电介质和庞磁电阻材料微结构的高分辨透射电子显微术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从人类进入信息时代,与之相关的新材料也是日新月异,标志之一是计算机各种硬件更新换代之快让人刮目相看,例如高容量的硬盘和高速度的CPU。我们知道,硬盘与磁性材料相关而CPU处理器里有大量的与电介质相关的MOS管和电容器。对于磁性材料来说,从1993年人们在La_(1-x)Ba_xMnO_3中发现了庞磁电阻特性后,这一研究方向更加火爆,我们注意到虽然它有巨大的应用前景,但是把这种复杂的氧化物推广到实际应用并非易事,还有很长的一段路要走。由于其成分的掺杂而引起的结构和性能的变化相当复杂,因此本论文的前一部分就是对它们的块状材料的结构和它们的薄膜特性进行初步的研究。对于电介质材料来说,我们知道,传统的动态随机存储器的设计,利用了在硅表面自然形成的SiO_2非晶层作为电介质材料,工艺上非常简单和成熟。但是动态随机存储器的存储密度需要不断的提高来满足市场的要求,这就要求不断的减小二氧化硅非晶层的厚度。然而,当电介质的厚度小到一定程度后,电子的隧道穿透效应将会使该器件无法工作。后来人们开始寻找其它解决途径,其中最有效的途径是用高电容率的电介质替换低电容率的二氧化硅来满足集成度提高的要求。它的优点是可以不改变电介质层,并且在工艺上能使用传统、成熟、简单的SiO_2流程。但是其缺点也是非常突出,这些材料同样需要克服许多的困难才可用于应用。如热稳定性,界面质量,漏电流的大小等等,这些复杂性将带来的是难以应用或器件制造成本的上升。正是在这样的背景下,人们试图寻找一种高电容率的电介质材料来代替传统的低电容率的非晶SiO_2而且又满足相关的条件,为继续提高存储器件的密度做准备,这正是本论文后半部分的主要研究内容。
     本文对磁性和电介质材料分别进行了不同方面的研究,主要内容如下:
     一、关于庞磁电阻材料La_(1-x)Ca_xMnO_3正交到立方的相变研究
     La_(1-x)Ca_xMnO_3这种奇特氧化物非常地有趣,当x小于0.5时观察到的奇特物理性能是庞磁电阻效应,而当x大于0.5时,在居里温度以下能则能观察到电荷有序,自旋有序和轨道有序等特性,所以Chen等人认为在低温时观察到的La_(1/3)Ca_(2/3)MnO_3畴是电荷有序畴,但是王仁卉等用透射电子显微镜系统地研究这一成分后发现电荷有序没有发生时即在室温也能观察到这种畴,他们进一步用群论的知识分析了当在高温时发生立方到正交的相变时各种可能的取向畴,与他们的实验相当吻合。
     这里我们利用多晶X射线衍射仪研究了锰基钙钛矿La_(1-x)Ca_xMnO_3(X=3/8,1/2,2/3)的X射线衍射花样随成分和温度的变化。第一次观察到当温度达到750℃或900℃时有从正交到立方的相变。这一实验结果进一步地证明王仁卉等在室温时观察到的取向畴是由立方到正交相变引起,而不是电荷有序引起。同时我们还发
    
    现这些材料在室温时正交钙钦矿和在高温时立方钙钦矿的单胞参数都随成分的变
    化而变化,随X的减小而增大。
     二、用PLD外延生长在SrTi伪和NdGaO3上的Lao.7Ca0JMn03薄膜的微结构
     我们主要用电子显微学方法来研究薄膜在不同的衬底和厚度时表现出不同
    的结构特性。通过观察截面样品发现由于在Lao.7Cao.3Mno犷NdGa03系统中是小
    的晶格失配,它比生长在SrTio3衬底上的薄膜有较高的质量和完整性;对于
    Lao.7CaooMnO3/N dGa03,在很大的范围内很难发现失配位错,而对于
    La07ca0JMno声rTio3系统,频繁的观察到Burgers矢为b=a牧?
    类失配位错。
     通过综合用X射线能谱方法和电子衍射分析方法发现析出的第二相是
    MnO,它呈柱状,并且大部分分布在离界面几个纳米以上的薄膜中。在
    Lao.7CaooMnO犷NdGa03体系中,Mno析出相只在平面样品中观察到,密度很
    低。其它的人也报道过不同的Mn氧化物析出相,但是所有这些工作中,在母体
    中析出的第二相都是相应于在靶材料中Mn的过量。而这里靶材料是化学计量
    的,我们也发现了第二相MnO,它可以解释为局部的化学成分的波动而引起。
    柱状的析出相的形成也可以有助于释放来源于衬底的抑制而没有完全释放的应变
    所引起应力能,当位错数少于应力完全释放所要求的数目时它稳定位错的布局。
     三、用MOCVD方法生长在si衬底上S叮103的微结构
     从前面知道,在替代510:方面,一个很大的挑战是让高电容率的电介质材
    料直接生长在Si衬底上并且达到所要求的物理性能,而且要使它的生产工艺不
    能太复杂最好是和传统的是一样的。特别困难的是不让它生长出低电容率和高电
    子捕获能力的界面层。对于SrTio3,也正在想办法让它能够外延生长在si上,
    以避免多晶薄膜的晶粒边界导致电子特性的复杂化。
     这里我们主要集中研究用MOCVD方法生长的SrTIO3薄膜,利用电子显微
    镜研究SrTIO3薄膜的微结构和界面。从平面样品上看,SrTio3薄膜是具有任意方
    向晶粒的多晶。从截面样品看,在薄膜和基底之间我们观察到一层非晶的界面
    层,它的厚度开始是一个快速的增加(在目前的先驱液下,在同样的生长条件下
    它比相应的510:非晶长得还要快),然后很快的达到一个准饱和值。在沉积过程
    中,这个非晶界面的厚度随氧气的分压增加而增加,如果氧的压力达到最小值
When man came into informational era, great changes have taken place in advanced materials, which quickly renewed the hardware of computer. For examples, high speed hard-disc and CPU. As well known, hard-disc is relative to magnetic materials, and CPU device be consisted of MOS transistors and capacitors which are related to dielectric materials, therefore, new materials such as colossal magneto-resistance materials and high permittivity dielectric materials have been extensively studied in the past several years. For magnetic materials, since in 1993 colossal magnetoresistance (CMR) effect was found in La2/3Ba1/3MnO3 perovskite, great attention has been paid to this field. Though their prospects in application are very bright, the structures and properties of these complex oxides have not been very clear and many problems need to be resolved prior to application. The first part in this thesis will discuss the complex structure and the thin films of these metal oxides. For the high permittivity dielectric m
    aterials, we know, the design of conventional dynamic random access memory (DRAM) uses the amorphous SiO2 on the surface of Si substrate, a simple and ripe procedure. However, to accommodate the change of the market, the density of DRAM needs higher and higher. And this requires a decrease of thickness of amorphous SiO2 layer. However, scaling to some extent, the device can not be used because of the large tunneling current. Then, one of the best methods is to replace the low constant dielectric SiO2 by high permittivity materials. Its merit is that we can continue to use old procedure. However, many problems also need to be resolved, such .as thermodynamic stability, interfacial quality, leakage current and so on, these complications are making devices more complex and expensive. Under this circumstance, many researchers are trying their best to look for the high permittivity materials satisfying the above two requirements.
    In this thesis, we have investigated the magnetic materials and dielectric materials in different topics. The results are presented in the followings.
    1. Orthorhombic to Cubic Phase Transition in La1-xCaxMnO3 Perovskites
    It is very interesting in exotic oxides La1-xCaxMnO3, when x<0.5, colossal magnetoresistance (CMR) effect can be observed, however, when x>0.5 and the temperature is decreased to lower than Tc, charge-, orbital-, and spin-ordering and correlated properties may appear. Chen et al. believed the twin-related domains in charge-ordered La1/3Ca2/3MnO3 were charge-ordered domains. Wang et al. systematically studied orientation domains in La1/3Ca2/3MnO3 perovskite by transmission electron microscopy, and observed them even at room temperature (RT), when charge-ordering did not take place. By group-theoretical analysis they concluded
    
    
    
    that these orientation domains were induced by a displacive phase transition from cubic to orthorhombic perovskite at higher temperature.
    Here the variations of the polycrystalline X-ray diffraction patterns of La1-xCaxMnO3 perovskites (x=3/8, 1/2, 2/3) with composition and temperature have been studied. When temperature increased to 750癈 or 900癈, a phase transition from orthorhombic to cubic perovskites was observed for the first time. This phase transition confirms further that the orientation domains in the La1/3Ca2/3MnO3 are induced by cubic to orthorhombic phase transition, but not by charge-ordering. Moreover, the unit cell parameters ao, bo and Co of these orthorhombic perovskites at room temperature, and also ap of these cubic perovskites at high temperature, decrease with increasing x.
    2. Microstructures of epitaxial La0.7Ca0.3Mn0.3 thin films grown on SrTiO3 and NdGaO3 substrates
    Perovskite La0.7Ca0.3MnO3 thin films were epitaxially grown on SrTiO3 and NdGaO3 substrates by pulsed laser deposition. The microstructure of these films was investigated by means of transmission electron microscopy. Due to the small lattice mismatch in the system of LCMO/NGO, the films showed a higher structural perfection than the films on
引文
[1] S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh and L. H. Chen, Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films, Science, 264 (1994) 413.
    [2] H.Y. Hwang, S.W. Cheong, N. P. Ong and B. Batlogg, Spin-Polarized lntergrain Tunneling in La_(2/3)Sr_(1/3)MnO_3, Phys. Rev. Lett.,77 (1996) 2041.
    [3] C. Zener, Interaction Between the d Shells in the Transition Metals, Phys. Rev., 81(1951)440.
    [4] C. Zener, Interaction between the d-Shells in the Transition Metals. Ⅱ. Ferromagnetic Compounds of Manganese with Perovskite Structure, Phys. Rev., 82(1951)403.
    [5] E. Pollert, S. Krupicka and E. Kuzmicova, Structural study of Pr_(1-x)Ca_xMnO_3 and Y_(1-x)Ca_xMnO_3 perovskites, J. Phys. Chem. Solids, 43 (1982) 1137.
    [6] G. Zhao, K. Conder, H. Keller and K. A. Mueller, Giant oxygen isotope shift in the magnetoresistive perovskite La_(1-x)Ca_xMnO_(3+y), Nature, 381 (1996) 676.
    [7] G. Jonker and J. van Santen, Electrical conductivity of ferromagnetic compounds of manganese with perovskite structure, Physica, 16 (1950) 337.
    [8] J. H. von Santen and G. H. Jonker, Electrical conductivity of ferromagnetic compounds of manganese with perovskite structure, Physica, 16 (1950) 599.
    [9] G.H. Jonker, Magnetic compounds with perovskite structure .4. Conducting and non-conducting compounds, Physica, 22 (1956) 707.
    [10] J. Volger, Further experimental investigations on some ferromagnetic oxidic. compounds of manganese with perovskite structure, Physica, 20 (1954) 49.
    [11] C. W. Searle and S. T. Wang, Studies of ionic ferromagnet (La Pb) MnO_3 .3. Ferromagnetic resonance studies, Can. J. Phys., 47 (1969) 2703.
    [12] C. W. Searle and S. T. Wang, Studies of ionic ferromagnet (La Pb) MnO_3 .5. Electric transport and ferromagnetic properties, Can. J. Phys., 48 (1970) 2023.
    [13] A. H. Morrish, B. J. Evans, J. A. Eaton and L. K. Leung, Studies of ionic ferromagnet (La Pb)MnO_3 .i. Growth and characteristics of single crystals, Can. J. Phys.,47 (1969) 2691.
    [14] L. K.Leung, A. H. Morfish and C. W. Searle, Studies of ionic .ferromagnet (La Pb)MnO_3 .2. Static magnetization properties from O-degrees k to 800-degrees k, Can. J. Phys., 47 (1969) 2697.
    [15] R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, and K. Samwer, Giant negative magnetoresistance in perovskitelike La_(2/3)Ba_(1/3)MnO_x ferromagnetic films, Phys. Rev. Lett.71 (1993) 2331.
    
    
    [16] K. Chahara, T. Ohno, M. Kasai and Y. Kozono, Magnetoresistance in magnetic manganese oxide with intrinsic antiferromagnetic spin structure Appl. Phys. Lett., 63 (1993) 1990.
    [17] E. O. Wollan and W. C. Koehler, Neutron Diffraction Study of the Magnetic Properties of the Series of Perovskite-Type Compounds [(1-x)La, xCa]MnO_3 Phys. Rev., 100 (1955) 545.
    [18] J.B. Goodenough, Theory of the role of covalence in the perovskite-type manganites [La, M(ii)]MnO_3 Phys. Rev., 100 (1955) 564.
    [19] J. Kanamori, Superexchange interaction and symmetry properties of electron orbitals, J. Phys. Chem. Solids, 10 (1959) 87.
    [20] See http://public.itrs.net/for most recent updates to the International Technology Roadmap for Semiconductors.
    [21] R. Dennard, F. Gaensslen, H.-N. Yu, V. Rideout, E. Bassous, and A. LeBlanc, Design of ion-implanted MOSFET's with very small physical dimensions, IEEEJournal of Solid-State Circuits, SC-9(1974)256.
    [22] T. Ghani, K. Mistry, P. Packan, S. Thompson, M. Stettler, S. Tyagi, and M. Bohr, Scaling challenges and device design requirements for higher performance sub-50nm gate length planar CMOS transistors,Symposium on VLSI Technology Digest, (2000).
    [23] T. Ghani, S. Ahmed, P. Aminzadeh, J. Bielefeld, P. Charvat, C. Chu, M. Harper, P.Jacob, C. Jan, J. Kavalieros, C. Kenyon, R. Nagisetty, P. Packan, J. Sebastian, M.Taylor, J. Tsai, S. Tyagi, S. Yang, and M. Bohr, 100nm gate length highperformance/low power CMOS transistor structure, IEDM Technical Digest,(1999) 415.
    [24] M. Hargrove, S. Crowder, E. Nowak, R. Logan, L. Han, H. Ng, A. Ray, D.Sinitsky, P. Smeys, F. Guarin, J. Oberschmidt, E. Crabbe, D. Yee, and L. Su, High-performance sub-0.08um CMOS with dual gate oxide and 9.7ps inverterdelay, IEDM Technical Digest, (1998)627.
    [25] M. Rodder, S. Hattangady, N. Yu, W. Shiau, P. Nicollian, T. Laaksonen, C. Chao,M. Mehrotra, C. Lee, S. Murtaza, and S. Aur, A 1.2V, 0.1urn gate length CMOStechnology: design and process issues, IEDM Technical Digest, (1998)623.
    [26] S.-H. Lo, D. Buchanan, and Y. Taur, Modeling and characterization of quantization, polysilicon depletion, and direct tunelling effects in MOSFETs with ultrathin oxides, IBM Journal of Research and Development, 43(1999)327.
    [27] F. Pollak, New microarchitecture challenges in the coming generations of CMOS process technologies, 32nd Annual International Symposium on Microarchitecture, Haifa, Israel, (1999).
    
    
    [28] S. Lo, D. Buchanan, Y. Taur, and W. Wang, "Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET's," IEEE Electron Device Letters, 18(1997)209.
    [29] D. Muller, T. Sorsch, S. Moccio, F. Baumann, K. Evans-Lutterodt, and G. Timp, The electronic structure at the atomic scale o,f ultrathin gate oxides, Nature, 399(1999)758,
    [30] M. Schulz, The end of the road.for silicon?, Nature 399 (1999)729.
    [31] S. Tang, R. Wallace, A. Seabaugh, and D. King-Smith, Evaluating the minimum thickness of gate oxide on silicon using first-principles method, Applied Surface Science, 135(1998)137.
    [32] C. Kaneta, T. Yamasaki, T. Uchiyama, T. Uda, and K. Terakura, Structure and electronic property of Si(100)/SiO_2 interface, Microelectrortic Engineering, 48(1999)117.
    [33] A. Kingon, J.-P. Maria, and S. Streiffer, Alternative dielectrics to silicon dioxide for memory and logic devices, Nature, 406(2000)1032.
    [34] G. Wilk, R. Wallace, and J. Anthony, High-k gate dielectrics: Current status and materials properties considerations, Journal of Applied Physics, 89(2001)5243.
    [35] D. Buchanan, Scaling the gate dielectric: Materials, integration, and reliability, IBM Journal of Research and Development, 43(1999)245.
    [36] B. Cheng, M. Cao, P. Vande Voorde, W. Greene, H. Stork, Z. Yu, and J. Woo, Design considerations of high-k gate dielectrics,for sub-0.1-um MOSFET's, IEEE Transactions on Electron Devices, 46(1999)261.
    [37] G. Lucovsky, Local bonding, phase stability and interface properties of replacement gate dielectrics, including silicon oxynitride alloys and nitrides, and film "amphoteric" elemental oxides and silicates, to be published.
    [38] C. Chaneliere, J. Autran, R. Devine, and B. Balland, "Tantalum pentoxide (Ta_2O_5) thin films for advanced dielectric applications," Materials Science & Engineering, R22(1998)269.
    [39] G. Alers, D. Werder, Y. Chabal, H. Lu, E. Gusev, E. Garfunkel, T. Gustafsson, and R. Urdahl, Intermixing at the tantalum oxide/silicon interface in gate dielectric structures, Applied Physics Letters, 73(1998) 1517.
    [40] S. Campbell, D. Gilmer, X. Wang, M. Hsich, H. Kim, W. Gladfelter, and J. Yan, MOSFET transistors fabricated with high permittivity TiO_2 dielectrics, IEEE Transactions on Electron Devices, 44(1997)104.
    [41] S. Campbell, R. Smith, N. Hoilien, B. He, and W. Gladfelter, "Group IVB metal oxides: TiO_2 ZrO_2 and HfO_2 as high permittivity gate insulators," Proceedings of MRS Workshop on High-k Gate Dielectrics, New Orleans, (2000)9.
    
    
    [42] Y. Nishioka, H. Shinriki, and K. Mukai, Influence of SiO_2 at the Ta_2O_5/Si interface on dielectric characteristics of Ta_2O_5 capacitors, Journal of Applied Physics, 61(1987)2335.
    [43] G. Wilk and R. Wallace, Electrical properties of hafnium silicate gate dielectrics deposited directly on silicon, Applied Physics Letters, 74(1999) 2854.
    [44] G. Wilk and R. Wallace, Stable zirconium silicate gate dielectrics deposited directly on silicon, Applied Physics Letters, 76(2000)112.
    [45] G. Wilk, R. Wallace, and J. Anthony, Hafnium and zirconium silicates for advanced gate dielectrics, Journal of Applied Physics, 87(2000)484.
    [46] M. Copel, M. Gribelyuk, and E. Gusev, Structure and stability of ultrathin zirconium oxide layers on Si(001), Applied Physics Letters,76(200)436.
    [47] Z. Mursic, T. Vogt, H. Boysen, and F. Frey, Single-crystal neutron diffraction study of metamict zircon up to 2000K, Journal of Applied Crystallography, 25(1992)519.
    [48] G. Lucovsky and G. Rayner, Microscopic model for enhanced dielectric constants in low concentration SiO_2-rich noncrystalline Zr and HI'silicate alloys," Applied Physics Letters, 77(2000)2912.
    [49] F.C. Frank and J.H. van der Merwe, Proc. R. Soc. London Set. A, 198(1949)205
    [50] M. Volmer and A. Weber, Z. Phys. Chem., 119 (1926)277
    [51] I.N. Stranski and L. von Krastanow, Akad. Wiss. Lit. Mainz Abh. Math. Naturwiss K1, 146 (1939)797
    [52] P. Erhart, new materials for the information technique, B1.1
    [53] W. Ma, P. Sch(?)fer, P. Ehrhart, and R. Waser, Metalorganic chemical vapor deposition of BaTiO_3 and SrTiO_3 thin films using a single solution source with a non-contact vaporizer, Integrated Ferroelectrics 30, 139 (2000).
    [54] P. Ehrhart, F. Fitsilis, S. Regnery, R. Waser, F. Schienle, M .Schumacher, M. Dauelsberg, P. Strzyzewski and H. Juergensen, Deposition of thin BST films in a multi-wafer planetary reactor, Integrated Ferroelectrics 30, 183 (2000).
    [55] T.R. Taylor, P.J. Hansen, B. Acikel, N. Pervez, R.A. York, S.K. Streiffer, and J.S. Speck, Impact of thermal strain on the dielectric constant of sputtered barium strontium titanate thin films, Appl. Phys. Lett. 80 (2002)1978
    [56] L. Kim and D. Jung, J. Kim, Y.S. Kim And J. Lee, Strain manipulation in BaTiO_3/SrTiO_3 artificial lattice toward high dielectric constant and its nonlinearity, Appl. Phys. Lett. 82 (2003)2118
    [57] H.C. Li, W.D. SI, A.D. West And X.X. Xi, Thickness dependence of dielectric loss in SrTiO_3 thin films, Appl. Phys. Lett. 73 (1998)464
    
    
    [58] L.J. Sinnamon, M.M. Saad, R.M. Bowman and J.M. Gregg, Exploring grain size as a cause for "dead-layer" effects in thin film capacitors, Appl. Phys. Lett. 81 (2002)703
    [59] A.Y. Emelyanov, N.A. Pertsev, S.Hoffmann-eifert, U. Bottger, and R. Waser, Grain-boundary effect on the Curie-Weiss law of ferroelectric ceramics and polycrystalline thin films: Calculation by the method of effective medium, J of Electroceramics 9 (2002)5
    [60] B.H. Park, E.J. Peterson, Q.X. Jia, J. Lee, X. Zeng, W. Si and X.X. Xi, Effects of very thin strain layers on dielectric properties of epitaxial Ba_(0.6)Sr_(0.4)TiO_3 films, Appl. Phys. Lett. 78 (2001)533
    [61] C. Zhou and D.M. Newns, Intrinsic dead layer effect and the performance of ferroelectric thinfilm capacitors, J Appl. Phys. 82 (1997) 3081
    [62] B.T. Lee and C.S. Hwang, Influences of interfacial intrinsic low-dielectric layers on the dielectric properties of sputtered (Ba, Sr)TiO_3 thin films, Appl. Phys. Lett. 77 (2000)124
    [63] Y.L. Qin, C.L. Jia, K. Urban, R. Liedtke, and R.Waser, Structural and morphologic evolution of Pt/Ba_(0.7)Sr_(0.3)TiO_3/Pt capacitors with annealing processes, Appl. Phys. Lett. 80 (2002)2728
    [64] A.A. Sirenko, C. Bernhard, A. Golnik, A.M. Clark, J. Hao, W. Si. and X.X. Xi, Soft-mode hardening in SrTiO_3 thin films, Nature 404(2000) 373
    [65] T.M. Shaw, Z. Suo, M. Huang, E. Liniger, R.B. Laibowitz, J.D. Baniechi, The effect of stress on the dielectric properties of barium strontium titanate thin films, Appl. Phys. Lett. 75 (1999)2129
    [66] A.R. James and X.X. Xi, Effects of buffer layer thickness and strain on the dielectric properties of epitaxial Sr TiO_3 thin films, J. Appl. Phys. 92 (2002)6149
    [67] C.L. Canedy, H. Li, S.P. Alpay, L. Salamanca, A.L. Roytburd, and R. Ramesh, Dielectric properties in heteroepitaxial Ba_(0.6)Sr_(0.4)TiO_3 thin films: Effect of internal stresses and dislocation-type defects, Appl. Phys. Lett. 77 (2000) 1695
    [68] H. Li, A.L. Roytburd, S.P. Alpay, T.D. Tran, L. Salamanca-Riba and R. Ramesh, Dependence of dielectric properties on internal stresses in epitaxial barium strontium titanate thin films, Appl. Phys. Lett. 75 (2002) 2354
    [69] C.S. Hwang, Thickness-dependent dielectric constants of (Ba, Sr)TiO_3 thin films with Pt or conducting oxide electrodes, J. Appl. Phys. 92 (2002) 432
    [70] N.A. Pertsev, A.G. Zembilgotov and A.K. Tagantsev, Effect of Mechanical Boundary Conditions on Phase Diagrams of Epitaxial Ferroelectric Thin Films, Phys. Rev. Lett. 80 (1998) 1988
    
    
    [71] N.A. Pertsev, V.G. Koukhar, R. waser and S. Hoffmann, Curie-Weiss-type law for the strain and stress effects on the dielectric response of ferroelectric thin films, Appl. Phys. Lett. 77 (2000) 2596
    [72] S.K. Streiffer, C. Basceri, C.B. Parker, S.E. Lash, and A.I. Kingon, Ferroelectricity in thin films: The dielectric response of fiber-textured (Ba_xSr_(1-x))Ti_1 _(+y)O_(3+z) thin films grown by chemical vapor deposition, J. appl. Phys. 86(1999)4565
    [73] B.S. Kim, S.H. Oh, S.Y. Son, K.W. Park, D.K. Choi, Z.R. Dai and F.S. Ohuchi, The effect of interface on the electrical properties of (Ba, Sr)TiO_3 adopting the perovskite electrodes, J. Appl. Phys. 87 (2000) 4425
    [74] C. Basceri, S.K. Streiffer, A.I. Kingon, and R. Waser, The dielectric response as a function of temperature and film thickness of fiber-textured (Ba, Sr)TiO_3 thin films grown by chemical vapor deposition, J. appl. Phys. 82 (1997)2497
    [75] Y. A. Boikov, And T. Claeson, Degradation of the dielectric permittivity of a strongly oriented Ba_(0.25)Sr_(0.75)TiO_3 layer by replacing a SrRuO_3 electrode with an Ag one, Appl. Phys. Lett. 80 (2002)4603
    [76] S. Schmitz and H. Schroeder, Leakage current measurements of STO and BST thin films interpreted by the "dead" layer model, Integrated ferroelectric 46 (2002)233
    [77] R. Dittmann, E. Vasco, R. Plonka, N.A. Pertsev, J.Q. He, C.L. Jia, S.Hoffmann-Eifert and R. Waser, Sharp ferroelectric phase transition in strained single-crystalline SrRuO_3/Ba_(0.7)Sr_(0.3)TiO_3/SrRuO_3 capacitors, Appl. Phys. Lett. 83(2003)5011
    [78] L.J. Sinnamon, R.M. Bowman and J.M. Gregg, Investigation of dead-layer thickness in SrRuO_3/Ba_(0.5)Sr_(0.5)TiO_3/Au thin-film capacitors, Appl. Phys. Lett. 78 (2001) 1724
    [79] W. J. Merz. Switching time in ferroelectric BaTiO_3 and its dependence on crystalthickness. J. Appl. Phys. 27(1956)938.
    [80] M.E. Drougard, and R. Landauer, On the dependence of the switching time of barium titanate crystals on their thickness. J. Appl. Phys. 30(1959)1663.
    [81] A.I. Kingon, S.K. Streiffer, C. Basceri, et al. High-permittivity perovskite thin films for dynamic random-access memories. MRS Bulletin 21(1996)46.
    [82] G.W. Dietz, M. Schumacher, R.Waser, etal. Leakage currents in Ba_(0.7) Sr_(0.3) TiO_3 thin films for ultrahigh-density dynamic random access memories. J. Appl. Phys., 82(1997)2359.
    [83] J.Q. He, C.L. Jia, E. Vasco, R. Dittmann, R. Waser, K. Urban and R.H. Wang A dead layer directly observed at Ba_(0.7)Sr_(0.3)TiO_3/SrRuO_3 interface (to be submitted to Appl. Phys.Lett.)
    
    
    [84] W. J. Warren, D. Dimos, R.M. Waser Degradation mechanisms in ferroelectric and high-permittivity perovskite. MRS Bulletin 21(1996)40.
    [85] H.Z. Jin, Transmission Electron Microscopy Study on High-Permittivity Barium Strontium Titanate Thin Films, Master thesis, Tsinghua University(2002)
    [86] C. H. Chen, S.-W. Cheong, and H. Y. Hwang, Charge-ordered stripes in La_(1-x)Ca_xMnO_3 with x>0.5, J. Appl. Phys., 81 (1997)4326.
    [87] C. H. Chen and S.-W. Cheong, Impact of charge ordering on magnetic correlations inperovskite (Bi, Ca)MnO_3, Phys. Rev. Lett. 76, 4042 (1996).
    [88] P. G. Radaelli, D. E. Cox, M. Marezio, and S.-W. Cheong, Charge, orbital, and magnetic ordering in La_(0.5)Ca_(0.5)MnO_3, Phys. Rev. B, 55(1997) 3015.
    [89] P. G. Radaelli, D. E. Cox, S.-W. Cheong, and M. Marezio, Wigner-crystal and bistripe models for the magnetic and crystallographic superstructures of La_(0.333)Ca_(0.667)MnO_3, Phys. Rev. B, 59(1999)14440.
    [90] S. Mori, C. H. Chen, and S.-W. Cheong, Pairing of charge-ordered stripes in (La, Ca)MnO_3, Nature, 392(1998)473.
    [91] S. Mori, C. H. Chen, and S.-W. Cheong, Paired and unpaired charge stripes in the ferromagnetic phase of La_(0.5)Ca_(0.5)MnO_3, Phys. Rev. Lett., 81(1998)3972.
    [92] R. H. Wang, J. N. Gui, and Y. M. Zhu, Orientational domains and anti-phase domains at room temperature in La_(0.33)Ca_(0.67)MnO_3 perovskites, Wuhan Univ. J. Natural Sci., 4(1999)415.
    [93] R. H. Wang, J. N. Gui, Y. M. Zhu, and A. R. Moodenbaugh, Distinguishing between the bi-stripe and Wigner-crystal model: A crystallographic study of charge-ordered La_(0.33)Ca_(0.67)MnO_3, Phys. Rev. B, 61(2000)11946.
    [94] R. H. Wang, J. N. Gui, Y. M. Zhu, and A. R. Moodenbaugh, Crystallographic analysis of orientational domain variants and charge-ordered domains in La_(0.33)Ca_(0.67)MnO_3 Phys. Rev. B, 63(2001)144106.
    [95] K. H. Kim, M. Uehara, and S. M. Cheong, High-temperature charge-ordering fluctuation in manganites Phys. Rev. B, 62(2000)R11945.
    [96] C. P. Adams, J. M. Lynn, Y. M. Mukovskii, A. A. Arsenov, and D. A. Shulyatev, Charge ordering and polaron formation in the magnetoresistive oxide La_(0.7)Ca_(0.3)MnO_3, Phys. Rev.Lett., 85(2000)3954.
    [97] P. G. Radaelli, M. Marezio, H. Y. Hwang, S.-W. Cheong, and B. Batlogg, Charge localization by static and dynamic distortions of the MnO_6 octahedra in perovskite manganites Phys. Rev. B, 54(1996)8992.
    [98] E. K. Andersen, I. G. K. Andersen, P. Norby, and J. C. Hanson, Activity Report 1997, National Synchrotron Light Source, Brookhaven National Laboratory, (1997) B-66.
    
    
    [99] Y. Zhao, D. J. Weidner, J. B. Parise, and D. E. Cox, Phys. Earth Planet. Interiors, 76(1993) 17.
    [100] C. Dong, F. Wu, H. Chen Correction of zero shift in powder diffraction patterns using the reflection-pair method J. Appl. Cryst. 32(1999)850.
    [101] F. Izumi and T. Ikeda, A Rietveld-analysis program RIETAN-98 and its applications to zeolites Mater. Sci. Forum 198(2000)321.
    [102] 王仁卉,郭可信,晶体学中的对成群(1990),科学出版社,北京.
    [103] T. Hahn (Ed.), International Tables for Crystallography, Vol. A, Space-Group Symmetry, D. Reidel, Dordrecht/Boston (1983)727.
    [104] D. de Ligny and P. Richet, High-temperature heat capacity and thermal expansion of SrTiO_3 and SrZrO_3perovskites Phys. Rev. B 53 (1996) 3013.
    [105] Y. Zhao, D. J. Weidner, J. B. Parise, and D. E. Cox, Phys. Earth Planet. Interiors 76(1993)1.
    [106] J.Q. He, R.H. Wang, J.N. Gui, and C. Dong, Orthorhombic to Cubic Phase Transition in La_(1-x)Ca_xMnO_3 Perovskites Phys. Stat. Sol. B 229 (2002) 1145.
    [107] R.A. Rao, D. Lavric, T.K. Nath, C.B. Eom, L. Wu and F. Tsai, Effects of film thickness and lattice mismatch on strain states and magnetic properties of La_(0.8)Ca_(0.2)MnO_3 thin films, J. Appl. Phys. 85 (1999) 4794
    [108] M. Ziese, H.C. Semmelhack, K.H. Han, S.P. Sena and H.J. Blythe, Thickness dependent magnetic and magnetotransport properties of strain-relaxed La_(0.7)Ca_(0.3)MnO_3 films, J.Appl. Phys. 91 (2002) 9930
    [109] G.J. Chen, Y.H. Chang and H.W. Hsu The effect of microstructure and secondary phase on magnetic and electrical properties of La-deficient La_(1-x)MnO_(3-delta) (0<=x<=0.3)films J. Magn. Magn. Mater. 219 (2000) 317
    [110] C.J. Lu, Z.L. Wang, C. Kwon, and Q.X. Jia Microstructure of epitaxial La_(0.7)Ca_(0.3)MnO_3 thin films grown on LaAIO_3 and SrTiO_3, J. Appl. Phys. 88 (2000) 4032
    [111] O.I. Lebedev, G.Van Tendeloo, S. Amelinkx, B. Leibold and H.-U. Habermeier, Structure and microstructure of La_(1-x)Ca_xMnO_(3-delta) thin films prepared by pulsed laser deposition, Phys. Rev. B 58 (1998) 8065
    [112] H.W. Zandbergen, S. Freisem, T. Nojima and J. Aarts, Magneto -resistance and atomic structure of ultrathin films of La_(0.73)Ca_(0.27)MnO_3 on SrTiO_3, Phys. Rev. B 60 (1999) 10259
    [113] K. Han and K. Yu-Zhang,Transmission electron microscopy study of epitaxial lanthanum-manganite thin films on SrTiO_3 Phil. Mag. B 79 (1999) 897
    [114] S. Pignard, K. Yu-Zhang, Y. Leprince-Wang, K. Han, H. Vincent and J.P. Senateur, Correlation between magnetoresistive properties and growth
    
    morphology of La_(1-x)MnO_(3-delta) thin films deposited on SrTiO_3, LaAlO_3 and MgO, thin solid films 391 (2001) 21
    [115] Y. Xin, K.Han, N. Mateeva, H. Garmestani, P.N. Kalu and K-H. Dahmen, Microstructures of La_(1-x)A_((x))(A=Ca or Sr)MnO_(3-delta) thin films by liquid-delivery metalorganic chemical vapor deposition, J. Mater. Res. 16 (2001) 3073
    [116] Y.H. Li, K.A. Thomas, P.S.I.P. De Silva, L.F. Cohen, A. Goyal, M. Rajeswari, N.D. Mathur, M.G. Blarnire, J.E. Evetts, T. Venkatesan, J.L. MacManus-Driscoll, Transmission electron microscopy and x-ray structural investigation of La_(0.7)Ca_(0.3)MnO_3 thin films, J. Mater. Res.13 (1998)2161
    [117] F.C. Frank, Physica 15 131(1949)
    [118] Z.Q. Wu and B. Wang, Thin film growth, (Beijing: China Science Press). 2001. (In Chinese).
    [119] J.W. Matthews, defects associated with accommodation of misfit between crystals, J. Vac. Sci. Technol. 12 126(1975)
    [120] Q. Yu. Gorbenko, I.E. Graboy, A.R. Kaul, H.W. Zandbergen, HREM and XRD characterization of epitaxial perovskite manganites, J. Magn. Magn. Mater. 211 97(2000)
    [121] S. R. Summerfelt in, Thin film ferroelectric materials and devices, p.1-42 (R. Ramesh ed., Kluwer Boston, MA 1997).
    [122] D.G. Schlom and J.H. Haeni, a thermodynamic approach to selecting altenative gate dielectric, MRS Bulletin 27(2002)198, and references therein.
    [123] B.K. Moon and H. Ishiwara, roles of buffer layers in epitaxial-growth of SrTiO_3 films on silicon substrates Jpn. J. Appl. Phys. 33 (1994) 1472.
    [124] H. Mori and H. Ishiwara, epitaxial-growth of SrTiO_3 films on si(100) substrates using a focused electron-beam evaporation method ,Jpn. J. Appl. Phys. 30 (1991) L1415.
    [125] T. Tambo, T. Nakamura and K. Maeda, H. Ueba and C. Tatsuyama, Molecular beam epitaxy of SrTiO_3 films on Si(100)-2x1 with SrO buffer layer, Jpn. J. Appl. Phys. 37 (1998) 4454.
    [126] R.A. McKee, F.J. Walker and M.F. Chisholm, Crystalline Oxides on Silicon: The First Five Monolayers, Phys. Rev. Lett. 81 (1998) 3014.
    [127] R.A. McKee, F.J. Walker and M.F. Chisholm, Physical structure and inversion charge at a semiconductor interface with a crystalline oxide, Science 293 (2001) 468.
    [128] J. Ramdani, R. Droopad, Z.Yu, J.A. Curless, C.D. Overgaard, J. Finder, K. Eisenbeiser, J.A. Hallmark, W.J. Ooms, V. Kanshik and P. Alluri, Interface characterization of high-quality SrTiO_3 thin films on Si(100) substrates grown by molecular beam epitaxy, Appl. Sur. Sci. 159-160 (2000)127
    
    
    [129] K. Eisenbeiser, J.M. Finder, Z. Yu, J.A. Curless, J.A. Hallmark, R. Droopad, W.J. Ooms, L. Salem, S. Bradshaw and C.D. Overgaard, Field effect transistors with SrTiO_3 gate dielectric on Si, Appl. Phys. Lett. 76 (2000) 1324
    [130] R. Droopad, Z. Yu and J. Ramdani, L. Hilt, J. Curless, C. Overgaard, J.L. Edwards, J. Finder, K. Eisenbeiser, J. Wang, V. Kaushik, B-Y. Ngyuen, B. Ooms, Epitaxial oxides on silicon grown by molecular beam epitaxy, J. Crystal Growth 227-228 (2001) 936.
    [131] O. Nakagawara, M. Kobayashi, Y. Yoshino, Y. Katayama, H. Tabata and T. Kawai, Effects of buffer layers in epitaxial growth of SrTiO_3 thin film on Si(100) J. Appl. Phys. 78 (1995) 7226.
    [132] S. Migita and S. Sakai, Epituxial structure SrTiO_3 <011>on Si <001> J. Appl. Phys. 89(2001)5421
    [133] R.D. Vispute, J. Narayan, and K. Dovidenko, K. Jagannadham, N. Parikh, A. Suvkhanov and J.D. Budai, Heteroepitaxial structures of SrTiO_3/TiN on Si(100) by in situ pulsed laser deposition, J. Appl. Phys. 80 (1996) 6720
    [134] C. Wang, V. Kugler, U. Helmersson, N. Konofao, E.K. Evangelou, S. Nakao and P. Jin, Electrical properties of SrTiO_3 thin films on Si deposited by magnetron sputtering at low temperature, Appl. Phys. Lett. 79 (2001) 1513.
    [135] L. Mechin, G.J. Gerritsma and J. Gracia Lopez, The direct growth of SrTiO_3 (100) layers on silicon (100) substrates; application as a buffer layer for the growth of DyBa_2Cu_3O_7-delta thin films, Physica C 324 (1999)47
    [136] S.H. Nam, W.J. Lee and H.G. Kim, oriented growth of SrTiO_3 thin-films on Si substrate by radio-frequency magnetron sputtering, J. Phys. D 27 (1994)866
    [137] H. Yamaguchi, P. Lesaicherre and T. Sakuma Y. Miyasaka, A. Ishitani and M Yoshida, Structural and electrical characterization of SrTiO_3 thin-films prepared by metal-organic chemical-vapor-deposition Jpn. J. Appl. Phys. 32 (1993) 4069.
    [138] K. Frohlich, D. Machajdik, A. Rosova, I. Vavra, F. Weiss, B. Bochu and J.P. Senateur, growth of SrTiO_3 thin epituxial-films by aerosol MOCVD Thin Solid Films 260 (1995) 187.
    [139] S.Y. Park, J. Choi and K. No, Effects of Sr/Ti ratio on the step coverage of SrTiO_3 thin films fabricated using electron cyclotron resonance plasma enhanced metal organic chemical vapor deposition, Jpn. J. Appl. Phys. 40 (2001) 2456
    [140] E.P. Gusev, H.C. Lu, T. Gustafsson, and E. Garfunkel, Growth mechanism of thin silicon oxide films on Si(100) studied by medium-energy ion scattering, Phys. Rev. B 52 (1995) 1759.
    [141] R.E. Deal and A.S. Grove, general relationship for thermal oxidation of silicon, J. Appl. Phys. 36 (1965)3770
    
    
    [142] V. Misra, G. Lucovsky, and G. Parsons, Issues in high-kappa gate stack interfaces, MRS Bulletin 27 (2002) 212.
    [143] J.J. Chambers and G.N. Parsons, Physical and electrical characterization of ultrathin yttrium silicate insulators on silicon, J. Appl. Phys. 90 (2001) 918
    [144] S. Singhvi and C.G. Takoudis, Growth kinetics of furnace silicon oxynitridation in nitrous oxide ambients, J. Appl. Phys. 82 (1997) 442
    [145] K.J. Hubbard and D.S. Schlom, Thermodynamic stability of binary oxides in contact with silicon, J. Mater. Res. 11(1996) 2757
    [146] J.Q. He, S. Regnery, C.L. Jia, Y.L. Qin, F. Fitsillis, P. Ehrhart, R. Waser, K. Urban, and R.H. Wang, Interfacial and microstructural properties of SrTiO_3 thin films grown on Si(001) substrates, J. Appl. Phys. 92 (2002) 7200
    [147] H, Li, X. Hu, Y. Wei, Z. Yu, X. Zhang, R. Droopad, A.A. Demkov, J.Edwards, Jr.,K. Moore, W. Ooms, J. Kulik and P.Fejes. Two-dimensional growth of high-quality strontium titanate thin films on Si, J. Appl. Phys 93, (2003) 4521
    [148] G.Y. Yang, J.M. Finder, J. Wang, Z.L. Wang,Z.Yu,J.Rarndani, R. Droopad,, K.W. Eisenbeiser and R.Ramesh, Study of microstructure in SrTiO_3/Si by high-resolution transmission electron microscopy, J. Mat. Res. 17 (2002) 204
    [149] X. Hu, H. Li, Y. Liang, Y. Wei, Z. Yu, D. Marshall, J. Edwards, Jr., R. Droopad, X. Zhang, A.A. Demkov, K. Moore and J. Kulik, The interface of epitaxial SrTiO_3 on silicon: in sire and ex situ studies, Appl. Phys. Lett. 82 (2003) 203
    [150] X. Zhang, A.A. Demkov, H. Li, X. Hu Y. Wei and J. Kulik, Atomic and electronic structure of the Si/SrTiO_3 interface Phys. Rev. B 68 (2003) 125323
    [151] J. Lettied, J.H. Haeni and D.G. Schlom, Critical issues in the heteroepitaxial growth of alkaline-earth oxides on silicon, J. Vac. Sci. Technol. A 20 (2002) 1332
    [152] Y. Wei, X.M. Hu,Y. Liang, D.C. Jordan B. Craigo, , R. Droopad, Z. Yu, X. Zhang, A.A. Demkov, J.Edwards, Jr.,K. Moore, W. Ooms, Mechanism of cleaning Si(100) surface using Sr or SrO for the growth of crystalline SrTiO3 films, J. Vac. Sci. Technol. B 20 (2002)1402
    [153] C.J. Forst, C.R. Ashman, K. Schwarz, P.E. Blochl, The interface between silicon and a high-k oxide Nature 427(2004) 53
    [154] H. Inut, T. Hashimoto, K. Tanaka, I. Tanaka, T. Mizoguchi, H. Adachi and M. Yamaguchi, Defect and electronic structures in TiSi_2 thin films produced by cosputtering part 1: Defect analysis by transmission electron microscopy, Acta. Mater. 49 (2001) 83
    [155] C.L. Jia, J. Jiang and X.F. Zong, High-resolution electron-microscopy studies of the microstructure in C49-TiSi_2 crystals, Phil. Mag. A 59 (1989) 999
    [156] F.J. Himpsel, J.E.Ortega, G.J. Mankey, R.F. Willis, Magnetic nanostructures Adv. Phys. 47 (1998) 511
    
    
    [157] Barin and O. Knacke, ThermochemicaI Properties of Inorganic Substances(Springer-Verlag, Berlin, 1973).
    [158] Barin, O. Knacke, and O. Kubaschewski, Thermochemical Properties of Inorganic Substances, Supplement (Springer-Verlag, Berlin, 1977).
    [159] A.I. Kingon, J.P. Maria, and S.K. Streiffer, Alternative dielectrics to silicon dioxide for memory and logic devices, Nature 406 (2000) 1032
    [160] J. Robertson, Band offsets of wide-band-gap oxides and implications for future electronic devices, J. Vac. Sci. Technol. B 18 (2000) 1785
    [161] B.H. Lee, L. Kang, R. Nieh, W.J. Qi, and J.C. Lee, Thermal stability and electrical characteristics of ultrathin hafnium oxide gate dielectric reoxidized with rapid thermal annealing, Appl. Phys. Lett. 76 (2000) 1926
    [162] R.M.C. de Almeida and I.J.R. Baumvol, Reaction-diffusion in high-k dielectrics on Si, Sur. Sci. Rep. 49 (2003) 1
    [163] D.A. Neumayer and E. Cartier, Materials characterization of ZrO_2-SiO_2 and HfO_2-SiO_2 binary oxides deposited by chemical solution deposition, J. Appl. Phys. 90 (2001) 1801
    [164] K. Kukli, M. Ritala, J. Sundqvist, J. Aarik, J. Lu, T. Sajavaara, M. Leskela and A. Harsta, Properties of hafnium oxide films grown by atomic layer deposition from hafnium tetraiodide and oxygen, J. Appl. Phys. 92 (2002) 5698
    [165] M. Gutowski, J.E. Jaffe, C.L. Liu, M. Stoker, R.I. Hegde, R.S. Rai and P.J. Tobin, Thermodynamic stability of high-K dielectric metal oxides ZrO_2 and HfO_2 in contact with Si and SiO_2 Appl. Phys. Lett. 80 (2002)1897
    [166] H. Ikeda, S.Goto, K. Honda, M. Sakashita, A. Sakai, S. Zaima, and Y. Yasuda, Structural and electrical characteristics of HfO_2 films fabricated by pulsed laser deposition, Jpn. J. Appl. Phys. 41 (2002) 2476
    [167] Y. Hoshino, Y. Kido, K. Yamamoto, S. Hayashi, and M. Niwa, Hydrogen superpermeation resistant to ion sputtering, Appl. Phys. Lett. 81 (2002) 2650
    [168] M.H. Cho, Y.S.Roh, C.N. Whang, K. Jeong, S.W.Nahm, D.H. Ko, J.H. Lee, N.I. Lee and K. Fujihara, Thermal stability and structural characteristics of HfO_2 films on Si (100) grown by atomic-layer deposition, Appl. Phys. Lett. 81 (2002) 472
    [169] M. Cho, J. Park, H.B. Park, C.S. Hwang, J. Jeong and K.S. Hyun, Chemical interaction between atomic-layer-deposited HfO_2 thin films and the Si substrate, Appl. Phys. Lett. 81 (2002) 334
    [170] B.K. Park, J. Park, M. Cho, C.S. Hwang, K. Oh, Y.Han, and D.Y. Yang, Interracial reaction between chemically vapor-deposited HfO_2 thin films and a HF-cleaned Si substrate during film growth and postannealing, Appl. Phys. Lett. 80 (2001) 2368
    
    
    [171] J. Park, B.K. Park, M. Cho, C.S. Hwang, K. Oh and D.Y. Yang, Chemical vapor deposition of HfO_2 thin films using a novel carbon-free precursor, J. Electrochem. Soc. 149 (2002) G89
    [172] J.J. Chambers and G.N. Parsons, Appl. Phys. Lett. Yttrium silicate formation on silicon: Effect of silicon preoxidation and nitridation on interface reaction kinetics, 77 (2000) 2385
    [173] H. Kim, P.C. Mclntyre, K.C. Saraswat, Effects of crystallization on the electrical properties of ultrathin HfO_2 dielectrics grown by atomic layer deposition, Appl. Phys. Lett. 82 (2003) 106
    [174] I.A. Elshanshoury, V.A. Rudenko, I.A. Ibrahim, polymorphic behavior of thin evaporated films of zirconium and hafnium oxides J. Amer. Ceram. Soc. 53 (1969) 264
    [175] R.R. Manory, T. Mod, I. Shimizu, S. Miyake, and G. Kimmel, Growth and structure control of HfO_(2-x) films with cubic and tetragonal structures obtained by ion beam assisted deposition, J. Vac. Sci. Technol. 20 (2002) 549
    [176] J. Schaeffer, N.V. Edwards, R. Liu, D. Roan, B. Hradsky, R. Gregory, J. Kulik, E. Duda, L. Contreras, J. Christiansen, S. Zollner, P. Tobin, B.Y. Nguyen, R. Nieh, M. Ramon, R. Rao, R. Hegde, R. Rai, J. Baker, S. Voight, HfO_2 gate dielectrics deposited via tetralds diethylamido hafnium J. Electrochem. Soc. 150 (2003) F67
    [177] R. Ganster, S. Hoffmann-Eifert, and R. Waser, Characterization of BaTiO_3-BaZrO_3 solid solution thin films prepared by MOCVD, MRS Proc. Vol. 748 (2003) U12.2.1
    [178] A.R. Teren, P. Ehrhart, R. Waser, J.Q. He, C.L. Jia M. Schumacher, J. Lindaer, P.K. Baumann T.J. Leedham, S.R. Rushworth, A.C. Jones comparison of Hafnium Precursors for the MOCVD of HfO_2 for Gate Dielectric Applications, Integrated Ferroelectrics, 57 (2003)1163
    [179] A.S. Foster, A.L. Shluger, and R.M. Nieminen, Mechanism of Interstitial Oxygen Diffusion in Hafnia, Phys. Rev. Lett. 89 (2002) 225901
    [180] J. Rodriguez-Viejo, F. Sibieude, M.T. Clavaguera-Mora and C. Monty, ~(18)O diffusion through amorphous SiO_2 and cristobalite, Appl. Phys. Lett. 63 (1993) 1906
    [181] A. Bongiorno and A. Pasquarello, Energetics of oxygen species in crystalline and amorphous SiO_2: a first-principles investigation, Solid-State Electronics 46 (2002) 1873
    [182] C.S. Hwang, S.O. Park, H.J. Cho, C.S. Kang, H.K. Kang, S.I. Lee and M.Y. Lee, Deposition of extremely thin (Ba, Sr)TiO_3 thin films for ultra-large-scale integrated dynamic random access memory application, Appl. Phys. Lett. 67 (1995)2819
    
    
    [183] D.E. Kotechi, S.D. Athavale, J.D. Baniechi, C. Cabral, H. Shen, P.R. Duncombe, R.B. Laibowitz, M. Kunkel, J.J. Lian, Y.J. Park, T.M. Shaw, Y.Y. Wang, R. Wise, (Ba, Sr)TiO_3 dielectrics for future stacked capacitor DRAM, IBM J. Res. Develop. 43(1999) 367
    [184] M.J. Hytch, E. Snoeck and R. Kilaas, Quantitative measurement of displacement and strain fields from HREM micrographs, Ultramicroscopy 74 (1998) 131
    [185] J.W. Matthews, accommodation of misfit across interface between single-crystal films of various face-centred cubic metals, Philos. Mag. 13 (1966) 1207
    [186] Y.W. Mo, D.E. Savage, B.S. Swartzentruber and M.G. Lagally, Kineticpathway. in Stranski-Krastanov growth of Ge on Si(001), Phys. Rev. Lett. 65 (1990) 1020
    [187] C.W. Snyder, B.G. Orr, D. Kessler, and L.M. Sander, Effect of strain on surface morphology in highly strained InGaAsfilms, Phys. Rev. Lett. 66 (1991) 3032
    [188] J.E. Prieto and I. Markov, Thermodynamic driving force of formation of coherent three-dimensional islands in Stranski-Krastanov growth, Phys. Rev. B. 66 (2002) 073408
    [189] S.N. Santalla, C. Kanyinda-Malu, and R.M. de la Cruz, Stranski-Krastanov growth mode in Ge/Si(001) self-assembled quantum dots, J. Crystal growth 253(2003)190.
    [190] M. Krishnamurthy, J.S. Drucker, and J.A. Venables, Microstructural evolution during the heteroepitaxy of Ge on vicinal Si(100), J. Appl. Phys. 69 (1991) 6461
    [191] N. Gogneau, D. Jalabert, E. Monroy, T. Shibata, M. Tanaka and B.Daudin, Structure of GaN quantum dots grown under "modified Stranski-Krastanow" conditions on AIN, J. Appl. Phys. 94 (2003) 2254
    [192] Visinoiu, M. Alexe, H.N. Lee, D.N. Zakharov, A. Pignolet, D. Hesse and U. Goesele, Initial growth stages of epitaxial BaTiO_3 films on vicinal SrTiO3 (001) substrate surfaces, J. appl. Phys. 91(2002) 10157
    [193] Visinoiu, R. Scholz, S. Chattopadhyay, M. Alexe, and D. Hesse, Formation of epitaxial BaTiO_3/SrTiO_3 multilayers grown on Nb-doped SrTiO_3 (001) substrates, Jpn. J. appl. Phys. 41(2002) 6633
    [194] H.J. Gao, C.L. Chen, B. Rafferty, S.J. Permycook, G.P. Luo and C.W. Chu, Atomic structure of Ba_(0.5)Sr_(0.5)TiO_3 thin films on LaAlO_3, Appl. Phys. Lett. 75 (1999)2542
    [195] Q.X. Jia, X.D. Wu, S.R. Foltyn and P. Tiwari, Structural and electrical properties of Ba_(0.5)Sr_(0.5)TiO_3 thin films with conductive SrRuO_3 bottom electrodes, Appl. Phys. Lett. 66 (1995)2197
    
    
    [196] S.Y. Kuo and W.F. Hsieh, Structural ordering transition and repulsion of the giant LO-TO splitting in polycrystalline Ba_xSr_(1-x)TiO_3, Phys. Rev. B 64(2001)224103
    [197] K. Abe, Epitaxial growth of (Ba, Sr)TiO_3 thin films and their ferroelectric properties, J. Ceramic Soc. Japan 109(2001) S58
    [198] K. Abe, N. Yanase, K. Sano, M. Izuha, N. Fukushima and T. Kawakubo, Modification of ferroelectricity in heteroepitaxial (Ba, Sr)TiO_3 films for non-volatile memory applications, Integrated ferroelectdc 21(1998)197
    [199] W.J. Kim, H.D. Wu, W. Chang, S.B. Qadri, J.M. Pond, S.W. Kirchoefer, D.B. Chrisey and J.S. Horwitz, Microwave dielectric properties of strained (Ba_(0.4)Sr_(0.6))TiO_3 thin films, J. Appl. Phys. 88 (2000) 5448
    [200] B.H. Park, E.J. Peterson, Q.X. Jia, J. Lee, X. Zeng, W. Si and X.X. Xi, Acoustic imaging by second harmonic of phase-conjugate wave in inhomogeneous medium, Appl. Phys. Lett. 78 (2001)533

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700