究表明,采用电弧熔炼和单晶生长技术制备的Nb-Si系金属间化合物的显微组织主要由Nb+Nb_3Si组成,而由于Nb_3Si相在高温下是不稳定的,为了得到稳定的Nb+Nb_5Si_3双相组织,必须对材料进行热处理。根据Nb-Si二元相图,选择略低于Nb_3Si共析转变温度T_f=1783℃的1550℃对铸态Nb-Si系金属间化合物进行不同时间(25h-100h)的热处理,并根据目前国内和我院热处理炉的现状,首次提出采用分段热处理的方法来解决Nb-Si合金热处理温度高、连续热处理时间过长而影响热处理炉寿命的困难。结果表明,随着热处理时间的延长,铸态Nb-Si系金属间化合物中的Nb_3Si相通过共析反应Nb_3Si→Nb+Nb_5Si_3逐渐分解为Nb+Nb_5Si_3相,分段热处理100小时(25h×4)后,材料中的Nb_3Si相全部转变为稳定的Nb+Nb_5Si_3双相组织,同时Nb晶粒尺寸只有少量增加,这表明对铸态Nb-Si系金属间化合物而言,1550℃/100h(25h×4)分段热处理是一种合适的热处理制度。
     综合运用扫描电子显微术、X射线能谱分析、透射电子显微术和X射线衍射等显微分析手段对铸态Nb-Si系金属间化合物及热处理后形成的Nb+Nb_5Si_3金属间化合物
    
     摘 要(ABSTRAC)
    基复合材料的显微组织和界面结构、微合金化元素及其形成相的形态、分布等进行了
    深入系统的研究。结果表明,电弧熔炼法制备的铸态Nb上(at.o/0)金属间化合物的显
    微组织由连续的Nb3Si基体、弥散分布的Nb粒子组成,其中亚稳态相Nb3Si为四方结
    构,空间群P42/n,点阵常数a=l.02Inm,c-0.slgnln。与Nbl0Si(at.%)相比,铸态
    Nbl.7St何.o/o)金属间化合物中由于出含量增大而使 Nb3Si相的体积分量有所增加,
    同时裂纹等缺陷等明显增多。光学悬浮单晶生长技术制备的N’b-18.7St(at.%)单晶的显
    微组织由连续的N’b3Si十Nb5Si3金属间化合物和Nb粒子组成,表明在单晶生长过程中
    己有少量Nb3Si相转化Nb5Si3相。
     经1550OC分段热处理100 ,J’时(25hX4后,电弧熔炼制备的NbE系金属间化合
    物的显微组织由连续的Nbf-m*n5Si3共析组织和弥散的一次Nb相组成,其中平衡态
    Nb币i3相为体心四方结构,空间群 I4/mm,点阵常数 a=0石56urn,c叫.186urn。一次
    Nb晶粒尺寸约为20刁,二次Nb晶粒彼此互连,与Nb5Si。相形成一个双连体系。
    光学悬浮单晶生长技术制备的Nb刁.7St(t.%)单晶的显微组织由连续的Nb5Si3金属间
    化合物和Nb粒子组成,Nb粒子长大并不明显。高分辨电子显微术研究结果表明,
    Nb币。相与Nb相的界面相当洁净,结合紧密,没有反应产物,两相之间没有确定的
    取向关系,在Nb相中可以看到大量的晶格畸变。加入适量稀土元素Y后,Y主要以
    椭球状的YZO3(体心立方结构,空间群la3,点阵常数31刀62IllYI)的形态存在,尺
    寸在 0.5叫 范围,分布在 Nb币i3相与 Nb相的界面上。
     首次采用高分辨电子显微术对Nb.St系金属间化合物基复合材料的显微组织和界
    面结构进行了研究,并对材料中微区应力分布状态及其与界面位置、材料的性能之间
    的关系进行了分析。结果表明,经分段热处理100小时后,Nb/N’b5Si3复合材料中Nb5Si。
    相与Nb相结合紧密,两相界面平整洁净,没有反应产物。在界面附近,Nb相中存在
    着显著的衬度差异,发生了显著的晶格畸变,产生了较大的应力;而在相同的应力条
    件下,由于Nb5Si3相的弹性模量较高,晶格畸变较小,相衬度比较均匀。在晶粒内部,
    Nb5Si3相和Nb相的高分辨电子显微像衬度均匀,应力较小。在Nb相上还发现NbZC
    相,表现为孪晶和不规则状两种形态,这是由于热处理过程中碳杂质的引入所造成的,
    微量杂质元素的存在可能会对材料的性能造成很大的影响。
     NbS系合金的室温压缩性能测试结果表明,光悬浮单晶生长法制备的Nb/Nb5Si3
    金属间化合物复合材料比电弧熔炼法制备的Nb/Nb5Si3金属间化合物复合材料的断裂
    应力高20%以上,其断裂应力为1.gGPa;
The effects of the fabrication and heat-treatment methods on the microstructures and properties of the Nb-Si system intermetallics have been studied and the optimized Nb-Si intermetallic system as well as the optimized fabrication and processing procedures have been selected. The presence of alloying elements as well as the morphology and microstructure of the compound phases with these elements has been investigated. The effects of the alloying elements on the high-temperature oxidation behavior of the Nb-Si system intermetallics have also been studied. The micro-mechanisms of the high temperature oxidation resistance and room temperature compression rupture behavior of the Nb-Si system intermetallics have also been discussed in this paper. The foundation to develop Nb-Si system intermetallics base high temperature structure materials has also been established in some degree in this paper.
    Arc melting, powder metallurgy and optical floating zone technology have been used and compared to fabricate the Nb-Si system intermetallics. The results indicate that arc melting is a good method to produce Nb-Si system intermetallics due to its simpler technics, lower cost and compact products. However, powder metallurgy is found to be not suitable to produce the Nb-Si system intermetallics due to its coarse and loose products resulting from the poor molding property of Nb and Si mixed powders. Optical floating zone technology, which is used to fabricate Nb-Si intermetallic composites for the first time, is also found to be a good way to produce Nb-Si system intermetallics because of its compact products and good property despite of its relatively high cost.
    The results reveal that the microstructure of the Nb-Si system intermetallics consists of Nb and NbaSi phases. Because of unstable microstructure of NfySi phase at high temperature, the equilibrium Nb+NbsSia dual-phase microstructure of the Nb-Si system intermetallics should be acquired by means of heat-treatment. According to the Nb-Si phase diagram, the temperature of 1550癈, which is lower than the eutectoid transformation temperature of NbsSi (1783癈), is chosen for heat-treatment. According to the present
    
    
    
    conditions of the furfaces, heat-treatment by stages is first proposed for the Nb-Si system intermetallic composites to keep the furface in good conditions. The results indicate that the equilibrium Nb+NbsSia dual-phase microstructure of the Nb-Si system intermetallics forms gradually via such eutectoid reaction as NbaSi梌Nb+NbsSis with the heat-treatment time. In the Nb-Si system intermetallics after heat-treated at 1550癈 for 100 hours (25hx4), the microstructure of the Nb-Si system intermetallic composites completely becomes equilibrium Nb+NbsSia dual-phase with only a little coarsing grain size. Then the heat-treatment of 1550癈/100h (25h*4) by stages is a good way for the Nb-Si system intermetallics.
    The microstructures and interface structures of the Nb-Si system intermetallics with/without heat-treatments as well as and microalloying element distribution and the microstructures of the compounds phases of the alloying element have been investigated using scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy and X-ray diffraction technics. The results indicate that the microstructure of the as-cast Nb-lOSi (at.%) alloy fabricated by arc melting consists of continuous NbsSi matrix and dispersive distributed Nb particles. The metastable NbaSi phase is found to have a tetragonal crystal structure with space group P42/n and lattice parameters a=1.021nm, c=0.519nm. Compared with those of the as-cast Nb-lOSi (at.%) alloy, the microstructures of the as-cast Nb-18.7Si (at.%) alloy are found to have increased volume fraction of NbsSi phase due to the increased Si content and more cracks and defects.. The microstructure of single-crystal Nb-18.7Si (at.%) fabricated by optical floating zone consists of continuous NbsSi+NbsSia intermetallics and Nb particles, which indicates that some NbaSi particles have transfor
引文
1. P. R. Viars, The Impact of IHPTET on the Engine/Aircraft System (Report #A1AA-892137) , 1988, American institute of Aeronautics and Astronautics, Systems and Operation Conference, Seattle, WA, 31 July
    2. J. Stringer, ACARD Conference Proceedings, 1972, NATO, France, 12: 283-294
    3. H. Inouye, Niobium 81,1981, ed. H. Stuart, Warrendale, PA, IMS: 615-636
    4. R. W. Buckman, Jr., Alloying, 1988, ed. J. L. Walter, M. R. Jackson and C. T. Sims, Metal Park, OH, ASM International: 419-445
    5. C. C. Wojcik, High temperature Niobium Alloys, 1991, ed. J. J. Stephens and I. Ahmad, Warrendale, PA, IMS: 1-12
    6. R. H. Titran, Advanced Mater. Proc., 1992,142(5) : 34-39
    7. R. T. Begley, Evolution of Refractory Metal And Alloys, 1994, ed. E. N. C. Dalder, T. Grobstein and C. S. Olsen, Warrendale, PA, TMS: 29-48
    8. R. A. Perkins and G. H. meier, JOM, 1990, 8:17-21
    9. M. R. Jackson and K. D. Jones, Refractory metals: Extraction, Processing and Applications, 1990, ed. K. C. Liddell, D. R. Sadoway and R. G. Bautista, Warrendale, PA, TMS: 311-320
    10. M. R. Jackson et al., Refractory Metals: Extraction, Processing and Application, 1990, ed. K. C. Liddell, D. R. Sadoway and R. G. Bautista, Warrendale, PA, IMS: 335-346
    11. Y. F. Han, Y. M. Wang and M. C. Chaturvedi, J. of Mater. Eng. and Performance, 1993, 2(4) : 589-596
    12. Y. F. Han and C. B. Xiao, Proc. of IUMRS-ICA '94, Xinzhu, Taiwan, China, 1994: 1-7
    13. Y. F. Han, S. H. Li and M. C. Chaturvedi, Mater. Sci. Eng. A, 1995,192/193: 899-907
    14. Y. F. Han and C. B. Xiao, Structure Intermetallics, edited by R. Daralia, J. J. lewandowski, C. T. Liu, P. L. Martin, D. B. Miracle and M. V. Nathal, The Minerals, Metals & Materials Society, 1993: 453-462
    15. Y. G. Zhang, M. C. Chaturvedi and C. Q. Chen, Phil. Mag. A, 1993,67: 979
    16. Y. G. Zhang, Q. Xu, C. Q. Chen and H. X. Li, Scripta Metall., 1992,26:865
    17. S. Kumark and S. A. Brown, Scripta Metall. Mater., 1992,26:197
    18. D. Veeraghavan, U. Pilchowski, B. Natarajan and V. K. Vasudevan, Acta Mater., 1998, 46:405-421
    
    
    19. J. H. Schneibel and M. A. Crimp, Processing, Properties and Applications of Iron Aluminidies, TMS, Warrendale, 1994
    20. I. Baker, R. Darolia, j. D. Whittenberger and M. H. Yoo, High Temperature Alummides and Intermetallics,TMS, Warrendale, PA, 1990
    21. 孙超,郭建亭,谭明晖,李辉,王淑荷,金属学报, 1992, 28:A481-285
    22. D. G. Morris, M. Nazmy And C. Noseda, Scripta Met. Mater., 1994,31:173-198
    23. O. Izumi and T. J. Takasugi, Mater. Research, 1988,3:426
    24. 韩雅芳,航空材料学报, 1990, 10(1) : 53
    25. P. R. Smith, J. A. Graves and C. G. Rhodes, Metall. Mater. Trans. A, 1994, 25A(6) : 1267
    26. M. M. Dadras and D. G. Morris, Scripta Metall., 1993,28: 1245-1250
    27. D. L. Anton and D. M. Shan, Development Potential of Intermetallic Compounds, 1991, U. S. Air Force Report WRDC-TR-90-4122
    28. R. L. Fleischer and R. D. Field, Report WRDC-TR-90-4046, 1990, WRDC/MLLM, Dayton, OH, Wright-Patterson AFB
    29. Physical Metallurgy and Processing of Intermetallics Compoumdes, edited by N. S. Stoloff and V. K. Sikka, 1994
    30. D. L. Anton, D. M. Shan, D. N. Duh1 and A. F. Giamei, J. Met, 1989,41(9) : 12-17
    31. J. H. Wernick, Intermetallic Compounds, 1967, New York, John Wiley And Sons: 203
    32. T. B. Massalski, Binary Phase Diagrams, 1986, Metals Park, OH, American Society for Metals
    33. D. L. Anton, MRS Symp. Proc., 1991,213:733-738
    34. K. Ito, H. Inui, T. Hirano and M. Yamaguchi, Mat Sci. Eng., 1991, A152:153-159
    35. S. Takeuchi, T. Hashimoto and T. Shibuya, Proceedings of International Symposium on Intermetallic Compounds (JIMIS-6) , 1991, ed. O. Izumi, Sendai, Japan, The Japan Institute of Metals: 645-649
    36. E. Lugsheider, U. Westermann, J. Wonka, H. Meinhardt, E. Neisius and E. Arnold, Proceedings of International Symposium on Intermetallic Compounds (JIMIS-6) , 1991, ed. O. Izumi, Sendai, Japan, The Japan Institute of Metals: 621-625
    37. Z. Berztiss, R. Cerchiara, E. A. Gulbransen, F. S. Pettit and G. H. Meier, Mat. Sci. Eng., 1992, A155:165-181
    38. S. M. Wiederhorn, R. J. Gettings, D. E, Rpberts, C. Ostertag and J. J. Petrovic, Mat. Sci. Eng., 1992, A155: 209-215 .
    39. S. Bose, Mat Sci. Eng., 1992, A155:217-215
    
    
    40. S. A. Maloy, J. J. Lewandowski and A. H. Heuer, Mat Sci. Eng., 1992, A155:159-163
    41. K. Sadananda, C. R. Feng and H. Jones, Mat. Sci. Eng., 1992, A155:227-239
    42. M. Kakamura, Proceedings of International Symposium on Intermetallic Compounds (JIMIS-6) , 1991, ed. O. Izumi, Sendai, Japan, the Japan Institute of Metals: 655-659
    43. R. M. Paine, A. J. Storehouse and W. W. Beaver, WADC Techical Report 59-29-Part I, 1960, Dayton, OH, United States Air Force
    44. D. Alexander, Development of High Temperature Metallics for Structural Aerospace Applications, 1989, Interim Technical Report for Period August, 1987 to September, 1988, under DARPA Order No. 6154, Contract No. N00014-87-C-0682
    45. D. L. Anton, MRS Symp. Proc., 1991,213: 63-68
    46. G. Frommeyer, R. Rosenkranz and C. Ludecke, Z Metal., 1990. 81: 307-313
    47. Y. Murata, T. Higuchi, Y. Takeda, M. Morinaga and N. Yakawa, Proceedings of International Symposium on Intermetallic Compounds (JIMIS-6) , 1991, ed. O. Izumi, Sendai, Japan, the Japan Institute of Metals: 627-631
    48. C. S. Chang and D. P. Pope, High Temperature Ordered Intermetallic Alloys IV, MRS Symp. Proc., 1991,213: 745-750
    49. D. M. Shah, D. berczik, D. L. Anton and R. Hecht, Mat. Sci. Eng., 1992, A155:45-57
    50. P. B. Celis, E, Kagawa and K. Ishizaki, J. Mat. Res., 1991,6(10) : 2077-2083
    51. M. G. Mendirata, J. J. Lewandowski and d. M. Dimiduk, Met. Trans., 1991, 22A: 1573-1583
    52. V. Tvergaard and J. W. Hutchinson, J. Am. Ceram. Soc., 1988,71:157-166
    53. G. V. Samsonov, Handbook of High Temperature Materials, 1964, New York, Plenum Press, 2:130
    54. J. B. Berkowitz-Mattuck, Final Report, 1966, NASA Contract No. NASW-1167
    55. J. J. Lewandowski, D. Dimiduk, W. Kerr and M. G. Mendiratta, MRS Symp. Proc., 1988,120:103-109
    56. M. Es-Souni, D. Chen, B. Dogan, R. Wagner, P. A. Beaven and A. Bartels, Proceeding of International Symposium on Intermetallic Compounds (JIMIS-6) , 1991, ed. O. Izumi, Sendai, Japan, the japan institute of Metals: 525-529
    57. M. G. Mendiratta and D. M. Dimiduk, MRS Symp. Proc., 1989,133:441-446
    58. R. M. Nekkanti and D. M. Dimiduk, IntermetaUic Matrix Composites, MRS Symp. Proc., 1990,194: 175-182
    59. J. D. Rigney and J. J. Lewandowski, Ceramic Transactions, 1991, ed. M. D. Sacks, Westerville, OH, the American Ceramic Society, 19:519-525
    60. J. Kajuch, J. D. Rigney and J. J. Lewandowski, Mat. Sci. Eng., 1992, A155(1-2) : 59-65
    
    
    61. E. Fitzer, Proceeding of the Second Plansee Seminar, 1956, ed. F. Benesovsky, London, Pergamon Press: 56
    62. J. H. Westbrook and D. L. Wood, J. Nuc. Mat., 1964,12:208-215
    63. A. K. Vasudevan and J. J. Petrovic, Mat. Sci. Eng., 1992, A155: 1-17
    64. D. M. Dimiduk, M. G. Mendiratta and P. R. Subramanian, Structural Intermetallics, 1993, ed. R. Darolia et al, Warrendale, PA, TMS: 619-630
    65. D. M. Dimiduk, P. R. Subramanian and M. G. Mendiratta, International Workshop on Ordered Intermetallics Alloys and Composites, 1995,6: 25-30
    66. V. K. Sikka, S. Viswanathan and E. A. Loria, Superalloys, 1992, ed. S. D. Antolovich et al, Warrendale, PA, TMS: 423-431
    67. E. S. K. Menon, P. R. Subramanian and D. M. Dimiduk, Metall. Mater. Trans., Accepted for Publication.
    68. P. R. Subramanian, M. G. Mendriatta and D. M. Dimiduk, JOM, 1996,1:33-38
    69. P. R. Subramanian, M. G. Mendiratta and D. M. Dimiduk, High Temperature Silicides and Refractory alloys, 1994, ed. C. L. Briant et al, Pittsburgh, PA, MRS: 491-502
    70. D. L. Anton and D. M. Shah, High Temperature Ordered Intermetallic Alloys V, 1994, ed. I. Baker et al, Pittsburgh, PA, MRS: 141-150
    71. J. J. Petrovic and A. K. Vasudevan, High Temperature SUicides and Refractory Alloys, 1994, ed. C. L. Briant et al, Pittsburgh, PA, MRS: 3-8
    72. K. Sadananda and C. R. Feng, High Temperature Silicides and Refractory Alloys, 1994, ed. C. L. Briant et al, Pittsburgh, PA, MRS: 157-173
    73. K. D. Jones et al, Refractory Metals: Extraction, Processing and Applications, 1990, ed. K. C. Liddell, D. R. Sadoway and R. G. Bautista, Warrendale, PA, TMS: 321-334
    74. L. A. Bendersky and W. J. Boettinger, High Temperature Ordered Intermetallic Alloys III, 1989, ed. C. T. Liu et al, Pittsburgh, PA, MRS: 45-50
    75. L. S. Sigl et al,Acta Metall., 1988,36(4) : 945-953
    76. R. M. Nekkanti and D. M. Dimiduk, Intermetallic Matrix Composites, 1990, ed. D. L. Anton et al, Pittsburgh, PA, MRS: 175-182
    77. J. D. Rigney et al, High Temperature Ordered Intermetallic Alloys IV, 1991, ed. L. Johnson, J. O. Steigler and D. P. Pope, Pittsburgh, PA, MRS: 1001-1006
    78. M. G. Mendiratta and D. M. Dimiduk, Metall. Trans. A, 1993,24A: 501-504
    79. P. R. Subramanian et al., MRS Fall Meeting, 1994, Boston, MA, 30 November
    80. I. Weiss, M. Thirukkonda and R. Srinivasan, High Temperature Silicides and Refractory Alloys, 1994, ed. C. L. Briant et al., Pittsburgh, PA, MRS: 377-386
    81. B. P. Bewlay et al, Processing and Fabrication of Advanced Materials for High
    
    Temperature Applications Ⅲ, 1994, ed. V. A. Ravi, T. S. Srivastan and J. J. Moore, Warrendale, PA, TMS: 547-565
    82. L.A. Apgar, Ph. D. Thesis, 1995, University of Dayton
    83. A. K. Vasudevan and J. J. Petrovie. Mater. Sci. Eng., 1992, A155: 1~17
    84. B.K. Yen, T. Aizawa and J. Kihara, Mater. Sci. Eng., A220, 1996: 8
    85. R. B. Schwarz, S. R. Srinivasan, J. J. Petrovie and C. J. Maggiore, Mater. Sci. Eng., A155, 1992: 75
    86. A. Calka et al., J. Mater. Sci. Lett, 10, 1991: 734
    87. J. K. Joseph, D. Rigney and J. J. Lewandowski, Mater. Sci. Eng., A155, 1992: 59
    88. S. C. Deevi, Mater. Sci. Eng., A149, 1992: 241
    89. A. K. Bhattacharya, J. Am. Ceram. Soc., 74, 1991: 2707
    90. E. W. Lee et al., JOM, 43(3), 1991: 54
    91. C. H. Henager, Jr., J. L. Brimhall and J. P. Hirth, Mater. Sci. Eng., A155, 1992: 109
    92. J. Cook, A. Khan, E. Lee and R. Mahapatra, Mater. Sci. Eng., A155, 1992: 183
    93.张永刚,韩雅芳,陈国良,郭建亭,万晓景,冯涤主编,金属间化合物结构材料,国防工业出版社,2001
    94. Y. Umakoshi, T. Sakagami, T. Hirano and T. Yamane, Acta Metall. Mater., Vol. 38, No. 6, 1990: 909
    95. K. Ishikawa, H. Inui and M. Yamaguchi, The Third Pacific Rim International Conference on Advanced Materials and Processing (PRICM 3), The Minerals, Metals & Materials Society, 1998: 2455
    96. T. E. Mitchell, R. G. Castro, J. J. Petrovic, S. A. Maloy, O. Unal and M. M. Chadwick, Mater. Sci. Eng., A155, 1992: 241
    97. M. A. Meyers et al, Mater. Sci. Eng., A201, 1995: 150
    98. K. S. Vecchio, L. H. Yu and M. A. Meyers, Acta MetalL Mater., 42, 1994: 701
    99. B. R. Krueger, A. H. Muntz and T. Vreek Jr., Metall. Trans. A, 23A, 1992: 55
    100.吕伟,徐祖耀等,金属学报,1993,29A:307
    101.张东彬,吴承建,金属学报,1988,28A:100
    102.赵光存,宋为顺,稀土在钢铁中的应用,冶金出版社,1987:282
    103.林肇琦等,中国稀土学报,1992,10:247
    104.肖程波,钇和硅对Ni_3Al基合金IC6微观组织和性能的影响,北京航空材料研究院博士论文
    
    
    105.肖程波,韩雅芳,金属学报,1998,34(11):1158-1162
    106.韩雅芳,肖程波,金属学报,1998,34(11):1153-1157
    107. R. M. Wang and Y. F. Han, J. Mat. Sci., 1998, 33: 569-5077
    108.王荣明,宋颖刚,韩雅芳,张绍维,金属学报,1999,35(增刊):S478-481
    109. G.A. Henshall, P. R. Subramanian, M. J. Strum and M. G. Mendiratta, Acta Mater., 45(8), 1997: 3135-3142
    110. P.R. Subramanian, T. A. Parthasarathy, M. G. Mendiratta, and D. M. Dimiduk, Scripta Metall. Mater. 32(8), 1995: 1227-1232
    111. M.G. Mendiratta and D. M. Dimiduk, Metall. Trans. A, 24A, 1993: 501-504
    112. J.D. Rigney, P. M. Singh and J. J. Lewandowski, JOM, 8, 1992: 36-41
    113. B.P. Bewlay, M. R. Jakson and H. A. Lipsitt, Metall. Mater. Trans. A, 27A, 1996: 3801-3808
    114.李春志,金属学报,1985,21B:233
    115. M.G. Mendiratta, J. J. Lewandowski and D. M. Dimiduk, Metall. Trans. A, 22A, 1991: 1573-1583
    116. R.T. DeHoff and F. N. Rhines, Quantitative Microscopy, ed. McGraw-Hill Inc., New York, NY, 1968: 45-77
    117.Г.П.切列帕诺夫,脆性断裂力学,科学出版社,1990
    118.伍义生,陈一坚,曾春华,微观断裂力学,西北工业大学,1987
    119. M.G. Mendiratta, J. J. Lewandowski and D. M. Dimiduk, Metall. Trans. A, 22A, 1991: 1573-1583
    120.H. H. Uhlig, R. W. Revie, 腐蚀与腐蚀控制,翁永基译,石油工业出版社,1994
    121. H.M. Tawancy, Metall. Trans. A, 1991, 22A: 1463-1465
    122. H.M. Tawancy and N. Sridhar, Oxicd. Met., 1992, 37; 143-166

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700