弛豫—析出控制相变技术对贝氏体钢组织热稳定性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微合金钢中采用组织细化技术得到的中温转变组织具备优良的综合力学性能。但这类组织属于非平衡组织,具有向平衡组织演化的自发趋势。当这类钢在受热(如回火或其它过程中被加热)时,若中温转变组织一旦粗化(演化为平衡组织),则其优良的性能将不复存在。因而研究细化的中温转变组织的热稳定性和影响热稳定性的因素具有重大的实用价值。本工作运用光学金相技术、透射电子显微术、硬度测量方法并结合热模拟实验,研究了弛豫-析出控制相变(RPC)技术参数对所得中温转变组织热稳定性的影响规律。具体内容包括:RPC技术参数(特别是弛豫时间)对工业生产的超细化低碳贝氏体钢回火组织与性能的影响,同时与控轧后空冷(AC)以及传统的再加热淬火(RQ)工艺生产的钢板回火组织及性能进行了比较。另外,分析了奥氏体区变形量和变形后等温弛豫时间对一种简单成分钢在重加热过程中组织演化行为的影响,并通过与四种作为奥氏体模型钢的铁镍合金对比,揭示了中温转变组织在受热过程中的演化机制。结果表明:
    不同RPC技术参数得到的钢板随回火温度升高均呈现软化-硬化-再软化的变化规律,只是各种钢的变化幅度及具体硬度值有所不同。经过AC工艺得到的钢板在回火后硬度和强度变化不明显,而经过RQ处理后的钢板随回火温度升高强度和硬度单调下降。回火前RPC和RQ两种工艺得到的钢板均为板条状贝氏体和少量粒状贝氏体的复合组织。随回火温度的升高或时间延长过程中,RPC工艺钢组织类型变化不明显,只是经过不同弛豫时间的试样组织粗化速度有所不同,而RQ工艺钢板条结构很快消失,并迅速演变成多边形铁素体。实验结果表明,利用RPC工艺得到的高强韧性钢板具有良好的组织热稳定性。这种稳定性起源于组织内特定的位错与析出相互作用状态。
    简单成分含Nb微合金钢在奥氏体区变形后等温弛豫不同时间再水冷,均可得到以贝氏铁素体为主的复合组织。但在各样品的贝氏铁素体内部,位错组态与应变诱导析出颗粒的分布状态明显不同。未经弛豫的样品中不存在应变诱导析出颗粒,弛豫很长时间的样品中析出颗粒基本分布在位错线之外,而在经过适当时间弛豫的样品中,析出颗粒基本分布在位错线上并对位错形成钉扎。在随后的650℃或700℃重加热等温过程中,这些非平衡组织呈现向平衡组织演化的趋势。弛豫60s的样品重加热等温时热稳定性最高,而弛豫1000s的样品,虽然重加热前硬度最低,重加热等温时组织演化却进行得最快。重加热等温过程中发生的组织演化是按板条内位错摆脱钉扎发生多边形化,板条间小角倾转晶界通过位错攀移而逐渐消失和发生再结晶形成多边形铁素体的次序进行的。
The intermediate transformation products in microalloyed steels obtained by refiningtechnique possess excellent synthetic properties. However, as non-equilibrious microstructures,intermediate transformation products always exhibit a tendency to evolving into equilibriousones during reheated (tempered or reheated in other process). Their excellent properties will belost once they become equilibrious microstructures. For great practical signification of theproblem, it deserves to carry out an investigation on thermo-stability of intermediatetransformation products and the factors determining the property. In the present study,metallographic examination, transmission electron microscopy, hardness measurement alongwith thermal simulation test are employed to investigate the influence of Relaxation-Precipitation Controlling transformation (RPC) technique on the thermo-stability ofintermediate transformation products. Following work is undertaken in this study: Effect of theparameter of RPC technique on the microstructures and mechanical properties of an ultra finelow carbon bainitc steel tempered at different temperature have been investigated, andcompared with those of same composition steels which processed by AC (controlled rolling andair cooling) and RQ (reheating and quenching) technique. The effect of deformation andrelaxation time on microstructure evolution in a simple component steel, which was reheated atdefinite temperatures, were investigated. By comparison with four Fe-Ni alloys, which serve asaustenitic model steels, the evolution mechanism of intermediate transformation products wasdiscussed. It was found that:
    With the tempering temperature rising, the hardness and strength of all the RPC platesdemonstrate a fluctuation phenomenon, but the amplitude of hardness change and the effect ofhardening are different in samples relaxed for different time. The hardness and strength of ACplate do not obviously changed and those of RQ plate decrease faster as the temperatureincreased. Both of the main microstructures of RPC steel and RQ steel are lath-like bainite andlittle granular bainite before tempering. The microstructure of RPC steel does not changeobviously after tempering, except for the rate of microstructures coarsening are different insamples relaxed for different time. Otherwise, the boundaries of bainitic laths in RQ steeldisappear quickly and finally a polygonal ferrite occurred. These results indicate that the steelswith high strength and toughness manufactured by RPC technique possess high thermo-stability.
    It is derived from the different states of dislocation and precipitates interaction in steelsintroduced by various techniques.Cooled in water after isothermal relaxation of deformed austenite for different time, a Nb-bearing microalloyed steel always exhibits synthetic microstructures, among which bainiticferrite dominates. Dislocation configurations and distribution of strain induced precipitatesinside bainitic ferrite of samples relaxed for different time are distinct. The strain inducedprecipitates do not occur in no relaxed sample while they distribute outside dislocations insample relaxed for 1000s. The most of strain induced precipitates distribute along dislocationsand pin dislocations in sample relaxed for proper time. When these samples are reheated to andheld at 650℃ or 700℃, the non-equilibrious microstructures tend to evolve into equilibriousones. The sample relaxed for 60s displays the highest thermo-stability, while microstructureevolution is quickest in the sample relaxed for 1000s even though it is softest before reheating.Dislocations inside laths getting rid of pinning of precipitates and their polygonization play theprecursor to the evolution of microstructures during reheating and holding, followed by gradualdisappearance of lath boundaries caused by dislocation climb. Finally, recrystallization happensand polygonal ferrite appears. Pre-strain before reheating accelerates the evolution. By hardnessmeasurement, it is found that softening is not single process occurring during reheating, inwhich hardness fluctuates with time. There are two peaks, which correspond to further growingand coarsening of Nb(C, N) precipitates forming in austenite before intermediate transformationand re-nucleating of the precipitates in intermediate transformation products respectively, inhardness-time curve of each sample having undergone relaxation during reheating at definitetemperature, while single peak occurs in the curve of the sample without relaxed. These resultsindicate that: Thermal stability of intermediate transformation products in Nb-bearing steels isdetermined by interaction state between dislocations and precipitates, rather than by dislocationdensity. The interaction state mainly forms in deformed austenite and maintains afterintermediate transformation.Fe-Ni alloys as austenite model steels can simulate the interaction between the dislocationconfiguration and the precipitates. This interaction is accordant to that of the simple steelsundergone the same deformation and relaxation. These results give further evidence thatthermo-stability of intermediate transformation products in bainitic steels is determined byinteraction state between dislocations and precipitates.
引文
[1] 翁宇庆. 超细晶钢-钢的组织细化理论与控制技术. 北京: 冶金工业出版社, 2003
    [2] P.J.Hurley, P.D.Hodgson. Formation of ultra-fine ferrite in hot rolled strip: potential mechanisms for grain refinement. Materials Science and Engineering, 2001, A32:206-214
    [3] 翁宇庆,董瀚.新一代超细晶粒钢及其力学性能特征,新一代钢铁材料重大基础研究论文集,北京:北京科技大学科研处,2000
    [4] X. M. Wang, X. L. He, S. W. Yang, C. J. Shang and H.B. Wu. Refining of intermediate transformation microstructure by relaxation processing. ISIJ International, 2002, 42 (12):1553-1559
    [5] Chengjia Shang, Xuemin Wang, Xinlai He, Shanwu Yang, Yi Yuan. A special TMCP used to develop a 800 MPa grade HSLA steel. Jounal of unversity of science and technology Beijing, 2001, 8(3): 224-228
    [6] 王学敏, 周桂峰, 杨善武等. 组织细化的 RPC 技术机理研究. 金属学报, 2002, 38(6): 661-664
    [7] K.T.Park, Y.S.Kim, J.G.Lee, D.H.Shin. Thermal Stability and Mechanical Properties of Ultrafine Grained Low Carbon Steel, Mater.Sci.Eng, 2000, A293:165-172
    [8] D.H.Shin, B.C.Kim, K.T.Park,W.Y.Choo. Microstructural Changes in Equal Channel Angular Pressed Low Carbon Steel by Static Annealing, Acta Mater, 2000 (48): 3245-3252
    [9] S.W.Yang, C.J.Shang, X.L.He, X.M.Wang, Y.Yuan.Stability of Ultra-fine Microstructures during Tempering. J.univ. of Sci. And Techn. Beijing , 2001, 8: 119-122
    [10] F.Abe. Evolution of Microstructure and Acceleration of Creep Rate in Tempered Martensitic 9Cr-W Steels. Mater.Sci.Eng, 1997 , A234-236: 1045-1048
    [11] S.G.Hong, W.B.Lee, C.G.Park. The Effects of Tungsten Addition on the Microstructural Stability of 9Cr-Mo Steels. J.Nuclear Mater, 2001, 288: 202-207
    [12] H.Sakasegawa, T.Hirose, A.Kohyama, Y.Katoh, T.Harada, K.Asakura. Microstructural Stability of Reduced Activation Ferritic/Matensitic Steels under High Temperature and Stress Cycling. Fusion Engineering and Design, 2002, 61-62: 671-675
    [13] Adachi Y, Tomida T, Hinotani S. Dislocation Substructure in Hot-Deformed Ni-Based Alloy: Simulation for Structure Evolution of Hot-Worked Austenite in Low Carbon Steel. ISIJ, 2000, 40 : S194-198
    [14] Rainforth W M, Black M P, Higginson R L, et al. Precipitation of NbC in a Model Austenitic Steel. Acta Materialia, 2002, 50 : 735-747
    [15] C.I.Garcia. Ultra-low carbon bainitic plate steel processing microstructure and properties. I&SM-97, 1997: 21-23
    [16] Webster D, Woodhead J A. Effect of 0.03% Nb on the Ferrite Grain Size of Mild Steels. ISIJ International, 1964, 202: 987-993
    [17] Morrison W B. Past and Future Development of HSLA Steels. HSLA steels'2000, Xi'an, China, 2000: 11-19
    [18] 尚成嘉. 新一代 800MPa 级低碳贝氏体钢的组织细化与性能研究: 博士论文. 北京: 北京科技大学材料物理与化学系, 2004
    [19] 贺信莱, 王学敏, 杨善武等. 铌在钢中的应用. 微合金化技术国际研讨会, 北京, 2002: 11-22
    [20] Webster D, Woodhead J A. Effect of 0.03%Nb on the Ferrite Grain Size of Mild Steels. JISI, 1964, 202 : 987-994
    [21] Morrison W B. Past and Future Development of HSLA Steels, HSLA steels'2000, Xi'an, China, 2000 : 11-19
    [22] W J Liu, Jonas J J. Ti(C, N) Precipitation in Micro-alloyed Austenite during stress Relaxation. Metall Trans A, 1998, 19A(6): 1415-1424
    [23] Wenjin Nie, Shanwu Yang, Shaoqiang Yuan, Xinlai He. Dissolving of Nb and Ti Carbonitride Precipitates in Microalloyed Steels. J Univ Sci Tech Beijing, 2003, 10(5): 78-80
    [24] 苑少强,杨善武,武会宾,王学敏,贺信莱. 多元微合金钢中的应变诱导复合析出. 北京科技大学学报,2003,25(5):419-421
    [25] Okamoto K, Yoshie A, Nakao H. Physical Metallurgy of Direct Quenched Steel Plate and its Application for Commercial Processes and Products, Proc. Physical Metallurgy of Direct-Quenched Steels, TMS, Warrendale, PA, 1993 : 339-405
    [26] Yang S W, Wang X M, Shang C J, et al. Relaxation of Deformed Austenite and Refinement of Bainite in a Nb-Containing Microalloyed Steel. Journal of University of Science and Technology Beijing, 2001, 8(3) : 214-21
    [27] Ohtsuka H, Umemoto M, Tamura I. Effect of Holding after Deformation on the Subsequent γ→аTransformation Behavior in a HSLA Steel. THERMEC'88, Warrendale, TMS, 1988 : 352-359
    [28] Zhang S, Hattori N, Enomoto M, Tarui T. Ferrite Nucleation at Ceramic/Austenite Interfaces. ISIJ, 1996, 36 :1301-1309
    [29] Baru S S, Bhadeshia H. Mechanism of the Transition from Bainite to Acicular Ferrite. Mater. Trans, JIM, 1991, 32(8) : 679-688
    [30] 苑少强. RPC 工艺参数对微合金钢中 Nb 析出行为的影响: 博士学位论文. 北京: 北京科技大学材料物理与化学系, 2004
    [31] Taylor K A, Hansen S S. Effects of vanadium and processing parameters on the structure and properties of direct-quenched low-carbon mo-b steel. Metall. Trans. A, 1991, 22A: 2359-2374
    [32] Taylor K A, Hansen S S. Effects of vanadium and processing parameters on the structure and properties of direct-quenched low-carbon mo-b steel. Metall. Trans. A, 1991, 22A: 2359-2374
    [33] Aaronson H I,Spanos G,Reynolds W T J.A progress report on the definitions of bainite.Scripta Materialia, 2002, 47:139-144
    [34] Hansen S S . Niobium carbonnitride precipitation and austenite recrystallization in hot-rolled microalloyed steels. Metall.Trans.A, 1980, 11A(3): 387-402
    [35] 雷廷权,赵连城等.钢的组织转变(译文集),北京:机械工业出版社,1985.
    [36] Reynolds W T Jr., Aaronson H I, Spanos G.. Asummary of the present diffusionist views on bainite. Mater.trans., JIM, 1991, 328: 737-746
    [37] G.BALACHNDRAN,M.L.BHATIA,N.B.BALLAL,et al.Influence of Mechanical Processing and Heat Treatment on Microstructure Evolution in Nickel Free High Nitrogen Austenitic Stainless Steels,2000,40(5):491-500
    [38] 胡德林.金属学及热处理,西安:西北工业大学出版社,1994.
    [39] odrigues P C M., Pereloma E V, Santos D B. Mechanical properties of an HSLA bainitic steel subjected to controlled rolling with accelerated cooling. Materials Science and Engineering, 2000,A283: 136-143
    [40] Chiou C S,.Yang J R, Huang C Y. The effect of prior compressive deformation of austenite on thoughness property in an ultra-low carbon bainitic steel. Materials Chemistry and Physics 2001, (69): 113-124
    [41] Bai D Q, Yue S, Maccagno T M, Jonas J J. Effect of deformation and cooling rate on the microstructures of low carbon Nb-B steel ,ISIJ International, 1998, 38: 371-379
    [42] H. Okamoto, M. Oka. Recent Research on Bainitic Microstructures and Transformation Behaviors of Very Low Carbon HSLA Steels.ISIJ,1994:49
    [43] Koji SHIBATA,Transformation Behavior and Microstructures in Uitra-Iow Carbor Steels,1995,35(8):982-991
    [44] Masaaki katsunata, Osamu Ishiyama,Tsuyoshi Inoue,et al.Microstructure and Martensical Properties Of Bainite Containing Martensite and Reatained Austenite in Low Carbon HSLA Ateels,1911,32(8):715-728
    [45] 方鸿生,薄祥正,郑燕康等. 贝氏体组织与贝氏体钢,金属热处理,1998(11):2-7
    [46] 时海芳, 胡世菊, 侯柏松等. 25SiMnMoV 钢粒状贝氏体回火过程研究. 煤矿机械, 2000, (1): 28-29
    [47] Dongyu Liu, Bingzhe Bai, Hongsheng Fang, et al. Effect of tempering temperature and carbide free bainite on the mechanical characteristics of a high strength low alloy steel. Mater Sci Eng A, 2004, (371): 40–44
    [48] 黄维刚, 方鸿生, 郑燕康等. 回火温度对高硅 Mn-B 系贝氏体钢强韧性的影响. 金属热处理学报, 1999, 20(4): 30-34
    [49] Young-Roc Im, Yong Jun Oh, et al. Effect of carbide precipitation on the strength and Charpy impact properties of low carbon Mn-Ni-Mo baititic steels. J Nuclear Mater, 2001, (297): 138-148
    [50] 周桂峰,文慕冰,李平和,王学敏,贺信莱. 超低碳贝氏体钢 ULCB6 0 0 组织结构及性能的研究. 钢铁,2000,35(12):47-49
    [51] Poths R M, Higginson R L, Palmiere E J. Complex Precipitation Behavior in a Microalloyed Plate Steel. Scripta Mater, 2001, 44 : 147-151
    [52] Miglin M T, Hirth J P, Rosenfield A R, et al. Microstructure of a quenched and tempered Cu-bearing high strength low alloy steel. Metall Trans A, 1986, 17A(5): 791-798
    [53] DeArdo A J. Multi-phase microstructures and their properties in high strength low carbon steels. ISIJ International, 1995, 35(8): 946-954
    [54] Antonio Augusto Gorni, Paulo Roberto Meib. Austenite transformation and age hardening of HSLA-80 and ULCB steels. Journal of Materials Processing Technology, 2004, 155–156: 1513–1518
    [55] Andrzej K Lis. Mechanical properties and microstructure of ULCB steels affected by thermo-mechanical rolling, quenching and tempering. J Mater Pro Tech, 2000, (106): 212-218
    [56] Shanwu Yang, Chengjia Shang, Xinlai He. Stability of Ultra-fine microstructure during tempering. J Univ Sci Tech Beijing, 2001, 8(2): 119-122
    [57] X. Fanga, Z. Fana, B. Ralpha, P. Evansb, R. Underhillc. Effects of tempering temperature on tensile and hole expansion properties of a C–Mn steel. Journal of Materials Processing Technology, 2003, 132: 215–218
    [58] 邓小君, 赵东江, 杨自明. 淬火钢回火温度的正确控制. 水利电力机械, 2001, 23(2): 56-59
    [59] Guang-Jun Cai, Hans-Olof Andre′n, fnm Lars-Erik Svensson. Microstructural change of a 5% Cr steel weld metal during tempering. Materials Science and Engineering, 1998, A242: 202–209
    [60] 赵振东, 钢的淬火回火工艺参数的确定. 金属热处理, 1999, (3): 28-29
    [61] 冯松筠,无承建,李景慧,铈和磷对中碳锰钢低温回火脆性的影响,钢铁研究学报. 1994,6(3):54-60
    [62] 程宇航, 赵建生. 回火温度对 65MnV 钢冲击韧度的影响. 金属热处理, 1998, (12): 21-31
    [63] A. Barbacki, E. Mikolajsk. Optimization of heat treatment conditions for maximum toughness of high strength silicon steel. Journal of Materials Processing Technology, 1998,78: 18-23
    [64] S. Sankaran, V. Subramanya Sarma, K.A. Padmanabhan. Low cycle fatigue behavior of a multiphase microalloyed medium carbon steel: comparison between ferrite /pearlite and quenched and tempered microstructures. Materials Science and Engineering, 2003, A345: 328-335
    [65] 龙晋明, 陈庆华. 回火工艺对 W6Mo5Cr4V2 钢冷冲模组织和使用寿命的影响. 金属热处理, 2003, 28(2): 59-62
    [66] 解振林,田薇. 低碳马氏体型高强度高韧性非调质钢的组织和性能. 河北冶金,2002,130(4):13-16
    [67] M.C. Tsai 1, J.R. Yang. Microstructural degeneration of simulated heat-affected zone in 2.25Cr /1Mo steel during high-temperature exposure. Materials Science and Engineering, 2003, A340: 15-32
    [68] 姚忠楷,赵连城,高彩桥等.钢的组织转变(译文集),北京:机械工业出版社,1980
    [69] Masaaki katsunata, Osamu Ishiyama,Tsuyoshi Inoue,et al.Microstructure and Martensical Properties Of Bainite Containing Martensite and Reatained Austenite in Low Carbon HSLA Ateels,1911,32(8):715-728
    [70] Liu W J. Precipitation of Ti(C,N) in Austenite: Experimental Results, Analysis And Modeling : [Dissertation]. Montreal, Canada : McGill University, 1987.
    [71] Emenike C O L, Billington J C. Formation of Precipitation in Microalloyed Pipeline Steels. Materials Science and Technology, 1989, 5(6) : 566-574
    [72] Poths R M, Higginson R L, Palmiere E J. Complex Precipitation Behavior in a Microalloyed Plate Steel. Scripta Mater, 2001, 44 : 147-151
    [73] Strid J, Easterling K E. On the Chemistry and Stability of Complex Carbides and Nitrides in Microalloyed Steels. Acta metal, 1985, 33(11) : 2057-2074
    [74] 杨善武,贺信莱,陈梦谪等.铌硼微合金钢高温应变诱导析出行为,材料科学与工程,1994,12(2):49-53
    [75] Liu W J. Precipitation of Ti(C,N) in Austenite: Experimental Results, Analysis And Modeling : [Dissertation]. Montreal, Canada : McGill University, 1987.
    [76] 王昭东,曲锦波,刘相华等.松弛法研究微合金钢碳氮化物的应变诱导析出行为,金属学报, 2000,36(6):618-621
    [77] Gray J M, Webster D, Woodhead J H. Precipitation in Mild Steels Containing Small Addition of Niobium. Journal of Iron and Steel Institute, 1965, 8 : 812-818
    [78] Davenprot A T, Brossard L C, Miner R E. Precipitation in Microalloyed High-Strength Low-Alloy Steels. J.Met., 1975, 27(6) : 21-26
    [79] 刘江文,罗承萍,肖晓玲. 38Si2M n2M o 钢下贝氏体和回火马氏体中的碳化物析出行为. 兵器材料科学与工程,2001,24(1)12-15
    [80] 张喜燕,武小雷,康沫狂,陈大明. 钢中回火马氏体碳化物析出形态. 钢铁,1994,29(12):52-61
    [81] 张万山,秦瑞凯,夏殿佩等. 回火温度对 HQ80 调制高强度钢的力学性能与显微组织的影响. 钢铁研究学报,1994,6(1):55-58
    [82] M.CHARLEEUX,W.J.POOLE,M.MILITZER,et al.Precipitation behavor and Its Effect on Strengthening of an HSLA-NB/Ti Steel,2001,(32):1635-1647
    [83] S.J.Tua, et al. structural change induced by high-temperature tempering of martensitic palte steels and a mechanism for recrystallization of martensite. Speich symposium proceedings, 1992:53-66
    [84] 雍歧龙,郑鲁.微合金化钢中 NbC 在铁素体中的沉淀和沉淀强化,金属学报,1984,20(1):A9-A16
    [85] Eckstein H, Franke A. Nioibmikrolegierung von hochhfestem baustahl. NEUE HUTTE, 1990, 35(8) : 281-285
    [86] 赵捷. 粒状贝氏体中残余奥氏体稳定性与强韧性关系. 机械工程材料, 1994, 18(5): 12-16
    [87] 文慕冰, 低碳Ni-Cr-Mo 钢中M/A 岛及回火特性. 钢铁, 1997, 32(9): 37-40
    [88] Bimal K. Jha, Nirmalendu S. Mishra. Microstructural evolution during tempering of a multiphase steel containing retained austenite. Mater Sci Eng, 1999, A263 :42–55
    [89] E. Mazancova, K. mazanec. et al. Physical metallurgy characteristics of the M/A constituent formation in granular bainite. J Mater Processing Tech,1997, 64(1-3): 287-292
    [90] E.Mazancova,K.mazanec.et al.Physiicl metallurgy charctristics of the M/A constituent formation in granular bainite,1997,(64):287-292
    [91] Bimal K. Jha, Nirmalendu S. Mishra. Microstructural evolution during tempering of a multiphase steel containing retained austenite, Materials Science and Engineering 1999 (A263) :42–55
    [92] Bimal K. Jha, Nirmalendu S. Mishrab. Microstructural evolution during tempering of a multiphase steel containing retained austenite. Materials Science and Engineering, 1999, A263: 42–55
    [93] Christine Sidoroff , Patrick Franciosi, Alain Vincent, Daniel Girodin, Gilles Dudragne. Dimensional evolution of martensitic steels: experimental study and modeling. Mécanique & Industries, 2002, 3: 503–511
    [94] Dong Wenpu,Fu Zuobao,Yang Lang. TEM Study of the Microstructure of HSLA100 Steel. Elsevier Science Inc, 1996: 169-175
    [95] 沙维. 马氏体时效钢的时效析出产物.钢铁,1994,29(11):47-51
    [96] J. Pesicka, R. Kuzel, A. Dronhofer, G. Eggeler. The evolution of dislocation density during heat treatment and creep of tempered martensite ferritic steels. Acta Materialia , 2003, 51: 4847–4862
    [97] Guang-Jun Cai, Hans-Olof Andre′n, fnm Lars-Erik Svensson. Microstructural change of a 5% Cr steel weld metal during tempering. Materials Science and Engineering, 1998, A242: 202–209
    [98] M.C. Tsai, J.R. Yang. Microstructural degeneration of simulated heat-affected zone in 2.25Cr_/1Mo steel during high-temperature exposure. Materials Science and Engineering, 2003, A340: 15-32
    [99] Yasuya OHMORL. Microstructural Evolutions with Precipitation of Carbides in Steels. Mater Trans, 2001, 41(6): 554-565
    [100] P.J.ENNIS ,A.ZIELINSKA-LIPIC,O.WACHTER,et al.MICROSTRUCTURAL STABILITY AND CREEP RUPTURE STRENGTH OF THE MARTENSIIC STEELP92 OR ADVANCED POWER PLANT,1997,45(12):4901-4907
    [101] Guen Chul Hwang ,Sunghak Lee,Jang Yong Yoo,et al.Effect Of direct quenching on microstructure and mechanical properties of copper-bearing high-strength alloy steels,1998,(252):256-268
    [102] Silveira J M, Barbosa R. Measurement of Kinetics of Nb(C,N) Precipitation Using Hot Torsion Testing. Scrita Metallurgica et Materialia, 1993, 29(7) : 881-884
    [103] Strid J, Easterling K E. On the Chemistry and Stability of Complex Carbides and Nitrides in Microalloyed Steels. Acta metal, 1985, 33(11) : 2057-2074
    [104] 王正, 傅万堂, 杨阳. 回火温度对 ZG0Cr13Mn8N 钢显微组织的影响. 特殊钢, 2000, 21(1): 7-9
    [105] Fujio Abe. Evolution of micrastructure and acceleration of creep rate in tempered martensitic 9Cr-W steels. Mater Sci Eng, 1997, A234-236: 1045-1048
    [106] 刘东雨,徐明,杨昆,白秉哲,方鸿生. 贝氏体/马氏体复相组织对低碳合金钢强韧性的影响. 金属学报,2004,40(8):882-886
    [107] Woei-Shyan Lee, Tzay-Tian Su. Mechanical properties and microstructural features of AISI 4340 high-strength alloy steel under quenched and tempered conditions. Journal of Materials Processing Technology, 1999, 87: 198–206
    [108] R.K. Shiue, K.C. Lan, C. Chen. Toughness and austenite stability of modified 9Cr–1Mo welds after tempering. Materials Science and Engineering, 2000, A287: 10–16
    [109] 雷廷权,姚忠楷等.钢的回火(译文集),北京:机械工业出版社,1986
    [110] Katsumi YAMADA, Masaaki IFARASHI, Seiichi MUNEKI,et al.Microstructural Evaluation of C-free Martensitic Alloys at high Tmperatures,2002,42(8):882-888
    [111] Jae-Young CHOI, Baek-Seok SEONG,Seung Chul BALK,et al.Precipitation and Recrystallization Behavior in Extra Low Carbon Steels,2002,42(8):889-893
    [112] Dongsheng LIU,et al. The Deformation Microstructure and Recrystallization Behabior of warm Rolled Steel, ISIJ International,2002,42,(7):751-759
    [113] 毛卫民,赵新兵.金属的再结晶与晶粒长大,北京:冶金工业出版社,1994
    [114] J.W.马丁, R.D.多尔蒂.金属系中显微结构的稳定性,北京:科学出版社,1984
    [115] 尚成嘉,杨善武,王学敏.RPC 对 800MPa 级低合金高强度钢的影响. 北京科技大学学报,2002,24 (2):129-132
    [116] 王学敏,尚成嘉,杨善武,贺信莱.组织细化的控制相变技术机理研究. 金属学报, 2002,38 (6):661-666
    [117] 武会宾,杨善武,尚成嘉,苑少强,贺信莱.低碳钢中微细非平衡组织的热稳定性. 北京科技大学学报,2003,25 (5) :419-421
    [118] K.T.Park, Y.S.Kim, J.G.Lee, D.H.Shin.Thermal Stability and Mechanical Properties of Ultrafine Grained Low Carbon Steel. Mater.Sci.Eng, 2000 A (293):165-172
    [119] D.H.Shin, B.C.Kim, K.T.Park,W.Y.Choo.Microstructural Changes in Equal Channel Angular Pressed Low Carbon Steel by Static Annealing. Acta Mater, 2000 (48): 3245-49
    [120] Shang C j, Wang X M,He X L, Yang S W, Yuan Y. A Special TMCP Used to Develop a 800MPa Grade HSLA Steel. Journal of University of Science and Technology Beijing, 2001,8 (3):224-228
    [121] 杨善武,尚成嘉,王学敏,贺信莱. 组织超细化新工艺-弛豫析出控制相变技术. 2001 年中国钢铁年会论文集, 887-890.
    [122] C J Shang, S W Yang,X L He, X M Wang. Influence of refinement processing on the microstructure and mechanical properties of HSLA Plate steel. First International conference on advanced structural steels (ICASS 2002), 2002, (May 22-24): 37-38.
    [123] S.G.Hong, W.B.Lee, C.G.Park. The Effects of Tungsten Addition on the Microstructural Stability of 9Cr-Mo Steels. J.Nuclear Mater, 2001 (288):202-208
    [124] 尚成嘉,杨善武. RPC 对 800MPa 级低合金高强度钢的影响. 北京科技大学学报, 2002, 24 (2): 129-131
    [125] T. Honda, N. Shikanai, T. Sampei, H. Tagawa. Recrystallization'90. Proc of the 1990 TMS Symp. TMS. T. Chandra[eds.], Warrendale, PA, 1990: 529-534
    [126] T.Hara.s.Takaki. THERMEC'97. Proce of the 1997 TMS Symp.TMS.T.Chandra,T.Si [eds], Warrendale, PA, 1997: 1557
    [127] Huibin Wu, Shanwu Yang, Aimin Guo, Shaoqiang Yuan, Chengjia Shang and Xinlai He. Thermo-stability of ultra-fine non-equilibrium microstructure. Journal of University of Science and Technology Beijing, 2004, 11( 4): 338-342
    [128] P.J.Hurley, P.D.Hodgson, B.C.Muddle. Analysis and characterization of ultra-fine ferrite produced during a new steel strip rolling process. Scripta Materialia, 1999, 40 (4): 433-438
    [129] P.D.Hodgson, M.R.Hickson, R.K.Gibbs, Ultrafine ferrite in low carbon steel. Scripta. Materialia, 1999, 40 (10): 1179-1184
    [130] 杨王钥,胡安民,齐俊杰,孙祖庆. 低碳钢形变强化相变的组织细化. 材料研究学报,2001, 15 (2): 171-178
    [131] 行如意,康布喜,苏娟华,田保红,刘平. 时效参数和变形量对 Cu-Cr-Zr-Mg 合金组织和性能的影响. 热加工工艺, 2004, 3: 1-5
    [132] 董志力,唐祥云,堀茂德. Cu-Zr 和 Cu-Zr-Si 的时效析出特性及冷变形对时效析出的影响. 金属学报,1989, 25 (6): 462-470
    [133] 姜训勇,李忆莲,王童. 高强度导电铜合金. 上海有色金属,1995,16(5):284-288
    [134] 苑少强,杨善武,聂文金,贺信莱.Fe-Ni-Nb-Ti-C 合金变形后等温弛豫过程中位错与析出的相互作用,金属学报,2004,40(8):887-890
    [135] Yoshitaka Adachi. Nucleation of bcc Phase from Work-Hardened fcc Phase. [in] 6th workshop on the Ultra-steel, Tsukuba, 2002
    [136] Keesam S, Thomas F K. Effect of RSP and NbC Addition on Microstructural Evolution of Fe-40wt.%Ni Alloys. Scripta Materialia, 2002, 47: 839-844
    [137] Abdollah-Zedeh A, Dunne D P. Effect of Nb on Recrystallization after Hot Deformation in Austenitic Fe-Ni-C. ISIJ International, 2003, 43(8) : 1213-1218
    [138] Adachi Y, Tomida T, Hinotani S. Dislocation Substructure in Hot-Deformed Ni-Based Alloy: Simulation for Structure Evolution of Hot-Worked Austenite in Low Carbon Steel. ISIJ, 2000, 40 : S194-198
    [139] Rainforth W M, Black M P, Higginson R L, et al. Precipitation of NbC in a Model Austenitic Steel. Acta Materialia, 2002, 50 : 735-747
    [140] 赖祖涵.金属的晶体缺陷与力学性质.北京:冶金工业出版社,1988
    [141] Liu W J, Jonas J J. Ti(C,N) Precipitation in Microalloyed Austenite during Stress Relaxation. Metallurgical Transactions A, 1988, 19A(6): 1415-1424
    [142] D. F. LI, X. M. ZHANG, E. GAUTIER, et al. Morphology transitions of deformation-induced thin-plate martensite in Fe-Ni-C alloys. Acta mater, 1998, 46(13): 4827-4834
    [143] M. UEDA, H. Y. YASUDA, Y. UMAKOSHI. Effect of grain boundary character on the martensitic transformation in Fe–32at%Ni bicrystals. Acta mater, 2001 (49): 3421-3432
    [144] 徐洲. Fe-32Ni 合金动态再结晶奥氏体的静态软化. 金属热处理,1997,1:11-24
    [145] 孙坚,胡赓祥. 高温变形时 Al67Mn8Ti25 的动态回复和动态再结晶. 上海交通大学学报,1999,33(2):127-130
    [146] 杨王钥,胡安民,孙祖庆. 低碳钢奥氏体晶粒尺寸的控制. 金属学报,2000,36(10):1050-1054
    [147] 孙全社. 一种热轧双相钢在γ和γ+α相区的静态软化动力学研究. 宝钢技术,2002,42(4):41-45
    [148] Chabbil, Lehnertw. Microstructural formation, deformation behaviour and deformability of heat treatment steels in the two phase reigin. La Revue de metallurgie-CIT 2000, 3: 589-598
    [149] Tanaka T, Tabata N. Three stages of the controlled rolling process. Proceedings of Micro Alloying75, 1975: 107-119
    [150] Mekkawy M F, EI-Fawakhry K A. Effect of finish-rolling temperature on microstructure and strength of V-and Ti microalloyed steels. Scand. J. Metallurgy, 1990, 19: 246-256
    [151] 王跃臣,李守新,艾素华等.同位相热机械疲劳形变后γ/γˊ相界面上的位错网分析,金属学报,2003,39(3):237-241

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700