Al-Cu-Fe系合金相结构及初生准晶凝固动力学的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对Al-Cu-Fe系合金(成分范围Al_(48-60)Cu_(33-50)Fe_(0-10)的铸态及热处理态试样,采用金相(OM),X射线衍射(XRD),差热分析(DTA),扫描电子显微术(SEM)和透射电子显微术(TEM)等研究方法,对其显微组织、相结构及相组成等进行了分析。发现了Al-Cu-Fe合金中稳定的三元化合物Φ相具有两种变体:高温变体Φ_1和低温变体Φ_2。在873K以上,高温结构Φ_1具有τ_3(Al_3Cu_2)型结构,沿着<111>B_2有3倍的调制;低温结构Φ_2在763 K以下,具有沿着<011>B_2方向的10倍的调制结构。微区X射线能谱(EDXS)分析表明,Φ相化学成分范围为Al_(47.3-50.6)Cu_(45.4-48.1)Fe_(4.5-5),成分区中心是Al_(47.9)Cu_(47.1)Fe_(5.0)。此外还发现了Al-Cu-Fe合金中ε_1相的结构。通过对照模拟计算的与实验的选区电子衍射(SAED)花样,对Al-Cu-Fe合金中的β相,τ_3相,ε_1相,η_2相分别进行了鉴定,并指出如何由选区电子衍射花样的特征来区别这些相。
     本文工作表明,在Gayle等报道的Al-Cu-Fe三元系液相面投影图中,β相液相面应划分为Φ+β两个区域,本文确定了三元化合物Φ相液相面与邻近相液相面的交线,修正了Al-Cu-Fe合金的局部液相面投影图。本文探明了三元化合物Φ相在初生准晶相的凝固过程中所起的作用,发现了一新的包共晶反应点U_8(~1073 K):L+β→IQC+Φ。修正的三元相变反应为:包共晶反应U_5:L+IQC→Φ+ω(原反应U_5:L+IQC→β+ω),包共晶反应U_6:L+ε→Φ+η(原反应U_6:L+ε→β+η),包共晶反应U_7:L+Φ→ω+η(原反应U_7:L+β→ω+η)。
     对准晶I相及其晶体近似相R相,提出了相应的自由能计算模型及算法,从热力学上论证了准晶(Al_(61.89)Cu_(25.61)Fe_(11.10))I相的高温稳定性;在低于T_r(938K)时,将形成其晶体近似相R相。对准晶I相及其晶体近似相R相,根据经典的形核理论,采用所提出的自由能计算模型,计算并比较了非均质形核方式下的准晶I相及其晶体近似相R相的形核功及形核率。计算结果表明,合金熔体中,从很小的过冷,直到准晶I相的平衡液相面温度(T_L=1130K)下150K的过冷范围,准晶I相的形核功在10ev以下,而准晶I相的晶体近似相R相的形核功则趋于“无限大”,表明R相的形核难以实现。对准晶I相及其晶体近似相R相的形核率计算表明,从小的过冷直到准晶I相平衡液相面温度(T_L=1130K)下150K的过冷范围,准晶I相都会首先形核,而其晶体近似相R相不具备从液相中初生形核的动力学条件。
     采用简化的传热物理模型,模拟计算了初生准晶I相的体积分数,
    
    并与实验测定值进行了比较和分析.分析表明,平衡的初生准晶I相的
    最大体积分数决定于合金的化学成分和状态图特征.当采用缓冷和水淬
    法制备时,可获得较大体积分数的初生准晶I相.
     本文工作得到河南省特种功能材料重点实验室资助项目
    (No.9926)及国家自然科学基金资助项目(19974030)的支持.
A series of Al-Cu-Fe alloys with chemical composition of Al48-6oCu33.5oFeo-io was prepared and the phase constituents in these alloys quenched from various temperatures were identified by using optical microscopy (OM), X-ray diffraction (XRD), differential thermal analyses (DTA), scanning electron microscopy (SEM) with energy dispersive X-ray spectrometer (EDXS) and electron back scattered diffraction (EBSD), and transmission electron microscopy (TEM) including high resolution TEM (HRTEM). The present investigation revealed that the stable ternary Al-Cu-Fe O phase has two variants. The high temperature variant (designated as 甶 phase) is stable when temperature is higher than 873 K and has a structure of t3(Al3Cu2) phase, which is a 3 times modulation structure along a <111>2 direction. The low temperature variant (designated as ? phase) is stable when temperature is lower than 763 K and has a 10 times modulation structure along a <011>2 direction. EDXS revealed that the chemical composition of

    as in the range of AUy.3-50.eCu45.4-48.iFe4.5-5, and its center composition was AUv.9(^47.iFes.o. Besides, the structure model of 81 -A^Cus phase, which was unknown before, had been identified by selected area electron diffraction (SAED). Chemical compositions and crystalline structures of some phases in these Al-Cu-Fe alloys, including 13, r\2, ? phases, which are vacancy-ordered phases based on the B2 structure, have been studied by SEM and TEM. p, 13, t|2, and si phases in Al-Cu-Fe alloys were identified by comparing experimental and calculated SAED patterns. By analyzing the rules of the appearance of superreflections in SAED patterns along different zone axes of different phases, the method of differentiating these phases by their SAED patterns has been pointed out.
    Compared with the polythermal projection proposed by Gayle et al, a main amendment has been made to divide the previous /??region into J3+0 two regions. A new ternary reaction is the quasiperitectic at Ug: L+/??CZH-IQC. IQC represents icosahedral quasicrystal phase. The revised ternary reactions are at U5: L+IQC?-" (revised from U5: L+ IQC?0 + "), at U6: L+e?co + q (revised fromU?: L+ 3 ?co + n.).
    
    
    A thermodynamic model and the calculation method of the change of Gibbs free energy during the primary solidification of the IQC and its approximant crystal phase have been proposed. The thermodynamic analyses show that the IQC is stable at high temperature and solidifies as a primary stable phase when temperature is greater than 938 K. Under which, its approximant crystal phase emerges.
    By using a proposed thermodynamic model for the calculation of the change of Gibbs free energy during the primary solidification of the IQC and its approximant crystal phase, the nucleation energies and nucleation rates for the IQC and its approximant crystal phase were calculated according to the classic theory. Calculation reveals that the nucleation energy for IQC is below lOev, and for its approximant cryatal phase, the nucleation energy reaches to infinity when the undercooling is in the range of 0-150 K. As a result, the IQC will nucleate primarily when the temperature of the undercooled liquid alloy is in the range of 1130 K to 980 K.
    A simplified heat transfer model was used to calculate the volume fraction of the primary IQC, and calculation results were compared with the experimental measurements. While the maximum volume fraction of the primary IQC in the equilibrium state can be determined by the chemical composition of the alloy and the data of the phase diagram, the slow cooling and solidification of the alloy in a mould retained at certain temperature followed by subsequent quenching into water can provide a relatively large volume fraction of the primary IQC.
    This project were supported by the Foundation of the Key Laboratory for Special Functional Materials of Henan Province (Grant No.9926) and National Natural Science Foundation of China (Grant No. 19974030).

引文
1. D.Shechtman,I.Blech, D.Gratias,J.W.Cahn: Metallic phase with long-range orientational order and no translational symmetry [J], Phys.Rev. Lett. 53 (1984)1951-1953
    2.王仁卉,郭可信:晶体学中的对称群[M] 北京:科学出版社 1990:p732
    3. L.Bendersky: Quasicrystal with One-Dimensional Translational Symmetry and a Tenfold Rotation Axis [J] Phys. Rev. Lett. 55 (1985) 1461-1463
    4. K. K. Fung, C. Y. Yang, Y. Q. Zhou, J. G. Zhao, W. S. Zhan, and B. G. Shen: Icosahedrally Related Decagonal Quasicrystal in Rapidly Cooled Al-14-at.%-Fe Alloy [J] Phys. Rev.Lett.56 (1986) 2060-2063
    5. K. K. Fung, C. M. Teng, Y.Q. Zhou, F.H. Li, J.G. Zhao and W.S. Zhan: Coexistence of decagonal and icosahedral phases in Al_4Mn alloy [J] J.Phys.F:Met.Phys. 16 (1986) L233-L237
    6. T. Ishimasa, H.-U. Nissen, and Y. Fukano: New ordered state between crystalline and amorphous in Ni-Cr particles [J] Phys.Rev.Lett. 55(1985)511-513
    7. N.Wang,H,Chen and K.H. Kuo: Two-dimensional quasicrystal with eightfold rotational symmetry [J] Phys.Rev.Lett.59(1987)1010-1013
    8. V.Elser: Indexing problem in quasicrystal diffraction [J] Phys. Rev. B32 (1985) 4892-4998
    9. V.Elser: The diffraction pattern of projected structure [J] Acta Cryst.A 42 (1986)36-43
    10. E.Spaepen,L.C.Chen,S.Ebalard and W.Ohashi, in M.V.Jaric and S.Lundqvist(eds.): Quasicrystal[M], World Scientific, Singapore, 1990: 1-18
    11. T.Ishimasa,Y.Fukano and M.Tsuchimori:[J] Phil. Mag.Lett. 62 (1990) 357
    12. A.P.Tsai,A.Inoue and T.Masumoto: Chemical order in an Al-Pd-Mn icosahedral quasi-crystal [M], Philos.Mag. Lett. 62(1990)95-100
    13. A.P.Tsai, A.Inoue, Y.Yokoyama, T. Masumoto: New icosahedral alloys with superlattice order in the Al-Pd-Mn system prepared by rapid
    
    solidification[J], Philos. Mag. Lett. 61 (1990): 9-14
    14. D.Zhao, Y.Tang, Z.Luo, N.Shen, R.Wang, S. Zhang: The face-centered icosahedral quasicrystalline phase in Mg-Zn-Y-Zr alloys [J] Mater. Lett. 23(1995)277-281
    15.周公度,郭可信:晶体和准晶体的衍射[M],北京大学出版社,1999
    16.宋余九:金属材料的设计、选用、预测[M],机械工业出版社,1998
    17. A.Csanady, P.B.Barna,J.Mayer, K.Urban: Preparation of aluminium based icosahedral thin films by high-temperature vapour deposition [J] Scripta Metallurgica 21(1987) 1535-1540
    18. J.A.Sekhar, T.Rajasekharan: [J] Nature 320(1986)153
    19. D. A. Lilienfeld, M. Nastasi, H. H. Johnson, D. G. Ast, and J. W. Mayer: Amorphous-to-Quasicrystalline Transformation in the Solid State [J] Phys.Rev.Lett.55(1985) 1587-1590
    20. S. R. Nishitani, H. Kawaura, K. F. Kobayashi and P. H. Shingu: Growth of quasi-crystals from the supersaturated solid solution [J] J. Crystal Growth 76(1986)209-214
    21. W. A. Cassada, Y. Shen, S. J. Poon, and G. J. Shiflet: Mg_(32) (Zn,Al)_(49)-type icosahedral quasicrystals formed by solid-state reaction and rapid solidification [J] Phys.Rev.B34(1986)7413-7416
    22. D. M. Follstaedt and J. A. Knapp: Icosahedral-Phase Formation by Solid-State Interdiffusion [J] Phys.Rev.Lett.56(1986) 1827-1830
    23. B.Dubost, J.M.Lang, M.Tanaka, P.Sainfort, M. Audier: [J] Nature 324 (1986) 48
    24. P. Sainfort, B. Dubost: The T2 compound - a stable quasi-crystal in the system Al-Li-Cu-(Mg) [J], Journal de Physique 47 (C-3) (1986): 321-330
    25. A.P. Tsai, A. Inoue, Y. Yokoyama, T. Masumoto: New icosahedral alloys with superlattice order in the Al-Pd-Mn system prepared by rapid solidification [J], Philos. Mag. Lett. 61 (1) (1990) 9-14
    26. A.P. Tsai, A. Inoue, T. Masumoto: Chemical order in an Al-Pd-Mn icosahedral quasi-crystal [J], Philos. Mag. Lett. 62 (2) (1990) 95-100
    27. Z.P.Luo,S.Q.Zhang,Y.L.Tang and D.S.Zhao: Quasicrystals in as-cast Mg-Zn-RE alloys [J] Script.Metall.Mater.28(1993)1513-1518
    
    
    28. A. Niikura, A.P. Tsai, A. Inoue, T. Masumoto: Stable Zn-Mg-rare-earth face-centred icosahedral alloys with pentagonal dodecahedral solidification morphology [J], Philos. Mag. Lett. 69 (1994a) 351-355
    29. A. Niikura, A.P. Tsai, A. Inoue, T. Masumoto: New class of amorphous and icosahedral phases in Zn-Mg-Rare-Earth metal alloys [J], Jpn. J. Appl. Phys. 33(1994b) L1538-L1541
    30. A. P. Tsai, A. Niikura, A. Inoue, T. Masumoto, Y. Nishida, K. Tsuda, M. Tanaka: Highly ordered structure of icosahedral quasicrystals in Zn-Mg-RE (RE = rare earth metals) systems [J], Philos. Mag. Lett. 70(1994) 169-175
    31. A.R. Ross, T.A. Wiener, I,R.Fisher, P.C. Canfield, T.A. Lograsso: Formation and morphological development of porosity in icosahedral Al-Pd-Mn alloys [J] Materials Science and Engineering A 294-296 (2000)10-16
    32. A.P.Tsai:in Physical Properties of Quasicrystals [M], eds Z.Stadnik, Springger Series in Solid-State Sciences 126,(Spring-Verlag Berlin Heidelberg, 1999)
    33.董闯:准晶材料[M],国防工业出版社,1998
    34. P. Liu, A.H. Stigenberg, J.-O. Nilsson: Quasicrystalline and crystalline precipitation during isothermal tempering in a 12Cr-9Ni-4Mo maraging stainless steel [J] Acta. Metall.Mater. 43(1995)2881-2890
    35. A.H. Stigenberg, J.O. Nilsson, P. Liu: International Patent Application No.WO95/09930,1995-04-13
    36. T.Masumoto,A.Inoue,M.Watanabe,et al:US Pat. 5 458 700,1995-10-17
    37. A.P.Tsai, K.Aoki, A.Inoue, T. Masumoto: Synthesis of stable quasicrystalline particle-dispersed Al base composite alloys [J] J. Mater. Res. 8(1993)5-8
    38.齐育红,张占平,黑祖昆,严立,董闯:Al_(65)Cu_(20)Cr_(15)准晶颗粒/Al基复合材料的摩擦学性能[J] 摩擦学学报,18(1998) 129-135
    39. A. M. Viano, R. M. Stroud, P. C. Gibbons, A. F. McDowell, M. S. Conradi, and K. F. Kelton: Hydrogenation of titanium-based quasicrystals [J] Phys.Rev.B51(17) (1995) 12026-12029
    40. K.F.Kelton, P.C.Gibbons: MRS Bulletin,(1997)69
    
    
    41. D.J. Sordelet, S.D. Widener, Y. Tang, M.F. Besser: Characterization of a commercially produced Al-Cu-Fe-Cr quasicrystalline coating [J] Materials Science and Engineering A, 294-296(2000) 834-837
    42. A.J.Bradley, H.J.Goldschmidt: An x-ray study of slowly cooled iron-copper- aluminium alloys. Part Ⅰ. - Alloys rich in iron and copper [J], J.Inst.Metals 65(1939)389-401
    43. A.J.Bradley, H.J.Goldschmidt: An x-ray study of slowly cooled iron-copper- aluminium alloys. Part Ⅱ. - Alloys rich in aluminium [J],J.Inst.Metals 65(1939) 403-418
    44. A.P.Tsai, A.Inoue and T.Masumoto: A stable quasi-crystal in Al-Cu-Fe system [J] Jpn.J.Appl.Phys.26(1987)L1505-L1507
    45. A.P.Tsai, A.Inoue and T.Masumoto: Preparation of a new Al-Cu-Fe quasicrystal with large grain sizes by rapid solidification [J],J. Mater. Sci. Lett. 6 (1987): 1403-1405
    46. Y.Calvayrac, A.Quivy, M.Bessiere, S.Lefebvre, M.C.Quiquandon, D. Gratias: [J] J.Phys.Paris 51(1990)417
    47. C.Dong, M.de Boissieu, J.M.Dubois,J.Pannetci,C.Janot: Real-time study of the growth of Al-Cu-Fe quasicrystals [J] J. Mater. Sci. Lett. 8(1989) 827-830
    48. B. Grushko, R. Wittenberg, D. Holland-Moritz: Solidification of Al-Cu-Fe alloys forming icosahedral phase [J], J. Mater. Res. 11 (1996) 2177-2185
    49. J-N.Barbier, N.Tamura, J-L. Verger-Gaugry: Monoclinic Al_(13)Fe_4 approximant phase - a link between icosahedral and decagonal phases[J], J. Non-Cryst. Solids 153 & 154(1993): 126-131
    50. K. Balzuweit, H. Meekes, G. van Tendeloo, J.L.de Boer: On the relationship between morphology, composition and structure of Al-Cu-Fe crystals and quasi-crystals [J], Philos. Mag. B 67 (1993)513-532
    51. Y.F. Cheng, M.J. Hui, X.S. Chen, F.H. Li: Relationship between icosahedral and monoclinic phases in Al-Cu-Fe alloy [J], Philos. Mag. Lett. 61(1990): 173-179
    52. C. Voltz, J. Bletry, M. Audier: Drop tube solidification of Al-Cu-Fe quasicrystalline phases, Philos. Mag. A 77 (1998)1351-1366
    53. D. Gratias, Y. Calvayrac, J. Devaud-Rzepski, F. Faudot, M. Harmelin,A. Quivy,
    
    P.A. Bancel:The phase-diagram and structures of the ternary AlCuFe system in the vicinity of the icosahedral region; J. Non-Cryst. Solids153 & 154 (1993) 482-488
    54. F.Faudot,F. Faudot, A. Quivy, Y. Calvayrac, D. Gratias, M. Harmelin: About the Al-Cu-Fe icosahedral phase formation [J],Mater. Sci. Eng. A 133 (1991) 383-387
    55. J. Grin, U. Burkhardt, M. Ellner, K. Peters: Refinement of the Fe_4Al_(13) structure and its relationship to the quasi-homological homeotypical structures [J], Z. Kristallogr. 209 (1994): 479-487
    56. G. Rosas, R. Perez: On the transformations of the Ψ-AlCuFe icosahedral phase [J] Materials Letters 47(2001)225-230
    57. T. Grenet, F. Giroud, C. Loubet, J.L. Joulaud, M. Capitan: Real time study of the quasicrystal formation in annealed Al-Cu-Fe metallic multilayers [J] Materials Science and Engineering 294-296 (2000) 838-841
    58. F. Faudot: The Al-Cu-Fe phase-diagram - aluminum-rich corner and icosahedral region [J], Annales de Chimie - Science Des Materiaux (France) 18(1993)445-456
    59. C.Dong, J.M.Dubois, M.de Boissieu,and C.Janot: Neutron diffraction study of the peritectic growth of the Al_(65)Cu_(20)Fe_(15) icosahedral quasi-crystal [J] J.Phys.: Condens. Matter, 2(1990)6339-6360
    60.张瑞康,王建波,汪大海,刘静,陈方玉,陈小梅,桂嘉年,王仁卉:Al_(65)Cu_(20)Fe_(15)合金的凝固组织及二十面体准晶的生成[J] 金属学报 35(1999)463-466
    61.王建波:二十面体准晶的微结构与力学性能[D] 武汉大学博士学位论文,2001
    62. F.Gayle,A.J.Shapiro,F.S.Biancaniello and W.J.Boettinger: The Al-Cu-Fe phase-diagram: 0 to 25 at pct Fe and 50 to 75 at pct Al -equilibria involving the icosahedral phase [J], Matall.Trans. 23A(1992)2409-2417
    63. F. Gayle: Phase equilibria at 550℃ in the Al-Cu-Fe system: 50 to 70 at.% Al, 0 to 9 at.% Fe [J], J. Phase Equilib. 13 (1992)619-622
    64. P.A.Bancel: Order and disorder in icosahedral alloys[A], In: D.P. Divincenzo, P.J. Steinhardt (eds) Quasicrystals: the State of Art [C] Singapore:
    
    World Scientific, 1991, p. 17
    65. M.Quiquandon, A.Quivy, J.Devaud, F.Faudot, S.Lefebvre, M. Bessiere, Y. Calvayrac: Quasicrystal and approximant structures in the Al-Cu-Fe system [J], J.Phys.: Condens. Matter 8(1996)2487-2512
    66. J. N. Gui, J.B. Wang, R.H. Wang, D.H. Wang, J. Liu, and F.Y. Chen: On some discrepancies in the literature about the formation of icosahedral quasicrystal in Al-Cu-Fe alloys [J] J. Mater. Res. 16(2001)1037-1046
    67. L. M. Zhang, R.Lueck: P hase equilibria of the icosahedral Al-Cu-Fe phase [J] Journal of Alloys and Compounds 342 (2002) 53-56
    68. C.Dong, L.M. Zhang, E. Belin-Ferre, P.Brunet, J.M. Dubois:Surface properties of the B2-based approximants in relation to uasicrystals [J] Materials Science and Engineering A304-306 (2001) 172-177
    69. S.M. Lee, H.J. Jeon, B.H. Kim, W.T. Kim, D.H. Kim: Solidification sequence of the icosahedral quasicrystal forming Al-Cu-Fe alloys [J] Materials Sci. Eng. A.304-306 (2001) 871-878
    70. K.Balzuweit, H.Meekes, G. van Tendeloo, J.L. de Boer: Phil. Mag. B. 67(1993)513
    71. W. Liu, M. Schmucker, U. Koster: [J] Phys. Status.Solidi (a) 124 (1991)75
    72.胡汉起,沈宁福:金属凝固原理[M],北京:机械工业出版社,1993
    73. L.Pauling: [J] J.Amer.Chem.Soc.,69(1947)542
    74. F.C.Frank: [J] Proc.R.Soc.London A,215(1952)43
    75. D.Holland-Moritz,J.Schroers,D.M.Herlach,B.Grushko and K.Urban: Udercooling and solidification behaviour of melts of the quasicrystal- forming alloys Al-Cu-Fe and Al-Cu-Co [J] Acta Mater. 46 (1998) 1601-1615
    76. D. Holland-Moritz, J.Schroers, B.Grushko, D.M.Herlach, K.Urban: Dependence of phase selection and microstructure of quasicrystal- forming Al-Cu-Fe alloys on the processing and solidifications [J], Materials Sci. Eng. A226-228 (1997) 976-980
    77. D.M. Herlach, F. Gillessen, T. Volkmann K.Urban: Phase selection in undercooled quasicrystal-forming Al-Mn alloy melts [J].Phys. Rev. B,46 (1992) 5203-5210
    
    
    78. L.Battezzati, C. Antonione F. Marino: Some thermodynamic and kinetic aspects of icosahedral phase nucleation in Al-Mn [J] Journal of Materials Science 24 (1989) 2324-2330
    79. F.Spaenpen: A structural model for the solid-liquid interface in monatomic systems [J] Acta Metall. 23(1975)729-743
    80. A. P. Tsai, H.S. Chen, A. Inoue, T. Masumoto: Interface stability, growth and morphology of quasicrystals [J] J. Non-Cryst. Solids, 153-154 (1993b) 513-518
    81.王仁卉,胡承正:准晶物理学[M],北京:科学出版社,2003
    82. D.J. Dingly, K.Z. BaBa-Kishi, V. Randle: Atlas of back scattering kichuchi diffraction patterns [M]Inst. of Phys. Publishing, Bristol, 1995
    83.朱静:取向成像电子显微术[J] 电子显微学报 16(1997)210-217
    84.王仁卉,桂嘉年,陈小梅,施丹,王建波,张瑞康,陈方玉,刘静,汪大海:电子背散射衍射在取向测定和相分析中的应用[J],电子显微学报,17(1998) 549—550
    85.陈小梅,刘静,王建波,张瑞康,汪大海,王仁卉,桂嘉年,陈方玉:晶粒取向和物相组成的电子背散射衍射测定[J] 武汉大学学报(自然科学版),45(1999)65-68
    86. X. Chen, J. Gui, R. Wang, J. Wang, J. Liu, F. Chen, D. Wang: Orientation relationships of martensite variants determined by electron backscatter diffraction [J], Micron 31 (2000)17-25
    87.孙丽虹 刘安生 邵贝羚 孙继先 陈朝庆 胡广勇 张希顺:扫描电镜电子背散射衍射系统的研制[J] 电子显微学报 19(2000)623-624
    88.张希顺,刘安生,邵贝羚,孙丽虹,孙继先,胡广勇,陈朝庆:电子背散射衍射系统的研制和改进[J] 电子显微学报,20(2001)263-269
    89.姚鸿年:金相研究方法[M],中国工业出版社,1963,p367.
    90. D. Zhao, R. Wang, Y. Cheng and Z. Wang: Calculation of diffraction patterns of the icosahedral phase [J] J. Phys. F: Met. Phys. 18 (1988) 1893-1904
    91.梁敬魁:粉末衍射法测定晶体结构[M] 北京:科学出版社 2003:p343
    92.江建生,李方华:电子的原子散射因子解析表达式的拟合[J] 物理学报 33(1984)845-848
    93. N. Menguy, M. de Boissieu, P. Guyot, M. Audier, E. Elkaim, J.P. Lauriat:
    
    Single-crystal x-ray study of a modulated icosahedral AlCuFe phase [J] J.Phys. Ⅰ, France 3(1993)1953-1968
    94. E. E. Havinga, H. Damsma and P. Hokkeling: Compounds and pseudo-binary alloys with the CuAl_2(C16)-type structure Ⅰ. Preparation and X-ray results [J] Journal of the Less Common Metals 27(1972) 169-186
    95. E. E. Havinga: Compounds and pseudo-binary alloys with the CuAl_2(C16)-type structure Ⅱ.theoretical discussion of crystallographic parameters [J] Journal of the Less Common Metals 27(1972)187-193
    96. M. El-Boragy, R.Szepan and K.Schubert: Kristallstruktur von Cu_3Al_(2+) (h) und CuAl (r) [J] Journal of the Less Common Metals 29(1972) 133-140
    97. B. Grushko, K. Urban, and Ch. Freiburg: An Al_3Ni_2-type phase in the Al-Cu-Co system [J] Scripta Metallurgica et Materialia 25(1991) 2533-2536
    98. M.Van Sande, J. Van Landuyt, M. Avalos-Borja, G. Torres Villasenor, S.Amelinckx: A reinvestigation of the γ phase in Cu-Al alloys: a new long-period superstructure [J] Mater. Sci. Eng. 46 (1980)167-173
    99. C. Dong: The γ-Al4Cu9 Phase as Approximant of Quasicrystals [J] Phil. Mag. A 73(1996)1519-1526
    100.石霖.合金热力学[M].机械工业出版社,北京 1992:45,46
    101.徐祖耀.金属材料热力学[M].科学出版社,北京 1981:123
    102.徐祖耀,李麟.材料热力学[M].科学出版社,北京 2000:32,88
    103.罗治平.Mg-Zn-Zr-RE稀土镁合金的微观结构[D].北京航空材料研究所博士学位论文,1993
    104. L. Battezzati, C. Antonione, F. Marino: Some thermodynamic and kinetic aspects of icoshedral phase nucleation in Al-Mn [J] J. Mater. Sci. 24(1989)2324-2330
    105.巴发海.快速凝固Ni-Al合金的相组成和凝固动力学研究[D].北京:北京科技大学,2001
    106.常国威,王建中.金属凝固过程中的晶体生长与控制[M].冶金工业出版社,北京 2002:41

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700