低维半导体材料(InGaN量子阱、InAs量子点)显微结构与光学性能关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Study of Relation between Microstructure and Optical Properties of Low-dimension Semiconductor Materials (InGaN quantum Well、InAs quantum dot)
  • 作者:吕威
  • 论文级别:博士
  • 学科专业名称:材料物理与化学
  • 学位年度:2005
  • 导师:陈岗 ; 张泽
  • 学科代码:080501
  • 学位授予单位:吉林大学
  • 答辩委员会主席:邹广田
摘要
本文利用透射电子显微镜、光致发光谱、X 射线双晶衍射和电子全息等多种实验手段和方法,深入地研究了二维InGaN/GaN 多量子阱结构差异对光学性质的影响,以及具有InGaAs/InAlAs 复合盖帽层的InAs 量子点快速热退火过程中结构和光学性质的演化及其机理。主要结果如下:研究了光学性能差异较大的InGaN/GaN 多量子阱材料,发现:在性能较差的样品中,从InGaN 应力层中产 ?生了高密度的Burgers 矢量为b=1/3<1120>类型的纯刃型位错失配位错,这些失配位错是由于应力层厚度超过临界厚度产生应力弛豫引起的。通过光致发光方法研究了经过应力弛豫和未发生弛豫的InGaN 量子阱样品的发光性能,发现两类样品发光强度相差较大,由于弛豫所产生的位错对于样品的发光性能有很大的影响,是发光性能衰减的主要原因。将我们的实验结果与已有的理论模型进行综合分析对比发现,我们的实验结果完全符合Fischer 模型,说明Fischer 等提出的模型可以用来预测InxGa1-xN/GaN 量子阱结构的应变弛豫临界厚度。通过电子全息方法得到的相位重构图中,我们观察到未发生应力弛豫的阱与垒间的界面很清晰,量子阱形态很完整;已产生弛豫的阱(InGaN 层)沿[0001]生长方向的上表面(应力层与盖帽层间的界面)非常模糊,难以确定;说明应力弛豫对量子阱的阱深改变影响不是很大,主要是破坏了界面尤其是上层界面的平整度,导致发光性能很差。
    利用光致发光方法和高分辨电镜分析了具有InGaAs/InAlAs 复合盖帽层的InAs 量子点不同温度退火后光学和结构演化行为。研究发现850 C 退火之后, o量子点层和复合覆盖层结构互相扩散形成了InAlGaAs 单量子阱,这种结构导致与原来的量子点样品比较,PL 峰的位置蓝移了370meV,半高宽得到很大改善并且强度增加了近2.7 倍。
The growth and research of structural and optical properties of low-dimensionnanometer materials is one of the frontiers of semiconductor science, due to thepossibility of the creation of new optoelectronic devices based on them. In this thesis,the effect of structural difference on optical properties of InGaN/GaN multiplequantum wells and the Influence of the rapid thermal annealing temperature on theoptical and structural properties of InAs quantum dots have been investigated bytransmission electron (TEM) 、photoluminescence (PL) 、double crystal x-raydiffraction (DCXRD)、electron holography (EM) etc. Results are summaried asfollowed:
    (1) InxGa1-xN/GaN multiple quantum well samples with strained-layer thicknesslarger/less than the critical thickness were investigated. For the sample withstrained-layer thicknesses greater than the critical thicknesses, a high density of pureedge type threading dislocations generated from MQW layers and extended to the caplayer was observed. But for the sample with strained-layer thicknesses less than thecritical thicknesses, it has no such phenomenon. These dislocations result fromrelaxation of the strained-layers when their thicknesses are beyond the criticalthicknesses. It is found that the misfit dislocations generated from strain relaxation areall pure-edge threading dislocations with burgers vectors of b =1/3<11 0>. Therelaxation of strained layer was mainly achieved by the formation of dislocationschanged their slip planes from {0001} to {1010}.
    (2) InxGa1-xN/GaN multiple quantum well samples with strained-layer thicknesslarger/less than the critical thickness were investigated by temperature-dependentphotoluminescence. PL results show that the PL intensity of sample withstrained-layer thicknesses greater than the critical thicknesses decreases fast with theincreasing temperature. At room temperature, the emission peak related to band-edgeemission was almost depressed by the broad yellow band with an intensity maximumat 2.28ev, but both samples show well PL efficiency at the low temperature. The
引文
[1] H.P. Maruska, J.J. Tietjen. THE PREPARATION AND PROPERTIES OF VAPOR-DEPOSITED SINGLE-CRYSTAL-LINE GaN. Appl. Phys. Lett. 15 (1969) 327.
    [2] R. Dingle, K.L. Shaklee, R.F. Leheny, R.B. Zetterstrom. Stimulated Emission and Laser Action in Gallium Nitride. Appl. Phys. Lett. 19 (1971) 5.
    [3] J. I. Pankove, E. A. Miller, D. Richman, J. E Berkeyheiser. Electroluminescence in GaN. J.Lumin. 1971(4):63-66
    [4] E. Ejder. Energy dispersion of the refractive index of GaN. Phys. Status Solidi A6 (1971) 445.
    [5] B. Monemar. Fundamental energy gap of GaN from photoluminescence excitation spectra. Phys. Rev. B10 (1974) 676.
    [6] H. Amano, N. Sawaki, I. Akasaki, Y. Toyoda. Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer. Appl. Phys. Lett. 48 (1986) 353.
    [7] H. Amano, M. Kito, K. Hiramatsu, I. Akasaki, Jpn. J. Appl. Phys. 28 (1989) L2112.
    [8] S. Nakamura, M. Senoh, and T. Mukai. Highly P-type Mg-doped GaN films grown with GaN buffer layers. Jpn. J Appl. Phys. 1991(30):L1708-L1711
    [9] I. Akasaki, H. Amano, M. Kito and H. Hiramatsu. Photoluminescence of Mg-doped p-type GaN and electroluminescence of GaN p-n junction LED. J. Lumin. 1991(48/49):666-670
    [10] S. Nakamura, T. Mukai, and M. Senoh. High-power GaN P-N junction blue-light-emitting diodes. Jpn. J. Appl. Phys. 1991(30):L1998-L2001
    [11] S. Nakamura, T. Mukai, and M. Senoh. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes. Appl. Phys. Lett. 1994(64):1687-1689
    [12] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada and T. Mukai.High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures. Jpn. J. Appl. Phys. 1995(34):L797-L799
    [13] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada and T. Mukai. Superbright green InGaN single-quantum-well-structure light-emitting diodes. Jpn. J. Appl. Phys. 1995(34):L1332-L1335
    [14] H. Amano, T. Asahi and I. Akasaki. Stimulated emission near ultraviolet at room temperature from a GaN film grown on sapphire by MOVPE using an AlN buffer layer. Jpn. J. Appl. Phys. 1990(29):L205-L206
    [15] M. A. Khan, S. Krishnankutty, R. A. Skogman, J. N. Kuznia and D. T. Olson. Vertical–cavitystimulated emission from photopumped InGaN/GaN heterojunctions at room temperature. Appl. Phys. Lett.,1994(65):520-522
    [16] S. T. Kim, H. Amano and I. Akasaki. Surface-mode stimulated emission from optically pumped GaInN at room temperature. Appl. Phys. Lett.,1995(67):267-269
    [17] H. Amano, T. Tanaka, Y. Kunii, K. Kato, S. T. Kim and I. Akasaki. Room-temperature violet stimulated emission from optically pumped AlGaN/GaInN double heterostructure. Appl. Phys. Lett. 1994(64):1377-1379
    [18] R. L. Aggarwal, P. A. Maki, R. J. Molmar, Z. L. Liau and I. Melngailis. Opticallypumped GaN/Al0.1Ga0.9N double-heterostructure ultraviolet laser. J. Appl. Phys. 1996(79):2148-2150
    [19] T. J. Schmidt, X. H. Yang, W. Shan, J. J. Song, A. Salvador, W. Kim, O. Aktas, A. Botchkarevand H. Morkoc. Room-temperature stimulated emission in GaN/AlGaN separate confinement heterostructures grown by molecular beam epitaxy. Appl. Phys. Lett. 1996(68):1820-1822
    [20] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku and Y.Sugimoto. InGaN-Based Multi-Quantum-Well-Structure Laser Diodes. Jpn. J. Appl. Phys. 1996(35):L74-L76
    [21] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku and Y.Sugimoto. Ridge-geometry InGaN multi-quantum-well-structure laser diodes. Appl. Phys. Lett. 1996(69):1477-1479
    [22] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku and Y.Sugimoto. Continuous-wave operation of InGaN multi-quantum-well-structure laser diodes at 233 K. Appl. Phys. Lett. 1996(69):3034-3036
    [23] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto andH. Kiyoku. Room-temperature continuous-wave operation of InGaN multi-quantum-well structure laser diodes. Appl. Phys. Lett. 1996(69):4056-4058
    [24] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y.Sugimoto, T. Kozaki, H. Umemoto, M. Sano and K. Chocho, The 2nd International Conference On Nitride Semiconductors; P.S-1, Oct. 25-31, 1997, Japan
    [25] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku and Y.Sugimoto. InGaN Multi-Quantum-Well-Structure Laser Diodes with Cleaved Mirror Cavity Facets . Jpn. J. Appl. Phys. 1996(35):L217-L220
    [26] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, H. Kiyoku and Y. Sugimoto. InGaN multi-quantum-well structure laser diodes grown on MgAl2O4 substrates. Appl. Phys. Lett. 1996(68):2105-2107
    [27] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H.Kiyoku and Y.Sugimoto. Characteristics of InGaN multi-quantum-well-structure laser diodes. Appl. Phys. Lett. 1996(68):3269-3271
    [28] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho. High-power, long-lifetime InGaN/GaN/AlGaN-based laser diodes Grown on pure GaN substrates. Jpn. J. Appl. Phys. 1998(37):L309-L312
    [29] III-Vs Review, Cree acquires Nitres. 2000(13), 16
    [30] A. Kuramata, K. Domen, R. Soejima, K. Horino, S. Kubota and T. Tanahashi. InGaN laser diode grown on 6H-SiC substrate using low-pressure metalorganic vapor phase epitaxy. J. Cryst. Growth. 1998(189/190):826-830
    [31] A. Dadgar, J. Christen, S. Riechter, F. Bertram, A. Diez, J. Blasing, A. Krost, A. Strittmatter, D.Bimberg, A. Alarm and M. Heuken. InGaN/GaN Blue LightEmitter Grown on Si(111) Using an AlAs Seed Layer. Proc. Int. Workshop on nitride Semiconductors, IPAP Conf. Series, 2000(1):845-848
    [32] S. Nakamura, S. Pearton and G. Fasol: The Blue Laser Diode: The complete Story (Springer, New York, 2000)
    [33] M. E. Levinshtein, S. L. Rumyantsev and M. S. Shur编, 杨树人殷景志译, 先进半导体材料性能与数据手册,北京:化学工业出版社2003
    [34] J. Wu, W.W. Walukiewicz, K. M. Yu, J.W. Ager III, E.E. Haller, H. Lu, W. J. Schaffer, Y. Saito and Y. Nanishi. Unusual properties of the fundamental band gap of InN. Appl. Phys. Lett. 2002 (80):3967-3969
    [35] B. Arnaudov, T. Paskova, P. P. Paskov, B. Magnusson, E. Valcheva, B. Monemar, H. Lu, W. J. Schaff, H. Amano and I. Akasaki.. Energy position of near-band-edge emission spectra of InN epitaxial layers with doping levels. Phys. Rev. B 2004(69):1152161-1152165
    [36] 杨树人,王昌宗,王兢。半导体材料,吉林大学出版社1997。
    [37] T. Mukai, D. Morita and S. Nakamura. High-power UV InGaN/AlGaN double-heterostructure LEDs. Proceedings of the Second International Conference on Nitride Semiconductors, ICNS'97, Tokushima, Oct 27, 31, 1997. p. 516.
    [38] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku and Y. Sougimoto. InGaN-based Multiple-Quantum-Well_structure Laser Diodes. Japanese Journal of Applied Physics Part 2 35 (1996) L74.
    [39] R. Singh, D. Doppalapudi, T.D. Moustakas, L.T. Romano. Phase separation in InGaN thick films and formation of InGaN/GaN double heterostructures in the entire alloy composition. Applied Physics Letters. 70 (1997) 1089.
    [40] S. Nakamura and G. Fasol. The Blue Laser Diode. Springer, Heidelberg, 1997.
    [41] H. Amano, T. Takeuchi, S. Sota, H. Sakai and I. Akasaki, MRS Symposius Proceedings 449 (1997) 1143.
    [42] F. Scholz, V. HaK rle, F. Steuber, A. Sohmer, H. Bolay, V. Syganow, A. DoK rnen, J.-S. Im, A. Hangleiter, J.-Y. Duboz, F. Galtier, A. Rosencher, O. Ambacher, D. Brunner and H. Lakner, MRS Symposium Proceedings Vol. 449, 1997. p. 3.
    [43] Y.H. Cho, F. Fedler, R.J. Hauenstein, G.H. Park, J.J. Song, S. Keller, U.K. Mishra, S.P. DenBaars. High resolution x-ray analysis of pseudomorphic InGaN/GaN multiple quantum wells: Influence of Si doping concentration. Journal of Applied Physics 85 (1999) 3006.
    [44] G. Martin, S. Strite, A. Botchkarev, A. Agarwal, A. Rockett, H. Morkoc, W.R.L. Lambrecht and B. Segall. Valence-band discontinuity between GaN and AlN measured by x-ray photoemission spectroscopy. Applied Physics Letters 65 (1994) 610.
    [45] J. Baur, K. Maier, M. Kunzer, U. Kaufmann and J. Schneider. Low operating current self-sustained pulsation GaAlAs laser diodes with a real refractive index guided structure. Applied Physics Letters 65, 1211 (1994).
    [46] J.P. Waldrop and R.W. Grant. Measurement of AlN/GaN(0001) heterojunction band offsets by x-ray photoemission spectroscopy. Applied Physics Letters 68 (1996) 2879.
    [47] C.G. Van de Walle and J. Neugebauer. Small valence-band offsets at GaN/AlGaN heterojunctions. Applied Physics Letters 70 (1997) 2577.
    [48] M.G. Nardelli, K. Rapcewicz and J. Bernholc. Theory of interfaces and surfaces in wide-gap nitrides. Journal of Vacuum Science and Technology B 15 (1997) 1144.
    [49] W.R.L. Lambrecht, K. Kim, S.N. Rashkeev and B. Segall, Materials Research Society Symposium Proceedings 395 (1996) 455.
    [50] G. Martin, A. Botchkarev, A. Rockett and H. Morkoc. Valence-band discontinuities of wurtzite GaN, AlN, and InN heterojunctions measured by x-ray photoemission spectroscopy. Applied Physics Letters 68 (1996) 2541.
    [51] J.A. Majewski, M. StaK dele and P. Vogl, Materials Research Society Symposium Proceedings 449 (1997) 917
    [52] J.F. Nye, Physical Properties of Crystals, Oxford University Press, Oxford, 1985.
    [53] M. Asif Khan, J.W. Yang, G. Simin, H. zur Loye, R. Bicknell-Tassius, R. Gaska, M.S. Shur, G. Tamulaitis and A. Zukauskas. Low 1/f noise in n-GaN with high electron mobility. Physics Status Solidi (A) 176 (1999) 227.
    [54] F. Bernadini, V. Fiorentini and D. Vanderbilt. Spontaneous polarization and piezoelectric constants of III-V nitrides. Physical Review B 56 (1997) R10024.
    [55] K. Tsubouchi, K. Sugai and N. Mikoshiba, IEEE Ultrasonic Symposium, Vol. 1, 1981. p. 375.
    [56] G.D. O'Clock and M.T. Duly. Acoustic surface wave properties of epitaxially grown aluminum nitride and gallium nitride on sapphire. Applied Physics Letters 23 (1973) 55.
    [57] M.A. Littlejohn, J.R. Hauser and T.H. Glisson. Monte Carlo calculation of the velocity-field relationship for gallium nitride. Applied Physics Letters 26 (1975) 625.
    [58] K. Shimada, T. Sota and K. Sizuki. First-principles study on electronic and elastic properties of BN, AlN, and GaN. Journal of Applied Physics 84 (1998) 4951.
    [59] A.S. Barker Jr and M. Ilegems. Infrared Lattice Vibrations and Free-Electron Dispersion in GaN. Physical Review B 7 (1973) 743.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700